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Validating Robotics Simulators on Real-World
Impacts

Brian Acosta*, William Yang*, and Michael Posa

Abstract—A realistic simulation environment is an essential
tool in every roboticist’s toolkit, with uses ranging from planning
and control to training policies with reinforcement learning.
Despite the centrality of simulation in modern robotics, little
work has been done comparing robotics simulators against real-
world data, especially for scenarios involving dynamic motions
with high speed impact events. Handling dynamic contact is
the computational bottleneck for most simulations, and thus
the modeling and algorithmic choices surrounding impacts and
friction form the largest distinctions between popular tools. Here,
we evaluate the ability of several simulators to reproduce real-
world trajectories involving impacts. Using experimental data, we
identify system-specific contact parameters of popular simulators
Drake, MuJoCo, and Bullet, analyzing the effects of modeling
choices around these parameters. For the simple example of a
cube tossed onto a table, simulators capture inelastic impacts
surprisingly well, though generally fail to reproduce elasticity.
For the higher-dimensional case of a Cassie biped landing from
a jump, the simulators capture the bulk motion well but the
accuracy is limited by model differences between the real robot
and the simulators.

Index Terms—Contact Modeling, Simulation and Animation,
Dynamics

I. INTRODUCTION

Given the importance of simulation in planning and control,
it is important to understand the physical realism of simulated
impacts. Recent successes in sim-to-real reinforcement learn-
ing for legged locomotion [1], [2], [3] largely use domain
randomization to mitigate model uncertainties. However, do-
main randomization works best when the range of randomized
model parameters is small, and non-randomized dynamics are
accurate. Contact parameters other than friction are rarely
randomized, suggesting accurate impact simulation could be
a contributing factor in successful sim-to-real transfer. Im-
pact simulation accuracy also affects the ability to accurately
compute regions of attractions for legged robot control [4]
and verify the robustness of impact-aware control techniques
[5], [6] without risking failure. Understanding which impact
behaviors can be recreated in popular robotics simulators is an
important step in applying these techniques to more impact-
rich behaviors.
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Fig. 1. Athletic behaviors such as jumping (right) involve high speed impacts
which are difficult to model and simulate. Yet, optimal performance of
controllers which are trained or verified in simulation relies on such impacts
being faithfully captured by simulators. In this work, we evaluate simulators’
ability to capture impact dynamics using real-world data from Cassie jumping
and a cube tossed onto a wooden table.

Most common robotics simulators use approximately rigid
contact models [7], [8], with specific approximations chosen
for the sake of computational speed and numerical stability.
The physical realism of these contact models are largely
validated by visual inspection or by tangential physical metrics
[9], and there is evidence that rigid contact models sometimes
poorly predict the dynamics of real collisions even for single
impacts [10], [11]. Follow up work on improving the predic-
tion ability of rigid body models with residual learning [12]
demonstrates some success, though recent work suggests that
stiff contact behavior may lead to poor amenability to learning
based techniques [13].

While simulators may be able to accurately capture real
impacts if tuned to a correct set of parameters, roboticists
often choose contact parameters such as stiffness to maximize
simulation speed and may only be peripherally aware of
the tradeoffs being made with physical realism. As part of
this paper, we examine the consequences of this approach
by conducting a sensitivity analysis of simulators’ physical
realism to the contact parameters.
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The primary contributions of this work are:

• Empirical evaluation of multiple simulators on complex
3D impacts using real world data collected from cube
tosses and jumping with a bipedal robot.

• Identification of optimal contact parameters for each
system in Drake, MuJoCo, and Bullet and sensitivity
analysis to assess the importance of properly specifying
each parameter.

• Analysis of the relative strengths and weaknesses of each
simulator when applied to the given scenarios.

• A publicly available dataset containing Cassie jumping
trajectories.

II. BACKGROUND

The forward simulation of rigid body motion without con-
tact is assumed to be identical across all three simulators. For
this reason, this paper focuses on the predictive fidelity of
simulator contact models when the system undergoes impact.
Contact models define a mathematical relationship between
the relative position and velocity of two rigid bodies and the
contact force between them. Rigid contact models assume that
bodies are perfectly rigid (i.e. infinite stiffness) and undergo
inelastic collisions, which can be posed as a linear complemen-
tarity problem (LCP) [7]. Compliant models acknowledge that
real objects experience some deformation during contact, and
approximate the inter-body forces produced by deformation as
a restoring force against the interpenetration of objects. The
constitutive laws of compliant contact models are numerically
stiff, requiring the use of small time steps, while solving LCPs
is computationally expensive. Therefore, simulators take dif-
ferent approaches to improving simulation speed by choosing
approximations and/or solution tactics. The following section
details the contact model and solution strategy for each of the
chosen simulators, which represent three distinct strategies for
modeling and solving for contact forces.

