
REAL-TIME PERCEPTION AND MIXED-INTEGER FOOTSTEP CONTROL FOR

UNDERACTUATED BIPEDAL WALKING ON ROUGH TERRAIN

Brian Acosta

A DISSERTATION

in

Mechanical Engineering and Applied Mechanics

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2025

Supervisor of Dissertation

Michael Posa, Assistant Professor of Mechanical Engineering and Applied Mechanics

Graduate Group Chairperson

Prashant K. Purohit, Professor of Mechanical Engineering and Applied Mechanics

Dissertation Committee

Dan Koditschek, Alfred Fitler Moore Professor of Electrical and Systems Engineering
Michael Posa, Assistant Professor of Mechanical Engineering and Applied Mechanics
Antonio Locquercio, Assistant Professor of Electrical and Systems Engineering
Xiaobin Xiong, Assistant Professor of Mechanical Engineering, University of Wisconsin

REAL-TIME PERCEPTION AND MIXED-INTEGER FOOTSTEP CONTROL FOR

UNDERACTUATED BIPEDAL WALKING ON ROUGH TERRAIN

COPYRIGHT

2025

Brian Jeffrey Acosta

ACKNOWLEDGEMENT

I want to first thank my advisor, Michael Posa. Michael gave me broad latitude to explore research

directions I was interested in, and pushed me to clearly articulate the problems I was solving, why

they were hard, and why they mattered. Michael is deeply kind without mincing words on technical

matters, and I hope to replicate his patience and high standards as I continue in my career.

I also with to thank my fellow DAIR Lab members. Mathew Halm provided me valuable men-

torship and ecouragement early in my PhD, and his impeccable food and coffee recommendations

made Philadelphia feel like home. Yu-Ming Chen wrote much of the original Cassie control stack

from scratch, and taught me much of what I know about writing (and debugging) robot controllers.

My frequent discussions with Will Yang on how to implement things “the right way” and his high

standards for controller robustness greatly improved my software engineering abilities and the per-

ceptive locomotion results in this thesis. Alp Aydinoglu gave me helpful advice on mixed-integer

programming, and, along with Leon Kim, Bibit Bianchini, Hien Bui, and Grey Sarmiento, could be

relied on for insightful questions and hot takes. Without the safety-tether carrying talents of the

above mentioned lab-mates, as well as Chandravan Kunjeti, Wei-Cheng Huang, and Minku Kim,

none of the Cassie experiments in this thesis would have been possible.

Special thanks to everyone who helped keep Cassie working. To Peter Szczesniak, Jason Pastor,

and Ari Bortman in the MEAM machine shop for always being enthusiastic to make a part or lend

a tool. Thank you to Nathan Peterman and Oluwami Dosunmu-Ogunbi for helping me understand

Cassie’s battery requirements.

Thank you to my committee, Professors Dan Koditschek, Xiaobin Xiong, and Antonio Loquercio,

for your insightful feedback.

I would be remiss not to also thank the Drake team at Toyota Research Institute. Every slack

conversation with Jeremy Nimmer taught me something new about writing software, and Drake

provided an invaluable scaffolding upon which to implement the algorithms developed in this thesis.

iii

Purdue Mechanical Engineering provided me the foundational skills and community I needed to

launch a research career in robotics. Professor Song Zhang was my first controls professor and

research advisor. He taught me how to write effectively and how to contextualize a research problem

in a broader field. Without the advice and intellectual partnership of Naveed Riaziat, I would not

have applied to nor been accepted to Penn.

I would like to thank my parents and brothers for their support of my long career as a student –

especially my late father, who encouraged me to be broadly and endlessly curious.

Thank you to Sydney, for everything. Being yours is my greatest accomplishment.

iv

ABSTRACT

REAL-TIME PERCEPTION AND MIXED-INTEGER FOOTSTEP CONTROL FOR

UNDERACTUATED BIPEDAL WALKING ON ROUGH TERRAIN

Brian Acosta

Michael Posa

The promise of bipedal robots is to go where people go, serving as surrogates for human labor in

dangerous unstructured environments. For the most part, this promise remains unrealized, due

partially to the difficulty of controlling bipedal locomotion in these environments. The primary

challenge for controlling bipedal locomotion is underactuation. Standing on a single leg limits control

authority, requiring appropriate foot placement to generate or absorb momentum and maintain

balance. Rough terrain exacerbates this challenge by introducing restrictions on where the robot

can step. These restrictions must be identified from onboard sensing modalities and accounted for

in the footstep plan, all while meeting the strict real-time requirements of feedback control. In this

thesis, we examine systems, modeling choices, and algorithms for solving this problem, ultimately

enabling dynamic bipedal walking over previously unseen discontinuous terrain.

Conventional approaches decouple the problem of walking over rough terrain into separate modules

for footstep planning and motion control, limiting walking speed and online adaptability. The begin-

ning of this thesis introduces a new model-predictive-control-style footstep planner which eliminates

this decomposition. We jointly optimize over the robot’s dynamics and discrete choice of stepping

surface in real time to stabilize underactuated walking over constrained footholds.

Our footstep controller depends on approximating the safe terrain as a union of convex planar poly-

gon “stepping stones”. In order to generate such an approximation from onboard sensors in real

time, we propose novel safe terrain segmentation and convex decomposition algorithms. Our seg-

mentation approach avoids the common design choice of plane segmentation, which we argue makes

segmentation algorithms slower and less reliable. Instead, we classify terrain as safe based only on

v

local features, yielding a segmentation which is both fast to compute and temporally consistent. We

present full stack perceptive locomotion experiments on the underactuated biped Cassie, leveraging

our novel footstep controller and perception pipeline to walk over previously unseen discontinuous

terrain.

Finally, we present an exploratory study of a cascaded-fidelity model predictive footstep controller,

which combines elements of our first footstep planner with whole-body model predictive control in

order to navigate even more challenging terrains.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENT . iii

ABSTRACT . v

LIST OF TABLES . x

LIST OF ILLUSTRATIONS . xi

CHAPTER 1 : Introduction . 1

1.1 Contributions and Outline . 3

CHAPTER 2 : Bipedal Robot Terminology . 5

CHAPTER 3 : Related Work . 7

3.1 Controlling Dynamic Bipedal Locomotion . 7

3.2 Footstep Planning on Discontinuous Terrain . 11

3.3 Identifying Safe Terrain from Perception . 13

CHAPTER 4 : Background . 15

4.1 Cassie . 15

4.2 Hierarchical Control of Bipedal Walking . 18

4.3 Operational Space Control . 26

4.4 Model Predictive Control . 27

4.5 Robot-Centric Elevation Mapping . 30

CHAPTER 5 : Model Predictive Footstep Control . 31

5.1 MPFC Problem Statement . 32

5.2 Output tracking via Operational Space Control . 37

5.3 Results . 41

5.4 Conclusion . 49

vii

CHAPTER 6 : Stable Steppability Segmentation and Convex Decomposition 51

6.1 Stable Steppability Segmentation . 54

6.2 Convex Planar Decomposition . 57

6.3 Results . 60

6.4 Discussion . 67

6.5 Conclusion . 68

CHAPTER 7 : Full-Stack Perceptive Locomotion Experiments 70

7.1 Experimental Setup . 70

7.2 Results . 74

7.3 Discussion . 80

7.4 Conclusion . 82

CHAPTER 8 : Cascaded Fidelity MPFC . 83

8.1 The Alternating Direction Method of Multipliers . 84

8.2 ALIP MPFC ADMM Formulation . 86

8.3 Cascaded-Fidelity MPFC formulation . 90

8.4 Evaluation . 100

8.5 Discussion . 105

8.6 Conclusion . 106

CHAPTER 9 : Conclusions and Future Work . 107

9.1 Lessons Learned . 108

9.2 Future Work . 109

APPENDIX A : ALIP MPFC IMPLEMENTATION DETAILS 111

APPENDIX B : MPFC AND S3 PARAMETERS . 113

APPENDIX C : ADMM DERIVATION WITH WEIGHTED PROJECTION 115

APPENDIX D : CASCADED FIDELITY MPFC GAINS . 117

viii

BIBLIOGRAPHY . 119

ix

LIST OF TABLES

TABLE 5.1 Stepping Stone Parameter Distributions . 45
TABLE 5.2 MPFC Solve-Time Statistics (134,654 Solves) 46

TABLE 6.1 Comparison of S3 and Plane Segmentation Baselines As Benchmarked 63
TABLE 6.2 Moving Obstacles Segmented by S3 vs. Hysteresis parameter ↑. An obstacle is

defined as segmented out if it creates a hole in the terrain segmentation before
it comes to rest. 67

TABLE 8.1 Whole-Body MPC Timing Parameters . 93
TABLE 8.2 Computation Time Breakdown for CF-MPFC Iterations 105

TABLE B.1 MPFC Parameters . 113
TABLE B.2 OSC Gains (Hardware) . 114
TABLE B.3 OSC Gains (Simulation) . 114
TABLE B.4 Perception Stack Parameters . 114

TABLE D.1 CF-MPFC Parameters . 117
TABLE D.2 CF-MPFC Whole-Body Cost Weights . 118
TABLE D.3 CF-MPFC ALIP cost weights . 118

x

LIST OF ILLUSTRATIONS

FIGURE 4.1 Cassie’s configuration space. 15
FIGURE 4.2 The ALIP model assumes that the robot’s CoM is restricted to a virtual plane

above the terrain. The states of the ALIP model are the horizontal CoM
positions, and the angular momentum of the robot about the horizontal axes. . 19

FIGURE 4.3 The ALIP model with mass m, constant CoM height H, and ankle torque in
the sagittal plane, u. 20

FIGURE 5.1 Key MPFC decision variables and constraints for a horizon of 2 stance phases.
xc is the current ALIP state, u is ankle torque applied during the current
stance phase, x0 is the ALIP state at the end of the current stance phase, and
x1 is the ALIP state at the end of the next stance phase. The current stance
foot position, p0, is unconstrained, and subsequent footsteps are constrained
to lie in either Pj or Pq using integer variables. 34

FIGURE 5.2 Relationship between the nominal stance phases and MPFC gait timing opti-
mization. The initial stance duration is adjusted continuously by optimizing
over the remaining stance time, T . 34

FIGURE 5.3 To enforce the planarity assumption of the ALIP, we use OSC to drive Cassie’s
CoM to a virtual plane defined by current and upcoming stance foot positions. 38

FIGURE 5.4 Trajectory from the swing foot position at the beginning of the swing phase,
psw,0 to the next footstep solution from MPFC, psw,des. We adapt the direction
and clearance of the trajectory’s midpoint, pmid, based on the relative positions
of psw,0 and psw,des to ensure sufficient ground clearance. 40

FIGURE 5.5 Cassie walks across an 8 m × 23 cm beam using MPFC. 42
FIGURE 5.6 Cassie walks up a set of stairs with a 27 cm depth and a 15 cm rise using MPFC. 42
FIGURE 5.7 Velocity tracking for the beam and stairs results shown in Fig. 5.5 and Fig. 5.6 42
FIGURE 5.8 Freeform walking over constrained footholds using MPFC. Top: Cassie’s pose

throughout the freeform walking trial. Bottom: Velocity Tracking during the
freeform walking trial. 43

FIGURE 5.9 Comparing the velocity tracking performance of MPFC over 40 cm × 15 cm
stairs using a naive cost and the subspace cost we develop in Section 5.1.1. The
naive cost (Gait Cost) is on deviation from a reference trajectory, while our
subspace cost (Subspace Cost) is on deviation from the subspace of Period-2
ALIP trajectories with the desired velocity. 44

FIGURE 5.10 Example of successfully traversing a random stepping stone environment in
simulation with dmin = 35 cm. 45

FIGURE 5.11 Success rates for walking across randomly-generated stepping stones in simu-
lation. Results with step-timing optimization are labeled Opt-T, and results
without step timing optimization are labeled Fixed-T. Step-timing optimiza-
tion increases success rates over small footholds. 46

FIGURE 5.12 Velocity tracking, solve times, and elevation change for Cassie walking on dis-
continuous terrain including steps, a curb, and a grassy hill. 47

xi

FIGURE 5.13 Motion tiles showing Cassie ascending and descending steps, stepping over a
curb onto the grass, and walking up a grassy slope in one continuous walking
trial using our proposed locomotion stack and the perception pipeline proposed
in Chapter 6. 48

FIGURE 6.1 Pipeline for converting an elevation map of the terrain into a set of convex
polygons which can be used to plan safe footsteps. Our Stable Steppability
Segmentation produces a temporally-consistent steppability mask representing
a 2D overhead view of the safe terrain. We then extract the boundaries of the
safe terrain as non-convex polygons, which we decompose into convex polygons
using an algorithm based on approximate convex decomposition. 53

FIGURE 6.2 Block diagram of S3, our proposed terrain segmentation approach. Safety
criteria are combined into an overall safety score for each elevation map pixel,
before applying hysteresis to enhance temporal consistency. 55

FIGURE 6.3 Walking over ledges with Cassie requires asymmetric constraints on the foot-
step position, p, which is mapped to the center of Cassie’s foot. The desire to
specifically avoid stepping below an edge motivated our curvature based safety
criterion, which differentiates between sides of an edge using the sign of the
elevation map’s Laplacian. 56

FIGURE 6.4 The environments used to collect data for benchmarking the perception stack’s
performance. From top to bottom the terrains are Lab, Brick Steps, and Grass 61

FIGURE 6.5 Offline benchmark of S3 compared to plane segmentation baselines. Top:
Histogram of the run time of each segmentation algorithm over 60 seconds of
elevation mapping data from each test environment. Benchmark was run on
an Apple Macbook Pro with an M1 Max CPU, 10 cores, and 64 GB of RAM.
S3 has the fastest and most consistent run times. EM_cupy is the slowest,
with a highly variable run time, due to the repeated use of RANSAC to refine
the plane segmentation. Bottom: Histogram of the frame-to-frame IoU of
the safe terrain segmentation over the same datasets. Our method reliably
achieves a frame-to-frame IoU close to 1 across environments, representing
excellent temporal consistency. 64