A. Simulator Contact Models

1) Drake: Drake [14] uses a compliant model of contact
with Hunt & Crossley dissipation [15] which penalizes in-
terpenetration using a nonlinear spring-damper law. Using a
smooth approximation of Coulomb friction, Drake expresses
contact forces as a function of state. Given a normal pene-
tration distance δ and penetration rate δ̇, the normal contact
force is

fn = k(1 + bδ̇)+δ+, (1)

where k is the stiffness, b is the dissipation, and (·)+ =
max(0, ·) ensures positive normal forces. When incorporated
into the equations of motion, this leads to a nonlinear system
of equations. Drake uses the custom TAMSI solver to properly
resolve contact transitions [16]. Like many other contact-
model solvers, TAMSI uses an iterative algorithm; however,
TAMSI enforces convergence at each time step. Resulting con-
tact forces are therefore consistent with the original modeling
equations of compliant contact with regularized friction.

2) MuJoCo: MuJoCo uses a convex approximation of rigid
contact first introduced in [17] with regularization introduced
in [18]. This regularization softens contact by relaxing the
strict complementary of contact force and distance between
objects. The amount of regularization is determined by user
specified stiffness and damping parameters, which are trans-
formed internally into reference accelerations for the contact
constraint dynamics, which approximately obey the following
linear spring-damper law 1:

an ≈ (−kδ − bδ̇)d(δ) + (1− d(δ))a0, (2)

where an is the normal acceleration, a0 is the acceleration in
the absence of contact, and d(δ) ≈ 1 is a position-dependent
interpolation between the constrained and unconstrained ac-
celeration. MuJoCo allows for tuning the shape of d, though
the results presented here use the default values, as we find
no improvement in the prediction error by tuning d. MuJoCo
implements friction by solving a convex optimization problem
which balances achieving the constraint dynamics in (2) with
contact activation and energy dissipation.

This convex formulation guarantees a unique solution
at each time step and yields fast, differentiable computa-
tions. This speed has made MuJoCo a popular simulator in
the robotics community, especially among RL practitioners,
though MuJoCo’s contact constraint regularization has been
observed to cause non-physical artifacts during slip. Objects
can glide at a distance from each other [19], and large amounts
of regularization can lead to viscous slip [20], requiring the use
of additional stabilization techniques. Like Drake, after posing
its regularized dynamics problem, MuJoCo is guaranteed to
find an accurate solution to this problem.

3) Bullet: Bullet is a physics engine originally introduced
for simulation in computer graphics and animation but widely
used for robotics simulations. Bullet formulates the contact
problem as a mixed LCP (MLCP), a generalization of the
LCP which allows for inequality constraints. Bullet’s MLCP
represents rigid contact with Coulomb friction, and is solved
using a Projected Gauss-Seidel (PGS) solver. PGS attempts to
iteratively resolve each contact constraint separately, keeping
the remaining constraints fixed. Unlike Drake or MuJoCo,
Bullet’s PGS solver is allowed to return with an intermediate
computation when a fixed maximum number of iterations is
reached. In this case, Bullet relies on linear spring-damper
Baumgarte stabilization [21] to enforce the contact constraint.
This feature can cause a lack of robustness in the event the
PGS solver fails to converge.

B. Simulator Considerations

The simulators evaluated in this paper are by no means
exhaustive, with several other engines finding popularity in the
robotics community. The three chosen here, however, provide
good coverage of the different styles of contact dynamics
formulations. We note that we considered IsaacGym [22],
a popular simulator for reinforcement learning applications,
including sim-to-real transfer on a legged robot [23]. However,

1https://mujoco.readthedocs.io/en/latest/modeling.html

https://mujoco.readthedocs.io/en/latest/modeling.html
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at the time of publication, IsaacGym does not support modi-
fication of its compliance parameters. Without this capability,
the accuracy of the IsaacGym simulator was quite poor on our
dataset.

For the Cassie dataset, we limit our comparisons to Drake
and MuJoCo. Bullet does not natively support modeling the
reflected inertia from the motors and gearboxes, which plays
a significant role in the dynamics of Cassie.

III. EXPERIMENTAL SETUP

A. Cube Toss

1) Data: There are 550 trajectories of a 10 cm acrylic
cube tossed onto a wooden table as a dataset for parameter
identification and performance evaluation. The data collection
procedure is described in [24] and the data is available as part
of an open source code repository2. We name these the ground
truth cube trajectories and denote a ground truth trajectory of
length T as x∗ = (x∗t )t=1...T where x∗t = [q∗t ; v

∗
t ] is the state

of the cube at each time step. The configuration q consist of
position p ∈ R3 and orientation R ∈ SO(3), and the velocity
v consists of linear and angular velocities ṗ and ω. Physical
properties of the cube-table system are given in Table I. The
cube was weighed to determine the mass, with the inertia
determined from the measured mass and geometry. Friction
was determined via a tilt-test, and restitution was determined
by minimizing the prediction error in [24].

TABLE I
CUBE PHYSICAL PARAMETERS

Mass Inertia Friction Restitution
0.37 kg .0081 kg m2 0.18 0.125

2) Simulation Environment: Each cube toss simulation is
designed to match the real experiment as closely as possible.
The measured dimensions and inertial parameters of the real
cube are specified in a Universal Robot Description Format
(URDF) file for Bullet and Drake, and as XML text in the
MJCF format for MuJoCo. The timestep for each simulator is
set to 1480 Hz, and the resulting trajectories are down-sampled
to match the data collection frequency of 148 Hz. We found
that decreasing the simulator timestep further did not improve
the prediction capability of any simulator.

B. Cassie Jumping

1) Data Collection: We use state and input data from 22
jumping experiments performed with the Cassie bipedal robot.
The jumping trajectories were generated using the jumping
controller detailed in [5], and are available as a public dataset3.
The state measurements, sampled at 2000Hz, are composed of
the joint positions and velocities as well as the floating base
state of the pelvis. Although we treat the state data as ground
truth, there is uncertainty in these measurements as a state
estimator [25] is used to compute the floating-base state and
joint velocities are subject to encoder noise and resolution. To

2https://github.com/DAIRLab/contact-nets
3https://github.com/DAIRLab/cassie impact dataset

account for state estimation errors, we offset the pelvis vertical
height so that the feet are in contact with the ground at impact.
This ensures that the impact timing between the real and
simulated data matches. For context, the maximum correction
applied is 0.02m, which corresponds to approximately 20%
of the total loss for both Drake and MuJoCo.

We use the same notation for Cassie trajectories as with the
cube, though Cassie is modeled as a floating-base Lagrangian
system with q ∈ Rn+7 and v ∈ Rn+6 where n = 16 is
the number of joints. The motor input data, also sampled at
2000Hz, are the torques measured at the motors as opposed
to the torques commanded by the controller. We make this
distinction to account for the delays between the output of
the controller and when the motor actually is supplied the
commanded current.

2) Simulation Environment: Simulated data is generated
from Drake and MuJoCo, and Bullet is not used on the Cassie
data for reasons explained in II-B.

The description of the robot is specified in a URDF for
Drake and as a XML for MuJoCo. For both simulators, we
initialize the state of the robot just prior to impact and apply
the measured motor torques at the corresponding times. This
decision to simulate in open-loop eliminates the dependency
on the controller. For both simulators, the state was sampled
at 2000Hz, consistent with the hardware data.

There are slight differences in the Cassie models used by
Drake and MuJoCo. The physical Cassie robot contains two
four-bar linkages per leg that enable the control of leg length
through the knee motor and the control of the toe joint through
an actuator located at the ankle. The MuJoCo simulator
provided by Agility Robotics [26] includes the achilles and
plantar rods shown in Fig. 2 that form the loop closures for
the linkages.

Drake does not natively support loop closure constraints,
thus the URDF does not include the connecting rods but
accounts for their inertial contribution by adding lumped
masses at the anchor points. The upper loop closure is modeled
as a stiff spring with spring constant chosen to enforce the loop
closure but not interfere with the performance of the simulator.
The lower loop closure is handled by applying actuator efforts
directly at the toe joint, a common convention used in many
Cassie models [27], [28].