FIGURE 6.6 Tiles showing the output of each segmentation method for each evaluation en-
vironment at 1 second intervals. In the Lab and Grass environments, the
use of Navier-Stokes based inpainting allows S3 to correctly identify the entire
elevation map as steppable. The S3 segmentation experiences minimal “flick-
ering” of the steppable terrain compared to the baselines. Animations of these
segmentation results can be seen in the supplemental video. 65

FIGURE 6.7 The final convex decomposition has a similarly shaped IoU distribution to the
safe terrain segmentation, though is less consistent overall. 66

FIGURE 6.8 Frame-to-Frame IoU of the S3 terrain segmentation results with varying levels
of hysteresis, evaluated on the Brick Steps data. The lowest observed IoU
was 0.78, even without hysteresis, in contrast to both of the plane segmentation
baselines, whose the IoU varied across the entire [0, 1] interval. 68

xii

FIGURE 7.1 The perception and control stack proposed in this chapter to achieve under-
actuated walking over discontinuous terrain. Our perception stack (A) gen-
erates convex polygon foothold constraints for MPFC, a mixed-integer MPC
style footstep planner (B). MPFC sends the next footstep, step timing adap-
tation, and ankle torque plan to a low-level operational-space-control process
(C) which performs kHz level torque control. 72

FIGURE 7.2 The experiment setup for the Physical Cassie robot showing which computers
run which processes. The robot is attached to a safety tether which remains
slack while the robot is walking. 73

FIGURE 7.3 Success rates for walking across randomly-generated stepping stones in simu-
lation, where the stepping stone sizes are distributed according to Table 5.1
based on the minimum side lenght, dmin. Results with step-timing optimization
are labeled Opt-T, and results without step timing optimization are labeled
Fixed-T. We report results with ground truth state and terrain (GT), as well
as with perceptive terrain using S3 (Perceptive). The lower success rate using
perception is primarily due to isotropic safety margin in S3 reducing the lateral
steppable area compared to ground-truth, which accounts for the width and
length of the foot separately. 75

FIGURE 7.4 MPFC simulation experiments using ground truth vs. perceptive terrain. Top:
we use ground truth terrain information to walk over a 23 cm wide beam, and
stairs with a rise of 15 cm and a depth of 27 cm. Bottom: Displaying the
elevation map for walking over the same terrain types using S3. Safety margin
in S3 results in less steppable area than for ground truth, so the minimum
traversable dimensions are increased to 35 cm wide for the beam and 40 cm
deep for the stairs. 76

FIGURE 7.5 Cassie walks up and down brick steps using the perception and control frame-
work developed in this thesis. Left: the physical robot and steps. Middle: an
elevation map of the steps. Right: the convex decomposition of the safe terrain. 77

FIGURE 7.6 Another view of Cassie descending a set of steps using our full-stack perceptive
locomotion architecture. 78

FIGURE 7.7 The top of the brick steps has the largest height change at 16 cm, which
sometimes challenges the OSC’s ability to track the CoM and swing foot, and
creates large impacts when stepping down. 79

FIGURE 7.8 Cassie steps over a high curb onto a grassy knoll. 79
FIGURE 7.9 Our proposed system naturally handles terrain with no obvious planar approx-

imation. Despite constantly varying height and surface normals, S3 classifies
the entirety of this sinusoidal terrain as safe, resulting in a single steppable
region matching the extents of the map. Because ALIP dynamics are height-
independent, the z-coordinate of each planned footstep does not affect the rest
of the MPC solution. Therefore, we use the elevation map to determine the
footstep height sent to the low-level OSC. 81

FIGURE 8.1 We grid search over the ADMM parameters which give the best closed-loop
reliability for walking over stepping stones with ALIP MPFC. We ultimately
choose m = 0, ρ = 0.1. 88

xiii

FIGURE 8.2 Success rate vs. planning horizon for traversing random stepping stones in
simulation. We perform 100 trials, randomizing the stepping stone dimensions
and positions according to the distributions in Table 5.1. 89

FIGURE 8.3 Distributions of solve times for ADMM vs. MIQP implementations of ALIP
MPFC walking over random 35-40 cm stepping stones. We compile the solve
times over 100 trials for each combination of solution method and planning
horizon, resulting in over 100,000 data points per box plot - the exact number
varies due to some simulations terminating early due to a fall. Solve times
above the 99.9th percentile are shown as outliers. Simulations were performed
on a MacBook Pro with an Apple M1 Max CPU and 64 GB of RAM. The
MIQP was solved with Gurobi using 4 threads, while ADMM was solved in a
single thread, using OSQP for the ADMM iteration sub-problems. 90

FIGURE 8.4 Model schedule, footstep schedule, and gait schedule for Cascaded-Fidelity
MPFC. 96

FIGURE 8.5 Comparison of the control architectures for ALIP MPFC (top) and CF-MPFC
(bottom). 101

FIGURE 8.6 ALIP MPFC fails to complete a 20 cm step up due to the swing foot not
making it on to the step. Relying on a heuristic swing foot planner places a
high burden on the OSC tracking performance compared to CF-MPFC, which
accounts for the robot’s dynamics when planning a swing foot motion. 102

FIGURE 8.7 Cassie successfully traversing up to 30 cm height changes using CF-MPFC in
simulation. 103

FIGURE 8.8 Cassie traverses a narrow beam, stepping stones, and stairs using CF-MPFC. . 104

xiv

CHAPTER 1

Introduction

Bipedal robots can theoretically traverse challenging terrain by making and breaking contact with

the ground to step over obstacles. This capability suggests their fitness for applications like disaster

response, planetary exploration, and deployment in cluttered home environments. Despite these

morphological capabilities, walking over real-world rough terrain remains a key challenge in con-

trolling bipedal robots (Gu et al., 2025). From a planning and control perspective, rough terrain

is challenging because foot placement is key to stabilizing the underactuated dynamics of bipedal

locomotion (Pratt et al., 2006; Raibert and Brown, 1983), yet unsafe terrain creates non-trivial,

non-convex restrictions on where the robot can step. From a sensing perspective, the robot must

identify safe terrain only through onboard sensing modalities such as lidar or RGB-D cameras. Fi-

nally, robots must continually update their control strategy and terrain estimation to account for

disturbances, model error, changing terrain, and the limited range of onboard range sensors. This

places hard real time requirements on control and perception algorithms for walking on rough ter-

rain. In response to these challenges, we present advances in robot perception and control, resulting

in a real-time perceptive locomotion framework which expands the capabilities of bipedal robots to

dynamic walking over previously unseen discontinuous terrain.

Focusing first on planning and control, walking over non-convex, potentially disconnected terrain has

traditionally been addressed by decomposing the problem into a footstep planner and a locomotion

controller (Chestnutt et al., 2003; Kuindersma et al., 2016). This lets the non-convex aspects be

handled in a low-dimensional space through classic motion planning algorithms like graph search

(Kuffner et al., 2003; Griffin et al., 2019), but results in slow walking speeds to avoid falling, since

the dynamics of the robot are not incorporated into the footstep planner. Other approaches allow

robot motion and footstep positions to be continuously re-planned subject to a pre-specified sequence

of convex “stepping stone” constraints on the foot placement (Nguyen et al., 2016; Dai et al., 2022),

requiring an additional high-level contact planner or requiring the stepping stones to have a well-

1

defined order. Pre-specifying the foothold sequence eliminates the ability to adapt the foothold

choice online in response to disturbances, and risks sub-optimality or infeasibility of the lower level

control problem. In this thesis, we introduce a real time model-predictive footstep controller which

jointly plans over the discrete stepping stone choice and continuous footstep positions, subject to

the dynamics of an underactuated walking model. Our controller is a complete solution which plans

and stabilizes free-form walking over constrained footholds, requiring only a list of stepping stones

and a velocity command as input.

To apply our controller on hardware, we require a method for generating the stepping stone con-

straints online. Existing approaches extract planar features from either depth maps (Mishra et al.,

2021), point clouds (Bertrand et al., 2020), or elevation maps (Miki et al., 2022b) on a frame-by

frame basis. This approach is vulnerable to even mild non-planarity of the terrain, and the difficulty

of incorporating history into the segmentation results in stepping stones which flicker into and out of

existence (Corbères et al., 2023; Calvert et al., 2022). Even when the real terrain is actually planar,

impacts and state estimate drift, both common in bipedal walking, can introduce artifacts which

make the terrain appear non-planar, making these methods unusable (Grandia et al., 2022). In this

thesis, we take the perspective that planar stepping stones are an approximation of the safe terrain

which is convenient for control, but that strictly enforcing planarity makes segmentation algorithms

brittle in practice. In response to this brittleness, we develop a novel terrain segmentation approach

for elevation maps, considering only criteria which are local to the neighborhood of each elevation

mapping cell. This structural change eliminates the issue of flickering stepping stones, and makes

it easy to incorporate history into the segmentation.

Our initial controller formulation for walking over stepping stones uses the linear inverted pendu-

lum as a model of underactuated walking (Kajita et al., 2001). This requires the assumptions of

planar terrain and negligible centroidal angular momentum. Large step-to-step height changes pro-

hibitively violate these assumptions by requiring large accelerations of the center of mass and swing

foot. In order to traverse terrains with large height changes, we propose a cascaded-fidelity MPC

formulation with stepping stone constraints. This formulation leverages whole-body dynamics se-

2

quentially composed with linear-inverted-pendulum dynamics to generate more dynamic behaviors

while efficiently reasoning about the long-term consequences of it’s footstep choices. In developing

the cascaded-formulation, we show that local solvers are effective for real-time locomotion control

over constrained footholds with longer planning horizons than mixed-integer approaches.

1.1. Contributions and Outline

We start by reviewing some useful bipedal robot terminology in Chapter 2. In Chapter 3 we discuss

related work, including footstep planning, controlling dynamic bipedal walking, and algorithms and

representations for safe terrain identification. Chapter 4 contains the necessary technical background

for the following chapters.

The core contributions of this thesis begin in Chapter 5. We first present Model Predictive Footstep

Control (MPFC), a new walking controller which allows underactuated bipeds to perform free-form

walking over constrained footholds (Acosta and Posa, 2023). This controller assumes a linear re-

duced order model of the robot’s dynamics and a convex polygon terrain representation to formulate

footstep planning as a mixed integer quadratic program. The resulting optimization problem can

be solved in a receding horizon fashion in real time, and generates a fully-coupled plan over discrete

choice of foothold, footstep positions, reduced-order dynamics, gait timing adaptation, and ankle

torque. We demonstrate MPFC traversing discontinuous terrains in simulation and on hardware

using the bipedal robot Cassie.

In Chapter 6, we propose a new approach for terrain segmentation and convex polygon decom-

position. We establish a general framework, which we call “Stable Steppability Segmentation” for

classifying the safety of each cell of an elevation map via a composition of safety criteria. We instan-

tiate specific safety criteria based on experimental observations. We validate our approach to be

both more computationally efficient and temporally consistent than explicit plane segmentation us-

ing real-world perceptive locomotion data from several terrain types. We propose an approach based

on approximate convex decomposition (Lien and Amato, 2006) to convert the resulting steppability

mask into a set of convex planar polygons approximating the safe terrain around the robot.

3

Chapter 7 presents full-stack perceptive locomotion experiments on the bipedal robot Cassie, in-

corporating the contributions of the previous two chapters into the first hardware demonstration of

perceptive model-based control of Cassie over discontinuous terrain.

Finally, Chapter 8 increases the robustness and generality of MPFC. First, we propose a locally

optimal solver which can handle longer planning horizons in real time than the MIQP formulation

from Chapter 5, increasing the closed-loop robustness of the controller. Then, we use this solver

within a sequential quadratic programming framework to solve a cascaded-fidelity MPFC formula-

tion. By considering the robot’s full dynamics, the cascaded-fidelity MPFC is capable of traversing

larger height changes that the original MPFC.

We conclude by discussing directions for future research.

4

CHAPTER 2

Bipedal Robot Terminology

We provide informal definitions of some biped-specific jargon which will be useful to review before

discussing prior works, deferring the full technical background to Chapter 4.

A bipedal robot has two legs, each of which terminates at a foot. A foot can be its own link, or it

can be a point foot, a point at the end of a structural link which makes contact with the ground.

In order to walk, a biped makes and breaks contact with the ground, alternating between phases

of single support (a.k.a. single stance), when one foot is in contact with the ground, and double

support (a.k.a. double stance), when both feet are in contact with the ground. The double-support

phases can have a duration of zero, in which case the robot alternates directly between left stance

and right stance. Gaits with different contact sequences, such as running, skipping, or jumping, will

not be addressed in this thesis. During single support phases, the foot in contact with the ground

is called the stance foot, and the foot which is suspended in the air by the opposite leg is called the

swing foot. The transition from single stance to double stance is sometimes called touchdown, and

the transition from double to single stance is called liftoff.

The weight of the robot is supported by the vertical component of the ground reaction forces, which

act on the robot’s feet and, together with gravity, determine how the linear and angular momenta

of the robot change with time. The point where the net ground reaction force acts on the foot is the

center of pressure (CoP), which, for flat ground, is equivalent to the Zero-Moment-Point (ZMP),

so named because placing the net ground reaction force at the ZMP results in zero net moments

about the horizontal axes of the foot (Goswami, 1999). The location of the CoP is bounded by the

support polygon, the convex hull of all of the points which are in contact with the ground at a given

time.

This thesis concerns the control of dynamic or underactuated walking. We define dynamic walking

similarly to Westervelt et al. (2007) as a walking motion where the CoP is often or always on the

5

boundary of the support polygon. This could be because the robot is using a heel-toe walking

pattern, or, in our case, because the robot has feet with no area, such as point feet or blade feet. A

corollary of this definition is that at least one of the biped’s degrees of freedom is both unactuated

and unstable. Stabilizing such degree(s) of freedom is the core challenge of dynamic walking, and

is most often accomplished through footstep control, where the location of the foot relative to the

robot’s CoM at touchdown is used to regulate the underactuated degrees of freedom.

This thesis expands the capabilities of underactuated bipeds by providing an algorithm for footstep

control when there are non-convex constraints on the footstep location. We distinguish a footstep

location (or simply a footstep), which is the actual or planned 3-Dimensional position of the robot’s

stance foot, from a foothold, which is a region on the ground where it is valid for the robot to step.

6

CHAPTER 3

Related Work

This chapter reviews related work for perceptive, dynamic, bipedal walking on rough terrain. First,

we review prior methods for controlling dynamic bipedal and legged locomotion, including reduced

order models, trajectory optimization, whole-body model predictive control, reinforcement learning,

and methods which specifically handle rough terrain. Then, we review methods of footstep planning

over rough terrain, and methods for identifying safe terrain from perception.

3.1. Controlling Dynamic Bipedal Locomotion

We start by reviewing the control methods which have been proposed to stabilize dynamic bipedal

locomotion, or in many cases, general legged robot locomotion. While we cover a wide spectrum

of methods, we note that the works referenced in this section make the simplifying assumption of

a fixed gait schedule. That is, the order in which the robot’s feet make and break contact with

the ground is set to a predetermined sequence. Real time contact-implicit control is an active area

of research with several interesting examples in legged locomotion (Kim et al., 2024) and robot

manipulation (Aydinoglu et al., 2023), but has not been as widely studied as the types of methods

we cover below.

3.1.1. Reduced Order Models

Simplified dynamics models are often used to manage the computational complexity of controlling

legged robots. These models relate footstep locations, center-of-mass dynamics, and ground reaction

forces, while ignoring the robot’s internal degrees of freedom. Raibert’s experiments on controlling

monopedal hoppers (Raibert et al., 1984) inspired the development of the Spring Loaded Inverted

Pendulum (SLIP) (Blickhan, 1989) as biomechanical model for dynamic running and walking be-

haviors (Full and Koditschek, 1999; Geyer et al., 2006). SLIP was subsequently used as a control

model for dynamic legged locomotion for other simple hoppers (Hutter et al., 2010) as well as com-

plex high-degree of freedom bipeds (Wensing and Orin, 2013b; Piovan and Byl, 2016; Apgar et al.,

2018; Yang and Posa, 2023). Perhaps the most widely used reduced order model is the Linear In-

7

verted Pendulum (LIP) (Kajita et al., 2001), which assumes the robot is a point mass at a fixed

height, yielding linear dynamics.

Combined with some form of output tracking, the LIP model and its variants have formed the basis

of numerous dynamic walking controllers. Xiong and Ames (2022) developed a step to step LIP

model, which integrates the LIP dynamics over each stance phase to transform dynamic walking

via footstep control into a discrete-time LTI control synthesis problem. Powell and Ames (2016)

introduced angular momentum about the contact point as a LIP velocity coordinate due to its

invariance to rigid body impacts. Gong and Grizzle (2021) showed that this coordinate choice,

which they named the ALIP model, improves the predictive accuracy of the LIP model during

single stance, even for robots with significant unmodeled leg mass. ALIP based control strategies

have stabilized underatuated walking over predefined footstep locations (Dai et al., 2022), slopes

(Gibson et al., 2022), and simulated staircases (Dosunmu-Ogunbi et al., 2023). We derive several

solutions to the ALIP dynamics in Chapter 4, and use them for control synthesis in Chapter 5.

3.1.2. Offline Trajectory Optimization

Because reduced order models inherently limit the motions which can be realized, offline tra-

jectory optimization (Hereid et al., 2016; Posa et al., 2016) has been used to generate libraries

of reference motions. Reher et al. and Gong et al. exploit the hybrid zero dynamics (HZD)

framework (Westervelt et al., 2003) to design gait libraries for velocity tracking on the Cassie

biped (Reher and Ames, 2021; Gong et al., 2018). HZD provides stability guarantees for planar

bipedal walking, but in practice requires additional footstep correction to achieve stable walking

in 3D (Reher et al., 2016). High-accuracy trajectory optimization is too slow to be deployed on-

line, rendering it unsuitable for walking on unstructured terrain, where obstacles will necessitate

generating new motions on the fly. for walking on flat ground with perturbation recovery, Gu et

al. developed a library of 200 reference gaits, including cross-legged recovery maneuvers (Gu et al.,

2022).

8

3.1.3. Whole-Body MPC

Recent years have seen algorithms capable of optimizing over a full-order Lagrangian model of the

robot dynamics in real time (Mastalli et al., 2023). To solve these the nonlinear trajectory optimiza-

tion problems quickly online, these works use solvers that create sequential linear-quadratic approx-

imations of a nonlinear trajectory optimization problem, such as iterative LQR (Li and Todorov,

2004) or sequential quadratic programming (Boggs and Tolle, 1995). Most formulations enforce

inequality constraints with penalty methods, to enable fast solve times by leveraging the Ricatti

structure of optimal control (Grandia et al., 2022; Howell et al., 2019). However, recent efforts

by Khazoom et al. (2024) have explored the use of general purpose ADMM-Based QP solvers for

the SQP sub-problems to incorporate general inequality constraints. In order to more accurately

approximate the value function of an infinite-horizon optimal control problem, despite the short

horizons necessary for real-time whole-body MPC, Li and Wensing propose appending a reduced-

order model MPC problem to the end of the whole-body MPC problem (Li and Wensing, 2024).

They also propose to improve the low level tracking performance by incorporating the MPC value

function into the cost function of their whole-body-control QP. In the context of legged robots,

real-time implementation of whole-body MPC relies on dedicated software for efficient evaluation

of dynamics algorithms and their partial derivatives, e.g. (Carpentier et al., 2019; Todorov et al.,

2012).

3.1.4. Reinforcement Learning

Reinforcement learning (RL) is an optimal control method where a control policy is optimized

through repeated interaction with the environment. During these interactions, the policy accrues

a numerical reward signal by applying beneficial actions, and the optimizer attempts to maximize

the expected reward achieved by executing the policy (Sutton and Barto, 2018). RL has been ap-

plied to bipedal locomotion since the work of Benbrahim and Franklin (1997), who used RL to

learn a central pattern generator and auxiliary corrective controllers. The success of RL for con-

trolling legged locomotion hit an inflection point with the introduction of domain randomization

(Tobin et al., 2017), which lessened the impact of the poor data efficiency of RL methods, by al-

9

lowing policies learned in simulation to be more reliably deployed in the real world. The addition

of explicit adaptation modules (Kumar et al., 2021), or the use of recursive policies, such as LSTM

neural networks, has also contributed to the success of RL by allowing robots to observe information

about the environment through proprioception. For example, Siekmann et al. (2021) learn a blind

stair climbing controller for the Cassie biped, and Duan et al. (2022) use a similar policy to walk

on constrained footholds in. With additional vision modules, they achieve perceptive locomotion

over boxy terrain as well (Duan et al., 2023). Because reinforcement learning can struggle in sce-

narios with sparse footholds, Jenelten et al. (2024) proposed a hierarchical approach where an MPC

footstep planner guides a lower level learned tracking policy for quadrupedal locomotion. Yu et al.

(2024) propose the opposite, where reinforcement learning is used learn high level strategies like

gait selection and foot placement, and MPC is used to generate and stabilize corresponding full

body motions. This strategy is now controlling Boston Dynamics’ Spot quadruped in industrial use

cases (Boston Dynamics). While reinforcement learning is not a focus of this thesis, we propose a

footstep planner and a safe-terrain segmentation module which could easily be used in one of these

hierarchical frameworks.

3.1.5. Underactuated walking on Discontinuous Terrains

The development of controllers specifically for underactuated walking traces back to the development

of passive dynamic walkers by McGeer (1990). The primary focus was on finding stable limit cycles

for simple hybrid, nonlinear walking models (Garcia et al., 1998). Moving toward considering rough

terrain, Ernst et al. (2009) developed a deadbeat feedforward controller for the SLIP model on

uneven terrain, and Dai and Tedrake (2012) introduced a method for optimizing limit cycles for

general hybrid walking models with an additional metric for robustness to ground height variation.

The focus on limit cycle optimization posed a challenge for underactuated walking over stepping

stones, as new motions need to be generated online to respect the foothold constraints. Several

methods have therefore been proposed specifically for underactuated walking over stepping stones.

With two notable exceptions (discussed at the end of this subsection), these works assume that the

controller is provided a one-step preview of the terrain, and must use a mechanism other than foot

placement to maintain a viable walking gait while stepping to the target foothold. Nguyen et al.

10

(2020) develop a gait library for planar walking walking over gaps of varying lengths, however the

post impact state was often too far from the initial state of the optimized gait for the next gap,

causing failure. Dai et al. (2022) use vertical CoM velocity as an alternative to foot placement for

underactuated planar walking, while Xiang et al. (2024) use step timing to handle foot placement

variation for 3D underactuated walking. Nguyen et al. (2016) propose using control barrier functions

to adapt a nominal HZD based controller to respect foothold constraints online. In contrast to these

works, the controllers developed in this thesis simultaneously optimize over the robot’s dynamics and

the choice of stepping surface for each step, enabling freeform walking over discontinuous terrain.

The mixed-integer approach we take was previously assumed to be too slow for real-time deployment,

however we overcome the speed concerns by employing a state of the art mixed-integer solver and

focusing on the short-horizon task of tracking a desired velocity. Two other real-time controllers

which optimize jointly over stepping surface and robot dynamics were published concurrently or

shortly after our initial work on this subject (Acosta and Posa, 2023). Gu et al. (2024) formulate a

model-predictive controller over ALIP dynamics which optimizes a signal-temporal-logic robustness

metric, including distance to the edge of stepping stones as one criteria for robustness. Shim et al.

(2023) incorporate an artificial potential field which enforces that the solution to a whole-body

MPC problem respect polygonal foothold constraints. Because these methods are both based on

nonlinear MPC, they yield locally optimal solutions, making it unclear how well they will translate

to more challenging terrains or poor initializations.

3.2. Footstep Planning on Discontinuous Terrain

This section focuses on methods for footstep planning over rough terrain. The literature on safe

bipedal footstep planning mainly considers humanoid robots with large feet, which allow a fea-

sible center of mass trajectory to be planned and tracked (e.g. via LQR (Tedrake et al., 2015))

for any reasonable footstep plan. A benefit of these methods is that long-horizon plans can be

generated quickly via traditional motion planning approaches like graph search (Chestnutt et al.,

2003) by discretizing the free space into cells. However, because footsteps are not re-planned at

high rates, decoupled approaches have slow walking speeds to avoid violating zero-moment-point

constraints (Kajita et al., 2003).

11

Many features have been proposed for graph-search based footstep planners such as adaptive levels

of detail (Hornung and Bennewitz, 2012) and the ability to leverage partial footholds (Griffin et al.,

2019). For the rest of this section, though, we will focus on the use of mixed-integer programming for

footstep planning. Mixed-integer programs are a class of mathematical optimization problem where

a subset of the variables are constrained to take integer values. This formulation is attractive for our

purposes, as mixed-integer constraints can be readily incorporated into existing model-predictive-

control formulations for dynamic walking, which we will detail in Chapter 5.

3.2.1. Mixed Integer Footstep Planning

Deits and Tedrake (2014) introduced the use of mixed-integer convex programming for footstep

planning by decomposing safe terrain into a collection of convex polygons, and using binary vari-

ables to assign every footstep to a polygon. This problem has a worst-case computational complexity

of MN , where M is the number of footholds and N is the planning horizon. Due to this combi-

natorial complexity, some efforts have been made to find convex relaxations and more efficiently

solveable formulations. Tonneau et al. (2020) provide a convex approximation of this problem as

a linear program, and Song et al. (2021) show how both the mixed integer and linear program-

ming formulations can be made more efficient by using a simplified trajectory planner to prune

irrelevant footholds. Marcucci et al. (2024) introduce shortest path problems over graphs of convex

sets as a problem statement with a much stronger mixed-integer formulation (that is, the convex

relaxation of the problem is much more informative about the true optimal solution) than previous

approaches. In contrast to this thesis, these works focus on long horizon footstep planning, and

only consider geometric criteria such as workspace constraints, and quasistatic stability criteria,

such as the existence of a feasible center of mass trajectory which lies completely above the support

polygon.

Mixed-Integer footstep planning has also been used for motion planning quadruped robots. Risbourg et al.

(2022) use the convex relaxation from (Tonneau et al., 2020) online to project the desired footstep

sequence to the closest convex footholds, subject to kinematic constraints. Corbères et al. (2023) in-

corporate this footstep planning strategy as an online foothold scheduler at 1-5 Hz with vision in the

12

loop. Due to the low planning rate, and the lack of dynamics constraints in the contact scheduler,

they rely on a separate swing foot planner and whole body MPC to find feasible robot trajectories.

Aceituno-Cabezas et al. (2018) formulate a full quadruped trajectory optimization problem using

mixed integer constraints for assigning footsteps to footholds and to approximate the nonlinear

manifold constraint for 3D rotations. Their trajectory optimization features both kinematic and

dynamics constraints, but does not re-plan the footholds in real time. In this thesis, we shift the

focus from offline, geometric optimizations, to real-time optimization which considers the robot’s

dynamics to stabilize dynamic walking over uneven terrain.

3.3. Identifying Safe Terrain from Perception

A significant barrier to deploying mixed-integer footstep planning methods on hardware is the need

for a convex planar polygon decomposition of the terrain around the robot. Because there is no

sensor which can directly measure convex planar polygons, we must rely on processing data from

range sensors such as RGB-D cameras or lidar. Some works attempt to directly extract planar

polygons from individual point clouds (Bertrand et al., 2020) or depth images (Mishra et al., 2021),

however this excludes occluded terrain from the safe terrain set, including the terrain directly

underneath the robot.

To estimate the full state of the terrain, multiple sensor streams must be fused over time into a single

representation. In order to perform this fusion compactly, the field has turned to 2.5D elevation

maps (Fallon et al., 2015). In particular, the formulation developed by Fankhauser et al. (2018) is

popular because it estimates the elevation relative to the robot, rather than in a world-fixed frame.