While the state of the connecting rods are fully defined by
the other states, the MuJoCo model includes these redundant
states. For fair comparison, we map the full MuJoCo states to
the Drake states when comparing state trajectories.

IV. PARAMETER IDENTIFICATION

To evaluate the performance of each simulator, we identify
a simulator and system-specific set of contact parameters that
best enables each simulator to reproduce real-world trajecto-
ries. To maintain some comparability across simulators, we
only tune the friction, stiffness, and damping parameters for
each simulator. The parameters and their physical significance
are given in Table II. Beyond differences in units, these
parameters may not be physically equivalent, as the contact
laws vary between simulators. We combine static and dynamic

https://github.com/DAIRLab/contact-nets
https://github.com/DAIRLab/cassie_impact_dataset
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Fig. 2. The configuration states for a leg of the Cassie robot. The additional
joints included in the MuJoCo model are indicated in yellow, which include
the orientation of the achilles rod and the angles of the foot crank linkage.

friction into a single constant µ as we do not see higher
accuracy from distinguishing between coefficients.

TABLE II
CONTACT PARAMETERS IDENTIFIED

Parameter units Physical Interpretation
µ - Friction coefficient

Drake k N / m Contact stiffness
b s / m Contact dissipation
µ - Friction coefficient

MuJoCo k N / (kg m) Contact stiffness
b N s / (kg m) Contact damping
µ - Friction coefficient

Bullet k N / m Contact stiffness
b N s / m Contact damping

A. Evaluation Metrics

For a ground truth trajectory x∗, the corresponding simula-
tor trajectory x̂(x∗0, θ) = (x̂t)t=1...T , is simulated with contact
parameter vector θ from the initial condition x∗0. We define
the following error metrics, which will be used in the loss
function for parameter identification. From here on we omit
the dependence of x̂ on x∗0 and θ for brevity.

1) Cube Metrics: The cube configuration error is

eq(x
∗, x̂) =

1

T

T∑
t=1

(2
l
‖p∗t − p̂t‖

2
2 + Angle(R∗t , R̂t)

2
)
, (3)

where l is the side length of the cube and Angle(R1, R2)
is the angle of rotation of the relative rotation between R1

and R2. We scale the position error by 2/l to give identical
units and similar magnitudes to position and orientation error.
Since the velocity in the cube toss data set is generated by
filtering differences of positions, and is therefore influenced by
filter dynamics, we do not calculate velocity errors, focusing
instead on long term position and orientation accuracy. Due
to the second order dynamics of the cube, this will capture
the effect of finding the correct contact dynamics while not
biasing toward incorrect velocity estimates in the ground truth
data.

2) Cassie Metrics: The joints on the Cassie robot have a
wide range of inertias; therefore, a naive loss function, such as
the L2-norm, would lead to over-weighting of the low-inertia
joints such as the toes. To direct the parameter identification
algorithm to prioritize capturing the bulk motion of the robot,
we use a weighted norm

ecassie(x
∗, x̂) =

T∑
t=1

x̃Tt Wx̃t, (4)

where W is a diagonal matrix, and x̃ is the error between the
simulated and measured state. The elements of W are all 10 for
the position indices. For the velocity indices, we use a weight
of 5 for the floating base rotation, 100 for the floating base
translations, 0.01 for the hip roll, knee spring, and toe joints,
and 1 for the remaining joints. There are no measurements for
the velocity of the ankle spring deflection, which is therefore
omitted from the loss function.

The data indicates significant but unknown model differ-
ences between the simulators and the physical robot. These
differences may include incorrect model parameter values
for the spring constants and joint damping. Better modeling
these effects would likely improve simulation accuracy, but
the complexity of Cassie makes full system identification
infeasible and is outside the scope of this paper.

To mitigate the effects of model uncertainty mentioned
above, and to focus on capturing the impact event, we evaluate
the trajectories for a brief 50 ms time window (T = 100
when sampled at 2000 Hz) around the impact event. This is
under the assumption that the contact forces are large and the
time window is short enough that error from incorrect model
parameters will have a relatively small effect. To account for
timing variations between jumping experiments, we manually
select the time window for each log to include the first impact
event for each jump.