This eliminates the need to register input point clouds against the existing map to account for state

estimate drift of the robot. This method was parallelized for execution on the GPU by Miki et al.

(2022b).

The popularity of elevation maps has lead to a proliferation of algorithms for extracting convex

planar polygons from elevation maps via plane segmentation (Miki et al., 2022b; Fallon and Antone,

2019). However, these approaches segment each elevation map independently, leading to issues with

temporal consistency (Corbères et al., 2023; Acosta and Posa, 2023), especially because elevation

13

mapping is vulnerable to artifacts from drift in the floating base position estimate (Wisth et al.,

2023; Grandia et al., 2022). To generate temporally consistent polygon constraints in real-time,

despite these challenges imposed by legged locomotion, Bin et al. (2024) develop a GPU accelerated

semantic mapping framework which incrementally updates estimates of floating base drift, and

the state of planar polygon terrain, through a sequence of depth images and camera poses. This

approach has advantages for stair climbing, where the terrain is known to be planar and precise foot

placement is required, but could struggle in outdoor environments where the ground is not perfectly

flat.

On unstructured terrain, some works compute heuristic costs from the elevation map to guide

planning. McCrory et al. (2023) encode various traversability costs into a graph search algorithm

for humanoid footstep planning. Jenelten et al. (2022) add a nonconvex cost on the gradient of

the elevation map at the planned stance foot locations in their MPC formulation for quadrupedal

walking. These heuristic costs recognize that planar polygons are a modeling choice to support

optimization based control, not a necessary condition for steppability. In this thesis, we will present

a terrain segmentation approach adopts a similar philosophy by classifying elevation map cells as

steppable or not without regard for global planarity. Unlike heuristic footstep costs, our approach

still allows for global optimality in the footstep planning problem by transforming this temporally

consistent classification into a stepping stone representation for MIQP footstep planning.

14

CHAPTER 4

Background

4.1. Cassie

Figure 4.1: Cassie’s configuration space.

The hardware platform used for this thesis is Cassie (Fig. 4.1), a 22 degree of freedom biped,

manufactured by Agility Robotics. Ten of these degrees of freedom are actuated, four of them

are constrained by stiff leaf springs, and another two are constrained by the mechanical linkage on

each leg. The remaining 6 degrees of freedom represent the position and orientation of the floating

base, which must be controlled through contact forces entering at the robot’s feet. In single stance,

Cassie’s line foot only constrains five of the six degrees of freedom of the floating base, resulting in

one underactuated degree of freedom. Often, the stance foot is assumed to have a passive ankle,

resulting in an additional underactuated degree of freedom.

4.1.1. Rigid Body Cassie Model

This section introduces the equations of motion for Cassie, modeled as a collection of rigid bodies

connected by revolute joints. We denote the configuration, or generalized positions, as q ∈ Rnq ,

where nq = 23. The first four position coordinates represent the orientation of the robot, expressed

as a quaternion representing the orientation of the pelvis frame in the world frame. The next three

position coordinates represent the position of the pelvis frame in the world frame. The remaining

15

16 coordinates represent the joint angles for the revolute joints comprising the left leg, and then the

right leg, including the deflection of the four leaf springs.

The generalized velocity, v ∈ Rnv , consists of the angular and linear velocities of the pelvis, measured

and expressed in the world frame, and the angular velocities of the revolute joints. Because the

angular velocity has one fewer component than the quaternion orientation, nv = 22. Because the

ankle spring joint does not have an encoder, we find its position via inverse kinematics, and set its

velocity to zero.

The full state vector of the system is x = [q, v], and the inputs to the system are joint torques,

u ∈ RNu , where nu = 10. We note that we later use x and u to refer to the state and input variables

of other models, omitting identifying subscripts for brevity, since the relevant system is clear from

the surrounding context.

Dynamics

The map N(q) ∈ Rnq×nv is used to convert v into q̇, the time derivative of q:

q̇ = N(q)v. (4.1)

N(q) converts the angular velocity of the pelvis into the time derivative of the quaternion repre-

senting the pelvis orientation, and is an identity mapping for the remaining velocities.

The generalized accelerations, v̇ ∈ Rnv can be derived from Lagrangian dynamics, taking the form

of the manipulator equations

M(q)v̇ + C(q, v) = Bu+ JTλ λ, (4.2)

where M(q) ∈ Rnv×nv is the configuration-dependent mass matrix, C(q, v) ∈ Rnv are the Coriolis

and gravity forces, B ∈ Rnv×nu is the selection matrix mapping joint torques to generalized forces,

Jλ ∈ Rnc×nv is the constraint Jacobian (defined in the next subsection), and λ are the constraint

forces. The constraint dimension nc depends on the contact configuration.

16

Constrained Dynamics

Our floating base representation of Cassie contains only 10 actuators, but 22 velocities. With

the exception of the underactuated degree of freedom about the line of contact in single-stance,

these unactuated coordinates are controlled by constraint forces arising from the four bar linkages,

springs1 and ground contacts. These constraints are holonomic constraints, which can be written

in the form ϕ(q) = 0, where each row of ϕ : Rnq 7→ Rnc eliminates a degree of freedom from the

constrained dynamics. Differentiating, we have that ϕ̇(q) = ∂ϕ
∂q q̇ =

∂ϕ
∂qN(q)v = 0. The term ∂ϕ

∂qN(q)

is the “Jacobian with-respect-to-velocity” of the constraint, which maps generalized velocities to

constraint velocities. We usually refer to this term as simply the constraint Jacobian, Jλ, and it is

the same Jacobian which appears on the right hand side of (4.2). Differentiating again, we get an

acceleration constraint,

Jλv̇ + J̇λv = 0. (4.3)

This constraint is affine in v̇, meaning that for a given robot state x = [q, v] and input u, (4.2)

and (4.3) form a set of linear equations which can be solved jointly for accelerations and constraint

forces. The subset of constraint forces representing contact forces must additionally satisfy the

friction cone constraint:

µλc,n ≥
√
λc,t1 + λc,t2 (4.4)

where µ is the friction coefficient, λc ∈ R3 is a contact force, λc,n is the normal component of the

contact force and λc,t are the tangential components. The term friction cone refers both to the

constraint (4.4), as well as the set of forces which satisfy (4.4).

Hybrid Dynamics and Impacts

A feature of rigid-body dynamics models is that impact events at touchdown lead to discrete jumps

in the robot’s velocity via contact impulses which instantaneously bring the impacting foot to rest.

In this thesis, we design controllers where the feet touchdown with zero velocity relative to the

ground, eliminating these discrete jumps. Therefore, we update the contact model at touchdown
1In our Cassie simulations, we include actual revolute springs in the model, however for control, we make the

simplifying assumption that the springs are fixed in their current positions

17

to correctly compute the contact Jacobian, but do not include impulsive reset maps in our control

design.

4.2. Hierarchical Control of Bipedal Walking

Successfully stabilizing an underactuated system, such as a bipedal robot, requires reasoning about

applying feedback to the actuated coordinates to affect the behavior of the whole system. When

faced with such a dilemma, a typical route is to reach for optimal control (Tedrake, 2023), however

real-time optimal control of the full nonlinear dynamics of legged robots has only become possible

in recent years (Wensing et al., 2023), requiring extensive effort to formulate efficient numerical

optimization algorithms and problem statements (Grandia et al., 2022; Mastalli et al., 2023).

Instead, roboticists have typically managed this complex task with hierarchical frameworks. A high-

level layer formulates output trajectories as functions of the underactuated states, and a low-level

layer controls the actuated degrees of freedom to track these outputs.

In frameworks like trajectory optimization and Hybrid-Zero-Dynamics, these output trajectories are

synthesized offline. More commonly, however, controllers are synthesized using reduced-order models

that capture the essence of the dynamics in a more tractable form. These dynamics are used online

to find center of mass motions, contact forces, and footstep locations which stabilize the walking

motion. The desired contact forces, center of mass dynamics, swing foot trajectory, and other

relevant outputs are generally tracked with an inverse-dynamics based operational space controller

(OSC) (Wensing and Orin, 2013a; Kim et al., 2019; Khatib, 1987). This OSC is often referred to

as a “whole-body controller” due to its central role converting desired task-space dynamics to robot

joint-torque commands. The rest of this section will discuss the reduced order models used for

footstep planning in this work and the following section will discuss the operational space controller

used for output tracking. Construction of the relevant outputs will be discussed in the appropriate

chapters for each waking controller.

18

Figure 4.2: The ALIP model assumes that the robot’s CoM is restricted to a virtual plane above
the terrain. The states of the ALIP model are the horizontal CoM positions, and the angular
momentum of the robot about the horizontal axes.

4.2.1. The ALIP model

The ALIP model (Fig. 4.2) is an approximation of the horizontal center-of-mass dynamics of the

robot during single stance. The ALIP model makes the same assumptions of zero vertical CoM

acceleration and zero angular momentum about the CoM as the Linear Inverted Pendulum (LIP)

model (Kajita et al., 2001), but uses angular momentum about the contact point in place of center-

of-mass velocity to describe the speed of the robot. Angular momentum about the contact point

has the advantage of being relative-degree three to (non stance-ankle) motor torques, compared

to relative-degree one for center-of-mass velocity (Gong and Grizzle, 2021). This makes the ALIP

model less affected than the LIP by unmodeled dynamics of the full robot, such as extra horizontal

ground-reaction-forces needed to re-circulate the swing leg.

The state of the ALIP model consists of the horizontal position of the center of mass relative to the

stance foot, (xcom, ycom) and the tilting components of the angular momentum of the robot about

the contact point (Lx, Ly). We direct the reader to (Gibson et al., 2022) for a full derivation of the

ALIP dynamics starting from the centroidal dynamics of the robot and assuming piece-wise planar

19

Figure 4.3: The ALIP model with mass m, constant CoM height H, and ankle torque in the sagittal
plane, u.

terrain with a passive ankle. Here, we present a simplified derivation which neglects sloped terrain,

and includes ankle torque in the sagittal plane, u, to take advantage of Cassie’s blade foot (Fig. 5.3).

In neglecting sloped terrain, we assume constant CoM height, so that żcom = 0 in addition to the

previously assumed z̈com = 0. We consider forward walking to be in the +x direction, so the sagittal

plane is the x− z plane and the coronal plane is the y − z plane.

Let m be the mass of the robot, and H the height of the CoM above the terrain. We start with a

moment balance about the horizontal axes,

L̇x = −mgycom (4.5)

L̇y = u+mgxcom. (4.6)

20

Our assumption of constant CoM height (żcom = 0) and zero centroidal angular momentum yield

Lx = −mHẏcom (4.7)

Ly = mHẋcom (4.8)

which can be rearranged as

ẋcom =
Ly
mH

(4.9)

ẏcom = − Lx
mH

. (4.10)

Wrapping these equations up into state-space form, the single-stance dynamics of the ALIP with

ankle torque are given by a continuous-time LTI system:



ẋcom

ẏcom

L̇x

L̇y


︸ ︷︷ ︸

ẋ

=



0 0 0 1
mH

0 0 −1
mH 0

0 −mg 0 0

mg 0 0 0


︸ ︷︷ ︸

A



xcom

ycom

Lx

Ly


︸ ︷︷ ︸

x

+



0

0

0

1


︸︷︷︸
B

u (4.11)

It can be seen from (4.5) and (4.6) (which are valid for any point-foot walker) that the angular

momentum about the contact point is relative-degree three to non-stance-ankle motor torques. L̇x

and L̇y are functions of only the robot’s configuration (via the CoM position) and ankle torque,

requiring two more differentiations to reach an expression which includes the robot’s other motor

torques or the ground reaction forces. Therefore Lx and Ly are relative degree three to any reaction

forces which disobey the assumptions of the ALIP model. In comparison, the CoM velocity differ-

entiates to the CoM acceleration, which can be directly expressed in terms of the ground reaction

forces.

21

4.2.2. Hybrid ALIP Model Based on Foot Placement

To enable control of the ALIP through foot placement, we derive a reset map relating the positions

of the robot’s feet at touchdown to a discrete jump in the ALIP state. Many walking controllers

feature a double stance phase during which weight transfers from one leg to the other. A double

stance phase is particularly useful for Cassie, to avoid oscillations caused by rapidly unloading

Cassie’s leaf springs. To treat the single and double stance phases as a single step in the step-to-

step dynamics (Xiong and Ames, 2022), we derive a reset map from x−, the ALIP state just before

footfall, to x+, the ALIP state just after liftoff, including a double stance phase of fixed duration,

Tds. We assume an impact-less touchdown, which does not cause a discontinuous jump in the ALIP

state. This condition will be enforced for the full-order robot by planning swing-foot trajectories

which touchdown with zero velocity. We start by integrating the double stance dynamics, and then

we apply a coordinate change to express the ALIP state with respect to the new stance foot.

During double stance, we leave the ankles passive (u = 0) and treat the center of pressure (CoP)

between the two ALIP point feet as a control input. We then integrate the resulting dynamics with

an assumed input trajectory,

pCoP (t) = p− + f(t)(p+ − p−) (4.12)

where p−, p+ ∈ R3 are the pre- and post-touchdown stance foot positions, t is the time since the

beginning of double stance, and f(t) : R 7→ [0, 1] determines the rate at which weight is transferred

to the new stance foot.

The net ground reaction force, fgrf acts at the CoP and, under the assumption of zero centroidal

angular momentum, points toward the CoM. Under the z̈com = 0 assumption, this yields

fgrf =

[
fx fy mg

]T
(4.13)

22

where

fx =
xcom − pCoP,x

H
mg

fy =
ycom − pCoP,y

H
mg.

Without loss of generality, we express the CoM and CoP positions as relative to p−, then we sum

moments about p−, yielding

L̇ = pCoP × fgrf +


xcom

ycom

H

×


0

0

−mg

 (4.14)

=


mgPCoP,y

−mgPCoP,x

fxPCoP,y − fyPCoP,x

+


−mgycom

mgxcom

0

 (4.15)

Taking the horizontal components2 of (4.15) and combining like terms gives

L̇x = −mg(ycom − pCoP,y(t))

L̇y = mg(xcom − pCoP,x(t)). (4.16)

Substituting (4.12) into (4.16), we arrive at the continuous dynamics describing the ALIP during

double stance:

ẋ = Ax+


02×1 02×1 02×1

0 mg 0

−mg 0 0


︸ ︷︷ ︸

BCoP

f(t)(p+ − p−). (4.17)

2The reader may wonder if we can rightly neglect the impact of the third component, L̇z = fxPCoP,y − fyPCoP,x,
on the full robot’s dynamics. This term represents the 2D cross product between a vector along a line from p− to p+
and the vector from a point on this line to the projected CoM position. Given that we expect the center of mass to
be close to above the line connecting centers of the two feet during double stance, we would expect the this term to
be small enough for its effects to be absorbed by the whole-body controller as a disturbance.

23

The solution to (4.17) with the initial condition x(0) = x− is linear in x−, p− and p+ (Ogata, 2001):

x(Tds) = Arx− +Bds (p+ − p−) . (4.18)

where Ar = exp(ATds) and

Bds =

(∫ Tds

0
f(t)eA(Tds−t)dt

)
BCoP . (4.19)

For f(t) = t
Tds

, i.e. linearly shifting the robot’s weight between feet over double stance, (4.19)

evaluates to

Bds = ArA
−1

(
1

Tds
A−1

(
I −A−1

r

)
−A−1

r

)
BCoP . (4.20)

In order to complete the reset map, we must transfer the ALIP state at the end of double-stance to

the new stance foot. The angular momentum transfer formula is

L+ − L(Tds) = mvcom(Tds)× (p+ − p−). (4.21)

Under the assumption of flat terrain and constant CoM height, the right hand side of (4.21) is the

cross-product of two vectors in the x − y plane, so the horizontal components are zero. Therefore

Lxy+ = Lxy(Tds), so the remainder of the reset map is a coordinate change to express the CoM

position as relative to the new stance foot:

x+ = x(Tds) +

−I2×2 02×1

02×2 02×1


︸ ︷︷ ︸

Bfp

(p+ − p−) , (4.22)

with the fp subscript denoting “foot placement”.

By sequentially applying (4.18) then (4.22), we arrive at a reset map from x− to x+ which is linear

in x−, x+, p− and p+,

24

x+ =

[
Ar (−Bds −Bfp) (Bds +Bfp)︸ ︷︷ ︸

Br

]
x−

p−

p+

 . (4.23)

4.2.3. Step-to-Step ALIP Dynamics

We will also consider step-to-step (s2s) ALIP dynamics. We view the ALIP without ankle actuation

as a discrete-time linear time-invariant system by sampling the ALIP state at the end of each (fixed

duration of Tss) single stance phase. These dynamics are simply

xn+1 = As2sxn +Bs2s(pn+1 − pn) (4.24)

where As2s = exp(A(Tss + Tds)) and Bs2s = exp (ATss)Br.

4.2.4. Step Timing Adaptation

We will use the fact that the initial ALIP state is constant to adapt the duration of the initial

swing phase as part of the MPFC problem formulation. This has previously been applied to con-

trollers based on the divergent component of motion (Englsberger et al., 2013; Khadiv et al., 2020;

Xiang et al., 2024) and instantaneous capture point (Griffin et al., 2023), as these models admit an

exact coordinate transform for the initial stance duration to make the touchdown state linear in the

transformed variable. The ALIP state space does not admit this coordinate change, so we instead

linearize the solution to (4.11). Given Given T seconds remaining in single stance, and an initial

ALIP state xc, the exact solution to (4.11) with constant ankle torque, u, is

x(T) = Ad(T)xc +Bd(T)u (4.25)

Where Ad(T) = exp(AT) and Bd(T) = A−1(Ad(T) − I)B. We linearize (4.25) with respect to T

and u about a nominal remaining stance time of T ∗ and ankle torque of 0 to find the ALIP state

25

at the end of the current stance period (and the initial state of the s2s ALIP model), x0:

x0 = Ad(T
∗)xc +

∂Ad
∂T

∣∣∣∣
T ∗

(T − T ∗)xc +Bd(T
∗)u. (4.26)

4.3. Operational Space Control

We use operational-space control (OSC) to track outputs such as swing foot position and pelvis ori-

entation, while respecting frictional contact constraints (Wensing and Orin, 2013a). OSC performs

input-output linearization based on the full-order Lagrangian model of the robot’s dynamics (4.2).

We assume a set of outputs, {yi(q)}, representing kinematics functions such as the center of mass

position, swing foot position, or pelvis orientation, and a set of desired trajectories for these outputs

to follow, {yi,des(t)}. We also refer to these outputs as tasks, with the image of y(q) being the task

space. The task-space acceleration, ÿi, is found similarly to the constraint acceleration (4.3):

ÿi = Jiv̇ + J̇iv, (4.27)

where Ji = ∂y
∂qN(q).

To track the desired output trajectories, we define task-space PD controllers,

ÿi,cmd = ddotyi,des +Kp(yi,des − yi) +Kd(ẏi,des − ẏi).

The goal of OSC is to find dynamically feasible inputs, generalized accelerations, contact forces,

and constraint forces, such that the task-space accelerations, ÿi, match the dynamics of the PD

controller as closely as possible, while satisfying contact constraints and holonomic constraints. We

26

formulate this as a quadratic program with Lorentz cone constraints on the contact forces:

minimize
v̇,u,λh,λc,ε

N∑
i

˜̈yTi Wi
˜̈yi + ∥u∥2W + ∥v̇∥2W + ∥ε∥2W (4.28a)

subject to Mv̇ + C = Bu+ JTh λh + JTc λc (4.28b)

Jhv̇ = −J̇hv (4.28c)

Jcv̇ + ε = −J̇cv (4.28d)

λc ∈ F (4.28e)

umin ≤ u ≤ umax (4.28f)

where λc and Jc are the stacked contact forces and contact Jacobians, and F is the product of the

friction cones for each contact point. The contact constraint is treated as a soft constraint by the

introduction of a slack variable ε to ensure the problem is always feasible. The holonomic constraint

Jhv̇ = −J̇hv represents Cassie’s four-bar linkages and fixed joint constraints to model Cassie’s leaf

spring springs. The task-space acceleration errors are ˜̈yi = ÿcmd − (Jy,iv̇ + J̇y,iv).

4.4. Model Predictive Control

This thesis heavily leverages model predictive control (MPC), an optimal control method where

feedback is applied to a system by recursively solving a finite-horizon trajectory optimization prob-

lem. MPC is a popular method for controlling robotic systems - especially legged robots - due to

the ability to incorporate physical constraints such as joint and friction limits into the optimization

problem. This section provide a summary of MPC as it pertains to this thesis. A more tutorial

treatment of optimal control for robotics is given by Tedrake (2023), and a survey of the current

state-of-the-art and challenges of MPC for legged robots is given by Wensing et al. (2023).

4.4.1. Linear-Quadratic MPC

Perhaps the simplest and most wide-spread form of MPC involves optimizing a convex quadratic cost

on the state and input trajectory for of a discrete-time linear system overN time-steps (García et al.,

1989). At each iteration, the controller solves (4.29) with the current measured state x̂, and then

27

applies the first input from the solution, u0 to the system, re-solving for a new u0 at the next control

step.

minimize
{xk},{uk}

xTNQNxN +
N−1∑
k=0

xTkQxk + uTkRuk (4.29a)

subject to x0 = x̂ (4.29b)

xk+1 = Akxk +Bkuk (4.29c)

umin ≤ uk ≤ umax (4.29d)

Ckxk ≤ bk, (4.29e)

In (4.29), QN , Q, and R are positive semi-definite cost matrices, Ak and Bk define the system

dynamics, umin and umax define the input limits, and Ck and bk define path constraints on the state

variables. This problem is a quadratic program (QP), and can usually be solved quickly using off

the shelf QP solvers. By defining the dynamics as time-varying, we also allow for nonlinear MPC

by linearizing the system’s dynamics about a reference trajectory and solving the resulting convex

QP. Repeated linear-quadratic approximation of a nonlinear MPC problem forms the basis for most

of the real-time nonlinear MPC approaches used to control legged robots.

4.4.2. Nonlinear MPC for Legged Robots

Legged robots obey continuous, nonlinear, hybrid dynamics. Optimizing over these dynamics could

be described by the following trajectory optimization problem, where x is the state, and ν are the

28

inputs:

min
x(t),ν(t)

Φ(x(T)) +

∫ T

0
L(x(t), ν(t), t) dt (4.30a)

subject to ẋ(t) = f(x(t), ν(t)) (4.30b)

x(0) = x0 (4.30c)

h(x, ν, t) ≥ 0 (4.30d)

g(x, ν, t) = 0. (4.30e)

(4.30f)

Usually, the order of hybrid transition events is pre-specified, with additional constraints relat-

ing the pre- and post- transition states. Almost universally, (4.30) is transcribed as a finite-

dimensional nonlinear program using multiple shooting (Bock and Plitt, 1984), direct collocation

(Hargraves and Paris, 1987) or differential dynamic programming (DDP) (Jacobson and Mayne,

1970). DDP is unique among these approaches in that it refers to both the problem transcription

and the approach for solving it. DDP and related approaches like iLQR (Li and Todorov, 2004) are

generally faster to solve to local optimality than either direct collocation or multiple shooting, but

rely on a high-quality initial guess, and cannot handle constraints on the states or inputs. Gen-

eralizations have been proposed to handle input limits (Tassa et al., 2014) and more general path

constraints on the state variables (Howell et al., 2019).

For real-time nonlinear MPC, multiple-shooting and collocation based approaches are generally

solved using sequential quadratic programming (SQP) (Boggs and Tolle, 1995). SQP refers to the

method of solving a nonlinear program via successive quadratic approximations of the cost, and

linear approximations of the constraints (Nocedal and Wright, 2006). However, in the context on

nonlinear MCP, SQP also refers to the practice of only solving one such QP per control iteration

(Diehl et al., 2005), allowing successive control iterations to further refine the solution.

In order to achieve real-time performance, the dynamics for (4.30) have previously been defined

via reduced order model dynamics (Jenelten et al., 2022) or centroidal dynamics (Romualdi et al.,

29

2022). Improvements in solvers and CPU speeds are increasingly allowing real-time MPC over

kinodynamic models, which incorporate centroidal dynamics and joint kinematics, (Sleiman et al.,

2021) and full Lagrangian dynamics models with joint torques (Mastalli et al., 2023; Grandia et al.,

2022; Khazoom et al., 2024).

4.5. Robot-Centric Elevation Mapping

Our perception stack uses the robot-centric elevation mapping framework developed by Fankhauser et al.

(2018) to construct a robot-centric elevation map of the terrain. This framework represents the ter-

rain as a grid around the robot, with the height of each cell updated by point cloud measurements

through a Kalman filter. The dynamics model for this Kalman filter defines a static map in the

world frame. The measurement model is that ‘incoming point clouds directly measure the height of

the terrain. The point cloud points corresponding to each grid cell are accumulated and assigned a

measurement noise based on a sensor-specific noise model. The height of each cell is then updated

based on a one-dimensional Kalman filter. Letting (ĥ, σ2h) be the estimated height and the variance

of the height estimate, and (p̃, σ2p) be the height measurement and height measurement variance,

this update is given as

ĥ+ =
σ2pĥ

− + σ2−h p̃

σ2p + σ2−h
, σ+h =

σ2pσ
2
p

σ2p + σ2p
. (4.31)

We provide further details on our implementation of (Fankhauser et al., 2018) for Cassie in Chap-

ter 7.

30

CHAPTER 5

Model Predictive Footstep Control

Parts of this chapter were previously published as parts of the following two publications:

Brian Acosta and Michael Posa. Bipedal Walking on Constrained Footholds with

MPC Footstep Control. In IEEE-RAS International Conference on Humanoid Robotics,

Austin, Texas, 2023.

Brian Acosta and Michael Posa. Perceptive Mixed-Integer Footstep Control for Under-

actuated Bipedal Walking on Rough Terrain. arXiv preprint arXiv:2501.19391, January

2025. Supplemental video for Chapters 5, 6, and 7: https://youtu.be/JK16KJXJxi4

This chapter presents Model Predictive Footstep Control (MPFC), a model-predictive-control-style

footstep planner which allows underactuated bipeds to perform freeform walking over stepping

stones. In addition to discrete foothold selection, MPFC optimizes over the continuous footstep po-

sitions, center of mass trajectory, ankle torque, and gait timing. MPFC is one of the first controllers

to simultaneously optimize over the discrete choice of stepping surface and the robot’s dynamics in

real time3, and to our knowledge, the research papers upon which this chapter is based represent

the first deployment of such a controller on hardware.

We use binary variables to assign each footstep to a convex foothold (Deits and Tedrake, 2014),

providing a straightforward extension of linear-quadratic MPC footstep controllers (Gibson et al.,

2022) to discontinuous terrain, with the consequence that optimal control problem graduates in diffi-

culty from a Quadratic Program to a Mixed-Integer-Quadratic Program (MIQP). MIQPs have been

used extensively for offline trajectory optimization over broken terrains (Aceituno-Cabezas et al.,

2018; Fey et al., 2024; Ding et al., 2020), but due to their combinatorial complexity in the planning

horizon, they have seen much less use in real-time control. Our controller achieves solve times of
3(Shim et al., 2023) was published concurrently with the conference paper associated with this chap-

ter (Acosta and Posa, 2023) and uses artificial potentials to snap footsteps onto nearby footholds, and (Gu et al., 2024)
was published shortly after (Acosta and Posa, 2023), and enforces stepping stone constraints with offline-generated
signal-temporal-logic objectives.

31

https://youtu.be/JK16KJXJxi4

less than 10 milliseconds by using a low dimensional, linear dynamics model, planning over a short

footstep horizon, and eliminating foothold candidates far from the robot.

The remainder of the chapter is organized as follows. First, we transcribe MPFC as an MIQP,

detailing the costs and constraints and the design rationale behind them. Next, we design outputs

for realizing the MPFC solution on the Cassie. We then present results supporting MPFC’s ability

to stabilize walking over challenging terrains in real time. We conclude with a discussion of the

overall capabilities and limitations of the approach and possibilities for future work.