B. Optimization Procedure

TABLE III
CONTACT PARAMETER OPTIMIZATION DOMAINS

Parameter Θcube Θcassie

All Simulators µ [0, 1] [0, 1]
Drake k [1e2, 1e5] [1e3, 1e6]

b [0, 2] [0, 3]
MuJoCo k [1e2, 1e4] [0,1e6]

b [0, 1e3] [0, 1e3]
Bullet k [1e2, 1e4] -

b [0, 1e3] -

We identify contact parameters using NGOpt, a gradient-
free meta-optimizer provided through the nevergrad Python
library [29]. The appropriate contact parameters are the solu-
tion to the optimization problem

θ∗ = argmin
θ∈Θ

L(θ). (5)

The optimization domains are shown in Table III. The loss
functions for the cube and Cassie are

Lcube =
1

N

∑
i∈I

eq(x
∗
i , x̂i) (6)
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and

Lcassie =
1

N

∑
i∈I

ecassie(x
∗
i , x̂i), (7)

where I is the dataset and N is the total number of trajectories
in the dataset.

V. RESULTS

A. Cube
1) Parameters: The optimal contact parameters θ∗ for each

simulator are reported in Table IV.

TABLE IV
IDENTIFIED CUBE TOSS PARAMETERS

Dissipation/
Stiffness Damping Friction

Drake 10800 0.4 0.10
MuJoCo 3300 45 0.22

Bullet 9300 36 0.39

2) Performance: As shown in Table V, the simulators
are all able to accurately reproduce cube toss trajectories,
with Drake and Bullet being more accurate than MuJoCo. In
addition to the minimum eq observed for each simulator, we
report average position and rotation error along with standard
deviation σ for each metric.

TABLE V
SUMMARY OF CUBE ERRORS

Position Err. ±σ. Rotation Err. ±σ eq ±σ
(% Cube Width) (Degrees)

Drake 13.5 ± 8.2 16.5 ± 20.0 0.27 ± 0.57
MuJoCo 25.1 ± 10.8 21.7 ± 21.4 0.38 ± 0.63

Bullet 14.9 ± 8.9 16.5 ± 20.2 0.27 ± 0.57

B. Cassie
The optimal contact parameters θ∗ and the average loss for

Drake and MuJoCo are reported in Table VI. Although we
report a single set of optimal parameters, we observe that a
wide range of parameters for both simulators achieve similar
performance as shown in Fig. 3. The parameter set that works
well for MuJoCo is a damping value near the optimal value,
and depends very little on the stiffness parameter. Drake, on
the other hand, has a band of optimal parameters that shows
a clear relationship between stiffness and dissipation.

TABLE VI
IDENTIFIED CASSIE JUMPING PARAMETERS

Dissipation
Loss Stiffness /Damping Friction

Drake 38.0 9400 3.0 0.45
MuJoCo 30.0 1600 270 0.43

VI. DISCUSSION

Drake, MuJoCo, and Bullet are all capable of recreating the
bulk motion of the trajectories seen in our datasets. While the
following section discusses potential areas for improvement,
the salient point should be that modern robotics simulators are
able to capture dynamic impacts with friction for a range of
contact parameters.

A. Cube

1) Sources of Error: Drake and Bullet have similar errors,
as they both recreated near inelastic collision observed in the
cube toss system, though they produced less restitution than
observed in the real system. For most tosses this resulted in a
minor contribution to the average position error, though occa-
sionally caused the simulated cube to slide rather than bounce
and settle on a different face (Figure 4). High rotation error in
these instances is responsible for the large standard deviations
in Table V. MuJoCo exhibited more elastic behavior, though
this was accompanied by softer impacts and larger penetration
depths (Figure 5).

2) Simulator Comparison: As seen in Table V, MuJoCo
was the least accurate in matching cube trajectories. Due to
the interplay between friction and contact dynamics, MuJoCo
produces longer contact events with lower peak forces, dissi-
pating energy more slowly than the other simulators. While
this effect can be tuned out for individual logs, we found no
parameter change which was able to improve the average eq
across all logs.