5.1. MPFC Problem Statement

The following section details the formulation of our model predictive footstep controller as an

MIQP. For the current stance phase, MPFC optimizes the stance duration and ankle torque. In

the subsequent stance phases, MPFC only affects the s2s ALIP state through foot placement,

encouraging footstep choices which are robust to limited ankle actuation. Because double stance is

incorporated into the s2s dynamics, MPFC merges the double and single stance phase together into

a combined stance phase, which is treated as single-stance within the optimization. The MPFC

stance phase begins at each touchdown event with a nominal remaining stance time of Tss + Tds,

and the footstep and gait timing solutions are ignored until the time since touchdown exceeds Tds

(Fig. 5.2).

The continuous MPFC decision variables are the step-to step ALIP states, xn, the foostep positions,

pn, a constant ankle torque during the initial stance phase, u, and the remaining duration of the

current stance phase, T . Each footstep is constrained to lie in a steppable region, Pi, represented

as a 2D polygon embedded in 3D space. We introduce one binary variable per discrete foothold per

stance phase, µn,i, corresponding to whether pn ∈ Pi. A diagram of the key MPFC decision variables

is show in Fig. 5.1. We now introduce the MPFC problem statement (5.1), and then elaborate on

the costs and constraints. Let xc be the current ALIP state, with T ∗ seconds nominally remaining

32

in the current MPFC stance phase. MPFC is formulated as:

minimize
x,p,µ,u,T

Jmpc(x,p) + Jreg(T, u) (5.1a)

subject to x0 = Adxc +AAdxc(T − T ∗) +Bdu (5.1b)

xn+1 = As2sxn +Bs2s(pn+1 − pn) (5.1c)

µn,i = 1 =⇒ pn ∈ Pi (5.1d)∑
i∈I

µn,i = 1 (5.1e)

µn,i ∈ {0, 1} (5.1f)

CoM, Input,Timing, and Footstep limits

5.1.1. Cost Design

Previous works use deviation from a reference ALIP trajectory as a state cost (Gibson et al., 2022),

an approach taken in earlier versions of this work (Acosta and Posa, 2023). However, this implicitly

encodes the corresponding footstep sequence into the state cost, and we desire for MPFC to freely

pick the appropriate footstep sequence for a given terrain. Therefore we formulate a state cost

which does not encode any particular gait. We penalize the distance of the MPFC solution from

the set of ALIP trajectories which are periodic over 2 steps and achieve the desired velocity, vdes.

This set is an affine subspace representing all possible xn which satisfy the system (5.2).

(A2
s2s − I)xn +As2sBs2sδpn +Bs2sδpn+1 = 0 (5.2a)

δp0 + δp1 = 2Ts2svdes, (5.2b)

where δpn = pn+1 − pn, (5.2a) is the ALIP dynamics rolled out over two footsteps, with the

period-2 orbit constraint xn+2 = xn, and (5.2b) requires the net displacement of the robot to match

the desired velocity. We show how to eliminate δpn and δpn+1 in Section A.1.1, to express solutions

33

Figure 5.1: Key MPFC decision variables and constraints for a horizon of 2 stance phases. xc is the
current ALIP state, u is ankle torque applied during the current stance phase, x0 is the ALIP state
at the end of the current stance phase, and x1 is the ALIP state at the end of the next stance phase.
The current stance foot position, p0, is unconstrained, and subsequent footsteps are constrained to
lie in either Pj or Pq using integer variables.

Figure 5.2: Relationship between the nominal stance phases and MPFC gait timing optimization.
The initial stance duration is adjusted continuously by optimizing over the remaining stance time,
T .

34

of (5.2) as

Πn(xn − dn(vdes)) = 0. (5.3)

Where Πn ∈ R4×4 is a projection matrix used to eliminate δpn from (5.2), and dn(vdes) is an offset

that encodes the desired velocity. Our MPC cost is then formulated as

Jmpc(x,p) =
N−1∑
n=1

[
(xn − dn)TΠTnQΠn(xn − dn) +

(δpn − δp∗n)TR(δpn − δp∗n)
]
+

(xN − dN)TΠTNQNΠN (xN − dN)

where Q,R, and QN are positive-definite weight matrices. We regularize the relative footstep

positions to a nominal step size, defined by the desired velocity and the step width, l, as

δp∗n =


vdes,x(Tss + Tds)

vdes,y(Tss + Tds) + σnl

0

 (5.4)

where σn = −1 for left-stance and +1 for right stance. We add quadratic costs on T and u, weighted

by positive scalars wT and wu:

Jreg = wT ∥T − T ∗∥2 + wu∥u∥2. (5.5)

5.1.2. Dynamics Constraints

The initial state constraint (5.1b) evaluates (4.26) to relate the current ALIP state to the initial

s2s ALIP state via ankle torque and stance duration. The dynamics constraints (5.1c) are the s2s

ALIP dynamics (4.24).

35

5.1.3. Foothold Constraints

Each convex polygonal foothold is defined by a plane fTi p = bi and a set of linear constraints

Fip ≤ ci. The logical constraint (5.1d) is enforced with the big-M formulation

Fipn ≤ ci +M(1− µn,i) (5.6a)

fTi pn ≤ bi +M(1− µn,i) (5.6b)

−fTi pn ≤ −bi +M(1− µn,i). (5.6c)

With appropriately normalized Fi and fi, (5.6) corresponds to relaxing each foothold constraint

by M meters when µi = 0. M must be large enough for every relaxed foothold to contain every

unrelaxed foothold, but should otherwise be small for numerical stability. Since our problem scale

is on the order of 2 m, we choose M = 10 for simplicity. The binary constraint (5.1f) and the

summation constraint (5.1e) imply that exactly one foothold must be chosen per stance phase, and

the remaining footholds must be relaxed.

5.1.4. CoM, Timing, Input, and Footstep Limits

We add the following constraints to reflect the physical limitations of the robot:

• We add a soft-constraint on the CoM position of ±35 cm. in each direction.

• We update bounds on T at each solve so the total single-stance duration lies in the range

[0.27, 0.33] seconds.

• We add a crossover constraint to prevent the feet from crossing the x− z plane.

• We limit the ankle torque to 22 Nm to keep the center of pressure within the blade foot.

• With Tmin = 0.27 seconds left in the nominal single stance time, we add a trust region

constraint on p1. This constraint is a bounding box centered at the previous p1 solution with

a radius of T ∗ m. As implied by the unit conversion of T ∗ to a distance, the radius of this

bounding box shrinks at a rate of 1 m/s.

36

5.2. Output tracking via Operational Space Control

To realize the planned walking motion on the physical robot, MPFC outputs are tracked with

OSC (Fig. 7.1C). This section describes the construction of the outputs tracked by the OSC. The

key contributions are a virtual constraint on the center of mass to enforce the ALIP assumption of

piecewise planar terrain, and an adaptive-clearance swing-foot trajectory based on the displacement

of the swing foot. Because the outputs are constructed only as functions of the current, previous,

and upcoming stance foot locations, the footstep planner can be abstracted away from the OSC,

and there is no need to interact with perception data inside of the high-rate OSC control loop.

5.2.1. Center of Mass Reference

Given a footstep plan, we construct a CoM trajectory which enforces the local planarity assumption

of the ALIP model by constructing the least-inclined plane passing through the current and immi-

nent stance foot positions (Fig. 5.3). Letting p = pn+1 − pn, the plane parameters are the solution

to

 px py

−py px


kx
ky

 =

pz
0

 . (5.7)

After solving for kx and ky, we define the reference trajectory for the CoM height in the stance

frame as

zc(t) = H + kxxc(t) + kyyc(t). (5.8)

To account for discontinuities in kx, ky, xc, and yc when the stance foot changes, we add a first-order

low pass filter on kx and ky with a 100Hz cutoff frequency, and we clip the desired zc to within 2.5

cm of the measured CoM height. Because xc(t) and yc(t) are updated to their current values, this

reference trajectory is equivalent to using PD control to virtually constrain the CoM to the desired

plane.

37

Figure 5.3: To enforce the planarity assumption of the ALIP, we use OSC to drive Cassie’s CoM to
a virtual plane defined by current and upcoming stance foot positions.

5.2.2. Swing Foot Reference

We continuously adapt the swing foot trajectory psw(t) to the updated swing-phase duration and

planned next footstep position with a planning QP similar to Khadiv et al. (2020). The planning

QP adapts the previous trajectory so that the commanded position, velocity, and acceleration are

continuous, while updating the trajectory midpoint, duration, and endpoint to match the desired

swing-foot clearance and command from MPFC. First we generate a waypoint above the line con-

necting the initial and final foot location, following an adaptive clearance scheme, then we find a

single-segment polynomial trajectory through this waypoint.

Adaptive Swing Foot Clearance

Our clearance scheme (Fig. 5.4) updates the midpoint of the swing-foot trajectory by adapting its

direction and clearance to the total displacement of the swing foot. This gives high clearance when

stepping up or down over steps without unnecessarily high steps on flat ground.

38

Let the swing foot position at the beginning of the swing phase be psw,0, the target foot position for

the end of swing be psw,des, and define ∆p = psw,des− psw,0. We construct a unit vector n̂p which is

perpendicular to ∆p and lies in the plane spanned by ∆p and the world z axis. When ∆p is small,

for example when the robot is stepping in place, small variations in height estimates can lead to n̂p

pointing in inconsistent directions, therefore we blend n̂p with the unit z-vector, êz to get a blended

direction, n̂b:

n̂b = (1− s)êz + sn̂p

where

s = clamp
(
∥∆p∥ − 0.1

0.1
, 0, 1

)
.

The final waypoint location is then defined as

pmid = psw,0 +
1

2
∆p+ cclear

n̂b
∥n̂b∥

,

where cclear = c + min(c,∆pz) is the final swing foot clearance, and c is a tuneable parameter

representing the swing foot clearance on flat ground, which we set to 15 cm in our experiments.

Swing foot Planning QP

After finding the desired mid-spline waypoint pmid, we solve (5.9) to update the swing foot trajectory

to the new footstep target psw,des and swing phase duration T . In addition to passing through the

desired midpoint and ending at the target location, we constrain the swing foot trajectory to be

continuous up to acceleration with the previously planned swing foot trajectory:

39

Figure 5.4: Trajectory from the swing foot position at the beginning of the swing phase, psw,0
to the next footstep solution from MPFC, psw,des. We adapt the direction and clearance of the
trajectory’s midpoint, pmid, based on the relative positions of psw,0 and psw,des to ensure sufficient
ground clearance.

minimize
∫ T

0
p̈sw(t)

2dt (5.9)

subject to psw,k(tk−1) = psw,k−1(tk−1) psw(T) = psw,des

ṗsw,k(tk−1) = ṗsw,k−1(tk−1) ṗsw(T) = 0

p̈sw,k(tk−1) = p̈sw,k−1(tk−1) p̈sw(T) = 0

psw(T/2) = pmid

where k indexes each OSC control cycle. We transcribe (5.9) as a QP which optimizes over the

coefficients of a polynomial representing the swing foot trajectory. By using the initial swing foot

position as psw,0 at the beginning of the swing phase, we ensure that the trajectory starts at the

initial swing foot position without needing to explicitly enforce that constraint for every control

cycle.

40

5.2.3. Other References

We track a constant pelvis roll and pitch of zero, and a constant swing-leg hip yaw (abduction)

angle of zero. We track a commanded pelvis yaw rate from the remote control, and a swing toe

angle so that Cassie’s foot makes an angle of arctan kx with the ground. We add a quadratic cost

on the difference between MPFC and OSC ankle torque commands.

5.3. Results

This section presents results to support the ability of our locomotion framework to stabilize under-

actuated walking over discontinuous terrain in real time. First, we show simulation experiments

validating the effectiveness of our framework over challenging terrains. In addition to the mixed-

integer foothold constraints, our MPFC formulation includes a non-standard cost design, and the

ability to optimize over the initial step duration. We perform ablations to validate the usefulness

of these features. Then we show velocity tracking and solve time results from hardware experi-

ments over varied terrain. We defer the explanation of the full perceptive locomotion hardware

implementation to Chapter 7, presenting only the results relevant to MPFC here.

5.3.1. Simulation Results

This subsection details simulation experiments on complex terrains. Our simulation is written using

Drake (Russ Tedrake and the Drake Development Team, 2019), and includes Cassie’s leaf springs,

reflected inertia, motor curves, joint limits, effort limits, and full collision geometry. We show the

idealized capabilities of MPFC using ground-truth state and terrain information. We first present

Cassie using our locomotion framework to walk over over an 8 m × 23 cm beam (Fig. 5.5), and

up stairs with a depth of 27 cm and a rise of 15 cm (Fig. 5.6). MPFC is commanded a velocity of

[vx, vy] = [0.375, 0] m/s, and OSC is commanded a yaw rate proportional to the heading error. We

show the velocity tracking of the controller over these terrains in Fig. 5.7.

Freeform walking

To emphasize that MPFC chooses the optimal foothold in real time, we show Cassie walking over

constrained footholds with velocity commands from a human operator (Fig. 5.8).

41

Figure 5.5: Cassie walks across an 8 m × 23 cm beam using MPFC.

Figure 5.6: Cassie walks up a set of stairs with a 27 cm depth and a 15 cm rise using MPFC.

Figure 5.7: Velocity tracking for the beam and stairs results shown in Fig. 5.5 and Fig. 5.6

42

Figure 5.8: Freeform walking over constrained footholds using MPFC. Top: Cassie’s pose through-
out the freeform walking trial. Bottom: Velocity Tracking during the freeform walking trial.

43

Figure 5.9: Comparing the velocity tracking performance of MPFC over 40 cm × 15 cm stairs using
a naive cost and the subspace cost we develop in Section 5.1.1. The naive cost (Gait Cost) is on
deviation from a reference trajectory, while our subspace cost (Subspace Cost) is on deviation from
the subspace of Period-2 ALIP trajectories with the desired velocity.

Cost Comparison

We compare the performance of MPFC using the subspace cost and a gait-tracking cost based on

the nominal stepping pattern. The gait tracking cost is formulated as

N−1∑
i=0

(
(xn − xd,n)TQ(xn − xd,n)

)
+ (xN − xd,N)TQN (xN − xd,N) (5.10)

where xd,n is the solution to (5.2a) after substituting (5.4) in for δpn. This desired ALIP trajectory

represents a single point within the desired velocity subspace, which makes a consistent amount of

progress in both left and right stance. For both conditions, we use the same values of Q and QN ,

as well as regularization on gait timing, ankle torque, and relative footstep location. We walk up 40

cm × 15 cm stairs with both costs and show the velocity tracking performance in Fig. 5.9. The gait

cost condition walks slightly slower than the commanded velocity, while the subspace cost walks

slightly faster. When driving the physical robot with a remote control, this qualitatively feels like

the subspace cost results in less hesitation before stepping over a ledge, making the robot easier to

steer.

44

Step-Timing Optimization

We demonstrate the importance of step-timing optimization by measuring the success rate of walking

across randomly generated stepping stones with and without step-timing optimization. We generate

a 5× 3 grid of stepping stones, where each stone has a random height, length, width, and position

offset. The minimum length and width are controlled by the parameter dmin, and the centers

Figure 5.10: Example of successfully traversing a random stepping stone environment in simulation
with dmin = 35 cm.

are offset from a nominal spacing of dmin + 21cm. The stepping stone dimensions are uniformly

distributed with the bounds given in Table 5.1. An example stepping-stone terrain can be seen in

Fig. 5.10. We sweep dmin from 35 cm to 70 cm and compute the success rate for traversing 50

random terrains at each size, which we report in Fig. 5.11.

Table 5.1: Stepping Stone Parameter Distributions

Parameter Uniform Distribution Bounds
x offset ± 5 cm
y offset ± 5 cm
z offset ± 7.5 cm
length [dmin, dmin + 5] cm
width [dmin, dmin + 5] cm

Step-timing optimization increases the success rate of walking over stepping stones, with larger

45

Figure 5.11: Success rates for walking across randomly-generated stepping stones in simulation. Re-
sults with step-timing optimization are labeled Opt-T, and results without step timing optimization
are labeled Fixed-T. Step-timing optimization increases success rates over small footholds.

effects for terrains with smaller footholds. Intuitively, underactuated dynamics strongly couple

step-timing, stride length, and walking speed. Given Cassie’s underactuation, step-timing therefore

compensates for variability in the foothold location.

5.3.2. Hardware Results

We present hardware results to support our claim of real-time footstep planning over rough terrain.

Walking on Discontinuous Terrains

A single trial traversing steps, a curb, and a grass hill is shown in Fig. 5.12. Additional trials are

shown in the supplemental video.

5.3.3. Controller Solve Times

To support our claims of faster than 100 Hz MPFC solve times, we compile solve times across 11:17

minutes of walking data from three experiments on the brick steps shown in Fig. 5.13. We give

Table 5.2: MPFC Solve-Time Statistics (134,654 Solves)

Mean Median 99.9th Percentile Maximum
0.0022 0.0020 0.0077 0.0126

46

summary statistics of MPFC solve times in Table 5.2. This data uses a planning horizon of N = 2

footsteps, plus the initial single stance phase. The maximum solve time observed was 12.6 ms, with

99.9% of solves taking less than 7.7 ms.

(a) Plot of the velocity tracking performance of the
robot using our control stack.

(b) MPFC Solve times during the trial in Fig. 5.13.

(c) Plot of the elevation change over the trial in
Fig. 5.13, estimated from the onboard state estima-
tor.

Figure 5.12: Velocity tracking, solve times, and elevation change for Cassie walking on discontinuous
terrain including steps, a curb, and a grassy hill.

47

Figure 5.13: Motion tiles showing Cassie ascending and descending steps, stepping over a curb onto the grass, and walking up a
grassy slope in one continuous walking trial using our proposed locomotion stack and the perception pipeline proposed in Chapter 6.

48

5.4. Conclusion

The following sections discuss limitations and future work and summarize the contributions of this

chapter. We defer a detailed discussion of future work related to the full perception-integrated sys-

tem to Chapter 7, after we have discussed the perception stack and full-stack walking experiments.

5.4.1. Limitations and Future Work

While the controller we present expands the capabilities of underactuated bipeds, some improve-

ments could be made to tackle faster walking speeds and more difficult terrains. The planning

horizon of 2 footsteps can result in overly optimistic footstep choices in antagonistic scenarios. Fur-

ther research could focus on stronger mixed integer formulations or improved mixed-integer solvers

to enable solving for longer footstep horizons in real time. Alternatively, additional robustness terms

could be incorporated in MPFC to favor conservative behaviors. Cassie’s small lateral workspace

and MPFC’s fixed stepping pattern make the controller vulnerable to lateral perturbations, espe-

cially those occurring at the beginning of single-stance. Robustness against these perturbations

could be increased by including crossover steps, and by smaller minimum stance times. The stance

duration should then be coupled to the swing-foot workspace to maintain reachability of the planned

footsteps.

5.4.2. Summary

This chapter introduced Model Predictive Footstep Control, which synthesizes ALIP-based footstep

control and mixed-integer footstep planning for underactuated walking over stepping stones. We

increased the effectiveness of the controller by including ankle torque in the sagittal plane and step-

timing optimization, essentially leveraging as much control authority as possible while maintaining

the (mixed-integer) convexity of the MPC problem. We introduced a state cost which tracks to an

affine subspace of the ALIP state-space based on the desired velocity, permitting more flexibility

of the footstep choice than a trajectory-based cost. We developed a set of outputs for realizing the

motions plans from MPFC using operational space control. We validated our controller and decision

decisions through simulation experiments over complex terrains. We concluded with hardware

experiments on Cassie, demonstrating the real-time nature of MPFC while traversing steps, curbs,

49

and a grassy hill. These hardware experiments were conducted with the aid of a real-time perception

stack for generating stepping stone constraints from an RGBD camera, which we detail in the next

chapter.

50

CHAPTER 6

Stable Steppability Segmentation and Convex Decomposition

Parts of this chapter were previously published as parts of Brian Acosta and Michael

Posa. Perceptive Mixed-Integer Footstep Control for Underactuated Bipedal Walking

on Rough Terrain. arXiv preprint arXiv:2501.19391, January 2025.

Supplemental video for Chapters 5, 6, and 7: https://youtu.be/JK16KJXJxi4

Our control framework for walking over convex polygons requires an effective pipeline for approx-

imating the safe terrain as convex polygons online. This chapter introduces our solution, “Stable

Steppability Segmentation” (S3) and a complementary convex decomposition procedure.

We argue that requiring a one-to-one correspondence between foothold constraints in the controller

and real planar polygons in the environment (Grandia et al., 2022; Corbères et al., 2023) is overly

restrictive and brittle. Our approach recognizes that planar polygons are a modeling choice used to

support optimization-based control, rather than a hard safety requirement. By focusing on avoiding

terrain which is clearly unsafe, we arrive at a simple algorithm which is robust to non-planar surfaces

and more temporally consistent than explicit plane segmentation.

Our perception stack consists of two stages. The first stage, S3, uses local safety criteria and a simple

hysteresis mechanism to classify elevation map pixels as safe or unsafe, resulting in a binary step-

pability mask. The second stage of our segmentation algorithm generates a set of convex polygons

approximating the safe terrain identified by S3. We perform approximate convex decomposition

(Lien and Amato, 2006), then take a convex inner-approximation of the resulting polygons before

finally fitting plane parameters to these convex polygons using the original elevation map. While

the S3 implementation in this thesis uses intuitive heuristic criteria for steppability classification,

the general algorithm supports any number of criteria, allowing for composition with learning-based

approaches and higher-level obstacle detectors.

51

https://youtu.be/JK16KJXJxi4

In contrast to plane segmentation, we do not subdivide or reject any steppable region based on

its estimated normal or its error with respect to a best-fit plane. This approach prevents localized

frame-to-frame variations from having an outsized effect on the final segmentation, because there are

no subdivision boundaries which might vary between frames, and localized outliers cannot trigger

a subdivision or rejection of an entire region.

Because safety criteria are local, we further enhance temporal consistency by simply adding hystere-

sis to the classification of each pixel. We also use additional metrics beyond gradient or roughness

to determine steppability, as discussed in Section 6.1. The simplicity of our approach allows the

entire pipeline from elevation mapping to publishing convex polygons to run in real time on a single

CPU thread.

In the remainder of this chapter, we first present the S3 and convex decomposition algorithms in

detail, before presenting results to support S3’s improved temporal consistency and computation

time compared to plane segmentation. We conclude with opportunities for further development of

S3 and a summary of out contributions.

52

Figure 6.1: Pipeline for converting an elevation map of the terrain into a set of convex polygons which can be used to plan safe
footsteps. Our Stable Steppability Segmentation produces a temporally-consistent steppability mask representing a 2D overhead
view of the safe terrain. We then extract the boundaries of the safe terrain as non-convex polygons, which we decompose into
convex polygons using an algorithm based on approximate convex decomposition.

53

6.1. Stable Steppability Segmentation

The goal of steppability segmentation is to determine where on the elevation map is safe to step.

Because the segmentation determines the foothold constraints for MPFC, it is important that the

segmentation algorithm is

• Temporally consistent, despite noise and sensor-fusion artifacts,

• Computed in real time,

• Appropriately conservative.

To accomplish this, we compute various “safety criteria” for whether a pixel is considered safe

(Fig. 6.2). A safety criteria is a function transforming the elevation map to a pixel-wise “safety score”

in the range [0, 1], where 1 is completely safe, and 0 is unsafe. These safety criteria are fused via their

geometric mean to yield an overall safety score. Robustness to noise is accomplished via inpainting

and filtering in each safety criteria computation, for example median-filtering the elevation map

to remove outliers (Jenelten et al., 2022). Robustness is also achieved by maintaining temporal

consistency despite artifacts from state estimate drift and impacts. This temporal consistency is

due to the locality of the S3 algorithm, and enhanced by adding hysteresis to the overall safety score

based on the previous segmentation. Realtime computation is achieved through the simplicity of

our algorithm, and the small size of our elevation map. Because safety criteria are local to each

pixel, S3 could also be GPU-parallelized for large elevation maps. The next subsection outlines

what we mean by “appropriately conservative” and introduces a curvature-based safety criterion

which accomplishes this goal.

6.1.1. Curvature Safety Criterion

During our experiments in (Acosta and Posa, 2023), we used a plane segmentation approach (Miki et al.,

2022b), and had difficulty picking a safety margin which avoided tripping over curbs (Fig. 6.3) while

not taking excessively large steps over curbs. This experience illustrated the need to step further

away from the bottom of a ledge than the top. To penalize terrain which is below edges, we need

54

Figure 6.2: Block diagram of S3, our proposed terrain segmentation approach. Safety criteria are
combined into an overall safety score for each elevation map pixel, before applying hysteresis to
enhance temporal consistency.

to identify terrain that is lower than its surroundings. Treating the elevation map as an image,

this looks like applying a kernel that compares the height of each pixel to the average of the pixels

around it:

1

8


1 1 1

1 −8 1

1 1 1

 . (6.1)

This particular kernel is a Laplacian kernel, used to compute the curvature of an image, meaning

we can use standard image processing tools to efficiently calculate this safety criterion. Letting E

be the elevation map, the curvature criterion is computed via Eq. (6.2),

ccurve = min(1, exp(−αcLoG(E))) (6.2)

55

Figure 6.3: Walking over ledges with Cassie requires asymmetric constraints on the footstep position,
p, which is mapped to the center of Cassie’s foot. The desire to specifically avoid stepping below an
edge motivated our curvature based safety criterion, which differentiates between sides of an edge
using the sign of the elevation map’s Laplacian.

where LoG is the Laplacian of Gaussian filter, which convolves the elevation map first with a Gaus-

sian filter, then takes the Laplacian. The pixel-wise exponential exp(−αcLoG(E)) maps regions of

positive curvature to the interval (0, 1], with the score exponentially approaching 0 as the curvature

increases. The scale factor αc can be used to tune how aggressively positive curvature is punished.

We take the min of the criterion with 1 to ensure that no bonus points are awarded for negative

curvature. Penalizing only positive curvature specifically targets area below edges, which poses a

tripping hazard. To segment out the edge itself, we introduce an inclination safety criterion, which

operates on the estimated normal of the elevation map to penalize steep terrain.

6.1.2. Inclination Safety Criterion

The inclination safety criterion treats steep terrain as unsafe, by considering the magnitude of the

z component of the surface normal at each elevation mapping pixel. We estimate the normal using

the covariance matrix of the positions around each pixel (Grandia et al., 2022), then square the z

component to yield the inclination safety criterion,

56

cinc = nz(E)2. (6.3)

To give context for how cinc classifies terrain in practice, we pick 0.7 as the final safety threshold

for S3. For a pixel which is otherwise considered safe, this means a slope greater than about 33◦ is

unsafe, since cos2(33◦) ≈ 0.7.

6.1.3. Combining Safety Criteria

The final safety score is the geometric mean of the score for each criteria, plus a hysteresis value for

all pixels classified safe in the previous frame. Pixels with a final score above some threshold are

considered safe. The resulting binary image is post-processed to give a 2D view of the safe terrain

around the robot. Letting k index the time series of segmentations, the S3 output is given by

Sk = clean

(M∏
i=1

ci(Ek)

)1/M

+ khystSk−1

 > ksafe


where M is the total number of safety criteria, and clean(S) = open(close(erode(S))). The erode

operation adds a safety margin to account for swing-foot tracking error and the length of Cassie’s

foot. The open and close operations remove any thin holes or protrusions.

6.2. Convex Planar Decomposition

Finally, we convert the binary steppability mask into a set of convex planar polygons. We identify

connected components of steppable terrain from the mask, and extract their outlines as 2D polygons.