B. Cassie

The velocities of the primary load-bearing joints (hip pitch,
knee, and ankle), are captured well by both simulators. As a
result, the vertical velocity of pelvis, which is the combination
of the load-bearing joints, is similarly captured as shown in
Fig. 6. This is surprising, because the simulators are not only
able to predict the velocity at the end of the time window,
but also able to model the rate at which the velocity changes
as well. This is promising evidence in support of the use of
simulators to evaluate the performance of controllers during
the impact event, when the impact has not fully resolved.

Certain logs, where Cassie landed distinctly with the rear
parts of the feet first, have significantly high losses across
all contact parameters. The additional error is attributed to a
twisting motion at the pivot points which caused the orienta-
tion of the pelvis to shift quickly. While this twisting motion
is present in those actual trajectories, the actual motion was
not as severe. This may be due to the contact patches on the
physical robot able to exert moments about the contact normal,
whereas in both simulators, contact forces are represented
as point contacts and unable to produce moments about the
contact point.

C. Sensitivity Analysis

In addition to identifying the parameters for each simulator
and system, we also perform a sensitivity analysis of the
parameters by sweeping each parameter value individually,
holding the remaining values at θ∗. The results of this analysis
are shown in Fig. 3.

1) Stiffness and Damping: It is surprising that MuJoCo
appears to be insensitive to small stiffness values, given that
stiffness is responsible for enforcing non-penetration. Our
hypothesis is that, in the small time window around the impact
event, the damping forces provide sufficient contact force for
our datasets due to the large impact velocity.
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Fig. 3. We perform a sensitivity analysis by holding friction fixed at the optimal value while sweeping a range of stiffness and damping values, and vice-versa.
Cube Toss (Top Row): All three simulators are mostly insensitive to stiffness above a given threshold, while MuJoCo and Bullet require sufficient damping as
well. Friction (Middle): Cube toss error is sensitive to the friction coefficient parameter due to large amounts of sliding in the dataset, while Cassie jumping
is not, due to mostly experiencing static friction. Cassie Jump (Bottom): Drake and MuJoCo display relatively low sensitivity to the contact parameters and
have a wide range of parameter values that achieve low error. MuJoCo shows almost no sensitivity to its stiffness parameter.

For the cube toss dataset, the sensitivity of Bullet and
MuJoCo to insufficient damping, and the correlation of this
dependence with the amount of stiffness, suggests that there is
an optimal damping ratio for MuJoCo’s soft contact dynamics
and Bullet’s constraint stabilization for this system. Note that
this is not the real damping ratio of the contact dynamics,
due to trade-offs between friction and contact dynamics in
MuJoCo, and the fact that Bullet only uses a spring-damper
law to stabilize the simulation of rigid contact.

2) Friction: The cube toss prediction error is sensitive
to the coefficient of friction, which is unsurprising given
the large amount of sliding contact in the dataset. Perhaps
more surprising is that every simulator is so sensitive to the
friction coefficient while not necessarily being close to the
experimentally measured value in Table I. Frictional impacts
are difficult to accurately model [30] [31], and the three contact
modeling paradigms explored here may need different values
to achieve low prediction error and account for the un-modeled
effects of each framework.

The Cassie trajectories did not enter the slip-regime for
friction, which is necessary to characterize the friction co-

efficient. This is why the sensitivity to the friction coefficient
is relatively flat.

VII. CONCLUSIONS

We observe that for both systems, the simulators tested are
able to reproduce the bulk motion observed during impact.
This suggests that simulators can indeed be an appropriate tool
for controller design and verification in impact-rich settings.
Additionally, we observe that accurate simulator performance
can be achieved by a wide range of contact parameters, which
suggests that extensive identification of the contact parameters
is not necessary.

While the simulators perform well on a significant portion
of the cube dataset, there were several cube tosses that all
simulators struggle on. We were unable find any property that
nicely distinguishes these tosses from the rest of the dataset,
though we noted that these tosses often involve frictional
impact with an edge or corner of the cube. We believe that
further investigating and characterizing these particular cases
can result in improved simulator performance.
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Fig. 4. Motion patterns showing the real cube (grey) and the simulated cube
(blue) for an inelastic (top) and elastic (bottom) collision in Drake.

Although the identified cube parameters are fairly stiff, the
identified parameters for Cassie are much softer. This may
be due to the rubber pads on Cassie’s feet as well as other
mechanical compliance associated with a larger system. This
compliance results in impacts resolving over tens of millisec-
onds, which is important to model when using simulators for
validation or in learning situations.
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