In general, these are non-convex polygons with holes (caused, for example, by small obstacles or

other unsteppable areas), but we require convex foothold constraints for the MPFC. We use a two

stage process to find a set of convex polygons whose union is an inner approximation these non-

convex polygons. This avoids creating many small triangles like an exact convex decomposition

would, leading to fewer mixed integer constraints in the MPFC.

First, we perform approximate convex decomposition (ACD) (Lien and Amato, 2006) on each poly-

gon. ACD returns a decomposition of the original region into polygons which are d-approximately

57

convex, where d the depth of the largest concave feature.

After filtering out polygons with area less than 0.05 m2, we find a convex inner-approximation

of these nearly convex polygons with a greedy approach we name the whittling algorithm (Algo-

rithm 1), after the way it makes incremental cuts to the polygon. We initialize the output polygon,

P as the convex hull of the original polygon, then take P to be the intersection of itself with greedily

chosen half-spaces until no vertices of the original polygon are contained in the interior P. To reduce

the number of cuts we make, we initially sort the vertices by their distance to the boundary of P,

handling the innermost vertices first.

Algorithm 1 Whittling Algorithm
Require: Input polygon vertices V = {v0 . . . vn}

procedure Whittle(V)
P ← ConvexHull(V)
Sort vi by distance to ∂P
for all vi do

if vi ∈ Interior(P) then
H = MakeCut(vi, V)
P ← P ∩H

return P

MakeCut(V, vi) is a nonlinear program inspired by maximum margin classification (Boser et al.,

1992) which finds a such that the half-space H = {x | aT (x − vi) ≤ 0} contains as much of V as

possible:

a = argmin
a

∑
j ̸=i

max(aT (vi − vj), 0)2

subject to ∥a∥22 = 1. (6.4)

We solve (6.4) using a custom gradient-based solver, which we detail in Section 6.2.1. Using the

normal of the closest face of P to vi provides a high-quality initial guess for the solver.

To fit these polygons to the terrain, we project the 2D vertices onto the elevation map to recover

the 3D position of each vertex. We then use least-squares to find the best fit plane to these vertices,

58

yielding our final polygon representation.

6.2.1. Whittling Algorithm Cut Solver

We briefly present a solver for optimization over S1, which we use to solve (6.4) quickly online.

Given an optimization problem

minimize
x∈R2

f(x) (6.5)

subject to ∥x∥22 = 1, (6.6)

the associated first-order optimality conditions are

∥x∥22 = 1 (6.7)

∇f(x) + νx = 0 (6.8)

where ν ∈ R is a Lagrange multiplier for the unit-norm constraint. The main idea of our solver is

that because we are optimizing over the unit circle, we rotate x in the direction which decreases the

cost until ∇f(x) is parallel to x, which satisfies the optimality conditions. Our solver is summarized

in Algorithm 2.

Algorithm 2 MakeCut Solver

Require: Cost function f , Initial guess x ∈ S1, Optimality Tolerance ϵ, Line search parameters
α > 0, β ∈ (0, 1)
procedure Solve(f , x, ϵ)

θ ←∞
while |θ| > ϵ do

θ ← (∇f(x)− x⟨∇f(x), x⟩)× x
t← α/|θ|
while f(Rotate(θt, x)) > f(x) do t← βt

x← Rotate(θt, x)
return x

59

In Algorithm 2, the Rotate subroutine is defined via

Rotate(θ, x) =

cos θ − sin θ

sin θ cos θ

x.

The θ update finds the direction to rotate x by considering the component of ∇f orthogonal to

x, using the cross product with x to convert this direction into a scalar rotation angle. We then

perform a line search, starting with a fixed initial step size α for improved convergence speed. As an

implementation note, we re-normalize x at each iteration to avoid drift in the unit-norm constraint.

6.3. Results

We present results to support our claims of S3’s improved temporal consistency and faster run

time compared to explicit plane segmentation. We use elevation mapping data from three terrains

to evaluate segmentation performance (Fig. 6.4). Each dataset contains a time series of elevation

maps collected during perceptive locomotion experiments on Cassie using MPFC. The full system

is described in Chapter 7. For our current purposes it is sufficient to consider just the time series of

elevation maps, abstracted from how these timeseries were collected. The Lab terrain establishes a

baseline for each method in an ideal environment, where state estimate z-drift is the main challenge.

The Brick Steps terrain features a set of brick steps where the bricks have settled over time,

making the steps uneven, and unlikely to be segmented into a single plane by plane-segmentation

methods. Similarly, the Grass terrain is challenging for plane segmentation approaches because our

stance foot drift-correction conflicts with the height of the point cloud, introducing artifacts into

the elevation map.

We use the plane segmentation module developed by Miki at al. in the elevation_mapping_cupy

software package Miki et al. (2022b) with default parameters (hereafter labeled EM_cupy) as a

plane segmentation baseline. This algorithm has a similar structure to S3, starting by filtering the

elevation map, classifying each cell as steppable or not, and then (unlike S3), trying to segment the

steppable cells into planes. Each connected component of steppable terrain is checked for planarity,

and if it fails, RANSAC Schnabel et al. (2007) is used to find smaller planes within that con-

60

Figure 6.4: The environments used to collect data for benchmarking the perception stack’s perfor-
mance. From top to bottom the terrains are Lab, Brick Steps, and Grass

61

nected component. The authors of Miki et al. (2022b) also provide the option to disable RANSAC

plane refinement, instead accepting or rejecting each connected component of steppable terrain in

its entirety based on the estimated surface normal. We also test this variant, henceforth labeled

EM_cupy_NR, where NR denotes “No RANSAC” or “No Refinement.” Because EM_cupy_NR

is identical to the default EM_cupy algorithm except for lacking a global planarity requirement

on steppable regions, these results will support our argument that explicit plane segmentation is

particularly brittle. Table 6.1 summarizes the differences between S3 and the baselines.

6.3.1. Computation Time

As a benchmark against other segmentation approaches, we compare the run times of S3, EM_cupy,

and EM_cupy_NR for each test environment in Fig. 6.5, and find S3 to be the most consistent,

with the lowest worst-case computation time.

6.3.2. S3 Temporal Consistency

We measure the temporal consistency of each segmentation approach via the intersection over

union (IoU) of consecutive segmentations. IoU measures the ratio of pixels labeled as safe in both

segmentation frames to the number of pixels labeled safe in either frame. Because data is lost when

the elevation map moves relative to the world, we restrict the IoU computation to pixels which are

present in both frames. A frame-to-frame IoU of 1 represents perfect temporal consistency, and 0

represents no overlapping safe terrain between segmentations.

The distributions of frame-to-frame IoU for one minute of walking data in each environment are

shown in Fig. 6.5. Our approach consistently achieves an IoU close to 1 across environments,

representing excellent temporal consistency, while EM_cupy has notably lower IoU even in the lab

setting, due to imperfect depth estimation and artifacts from sensor fusion.

62

Table 6.1: Comparison of S3 and Plane Segmentation Baselines As Benchmarked

S3 (Ours) EM_cupy EM_cupy_NR
Steppability Criteria Curvature, Inclination Roughness, Inclination Roughness, Inclination
Incorporates History Yes No No
Plane Refinement None RANSAC Schnabel et al. (2007) Reject regions with slope ≥ 30◦

Inpainting Method Navier-Stokes Bertalmio et al. (2001) Least Neighboring Value Least Neighboring Value

63

Figure 6.5: Offline benchmark of S3 compared to plane segmentation baselines. Top: Histogram of the run time of each segmentation
algorithm over 60 seconds of elevation mapping data from each test environment. Benchmark was run on an Apple Macbook Pro
with an M1 Max CPU, 10 cores, and 64 GB of RAM. S3 has the fastest and most consistent run times. EM_cupy is the slowest,
with a highly variable run time, due to the repeated use of RANSAC to refine the plane segmentation. Bottom: Histogram of the
frame-to-frame IoU of the safe terrain segmentation over the same datasets. Our method reliably achieves a frame-to-frame IoU
close to 1 across environments, representing excellent temporal consistency.

64

EM_cupy_NR has similar temporal consistency to S3, though the lack of hysteresis contributes to

small holes which appear and disappear. The improved temporal consistency of EM_cupy_NR over

the default EM_cupy shows that the plane-segmentation step in particular is brittle, rather than

other design choices like inpainting or steppability criteria This highlights that requiring regions

to be globally planar is mostly responsible for the poor temporal consistency of EM_cupy. The

segmentation output from each algorithm at 1 second intervals is shown in Fig. 6.6, and animations

of the segmentation state are shown in the supplemental video.

Figure 6.6: Tiles showing the output of each segmentation method for each evaluation environment
at 1 second intervals. In the Lab and Grass environments, the use of Navier-Stokes based in-
painting allows S3 to correctly identify the entire elevation map as steppable. The S3 segmentation
experiences minimal “flickering” of the steppable terrain compared to the baselines. Animations of
these segmentation results can be seen in the supplemental video.

65

Figure 6.7: The final convex decomposition has a similarly shaped IoU distribution to the safe
terrain segmentation, though is less consistent overall.

6.3.3. Convex Polygon Temporal Consistency

This section verifies that a temporally consistent terrain segmentation ultimately leads to a tempo-

rally consistent convex polygon decomposition. Because MPFC is free to pick any foothold for each

solve, we compute the frame-to-frame IoU of the terrain covered by each convex decomposition,

rather than the consistency of individual polygons. We compute the IoU by sampling. Each eleva-

tion map cell is marked as safe if its 2D position is covered by a convex polygon. We then compute

the IoU of the safe cells corresponding to each consecutive convex decomposition. The distribution

of IoU for the safe terrain vs. for the convex decomposition is shown in Fig. 6.7.

6.3.4. S3 Hysteresis and Moving Obstacles

For our hardware experiments, we chose a hysteresis value of 0.6, with a safety threshold of 0.7. This

high level of hysteresis enhanced the consistency of the segmentation for the terrains we tested on,

however less hysteresis may be desirable in dynamic environments. To determine the appropriate

hysteresis for different scenarios, we provide two analyses. First, we perform experiments with

moving obstacles, by tossing 15 cm foam cubes into the scene and counting how many are segmented

66

out for each hysteresis condition. An obstacle is defined as segmented out if it creates a hole in

the terrain segmentation before it comes to rest. These results are shown in Table 6.2 and in the

supplemental video. Second, we show the distribution of frame-to-frame IoU values for varying

levels of hysteresis on the Brick Steps in Fig. 6.8. The lowest observed IoU was 0.78, even without

hysteresis, and a hysteresis factor as low as 0.3 performed similarly to the chosen value of 0.6. These

results suggest that a hysteresis factor between 0.3 and 0.4 can enhance the stability of the terrain

segmentation while maintaining correctness in dynamic environments4.

Table 6.2: Moving Obstacles Segmented by S3 vs. Hysteresis parameter ↑. An obstacle is defined
as segmented out if it creates a hole in the terrain segmentation before it comes to rest.

khyst 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Standing 3/3 3/3 3/3 3/3 3/3 2/3 0/3
Walking 3/3 3/3 3/3 3/3 3/3 2/3 0/3

6.4. Discussion

This section discusses implementation details and design choices introduced to handle edge cases and

increase the robustness of our S3 implementation. We then cover limitations of the S3 framework

and opportunities for future work, again deferring the systems integration aspect between S3 and

the locomotion controller to Chapter 7.

One systems-level limitation is that we use single threaded CPU implementations of elevation map-

ping and S3, limiting the map size and resolution which can be handled in real time. Existing

GPU-based elevation mapping implementations (Miki et al., 2022b) could be used with a GPU

implementation of S3 to handle larger or more detailed maps.

Additionally, this chapter introduces heuristic steppability criteria, which demonstrate the temporal

consistency and computational efficiency advantages of S3 compared to plane segmentation, but do

not investigate other potential benefits of S3 as a general framework. For example, one failure case

on hardware involved dried leaves which had accumulated underneath the edge of a step, filling

in the space and resulting in the edge being classified as steppable. This could be avoided by
4Regrettably, our outdoor experiments do not include results with a hysteresis other than 0.6, as malfunctions

of the physical Cassie robot prevented us from performing additional hardware experiments after we completed the
moving-object experiments.

67

Figure 6.8: Frame-to-Frame IoU of the S3 terrain segmentation results with varying levels of hystere-
sis, evaluated on the Brick Steps data. The lowest observed IoU was 0.78, even without hysteresis,
in contrast to both of the plane segmentation baselines, whose the IoU varied across the entire [0,
1] interval.

incorporating a higher level semantic segmentation as an additional safety criterion.

6.5. Conclusion

This chapter introduces Stable Steppability Segmentation (S3) for classifying safe terrain, and de-

signs a broader pipeline around S3 for converting an elevation map into a convex polygon terrain

decomposition. S3 achieves higher temporal consistency and faster run times than previous ap-

proaches by omitting an explicit plane-segmentation step. The segmentation is instead performed

by considering safety criteria which are local to each elevation mapping pixel. The locality of the

safety criteria allows the temporal consistency of the algorithm to be further enhanced easily by

adding hysteresis to the plane segmentation. We validate these claims of improved run time and

temporal consistency on data from bipedal walking over several real world terrain types, including

terrains which are antagonistic toward plane-segmentation. We introduce a convex decomposition

68

procedure for extracting convex planar polygons from the steppability segmentation and elevation

map using approximate convex decomposition and a greedy algorithm for finding large inscribed

convex polygons. The next chapter validates the full perceptive walking framework through hard-

ware experiments on the Cassie biped. In contrast to our original implementation using plane

segmentation (Acosta and Posa, 2023), S3 allows the robot to walk continuously with perception in

the loop due to its temporal consistency, despite artifacts from state-estimate drift and impacts.

69

CHAPTER 7

Full-Stack Perceptive Locomotion Experiments

Parts of this chapter were previously published as parts of Brian Acosta and Michael

Posa. Perceptive Mixed-Integer Footstep Control for Underactuated Bipedal Walking

on Rough Terrain. arXiv preprint arXiv:2501.19391, January 2025.

Supplemental video for Chapters 5, 6, and 7: https://youtu.be/JK16KJXJxi4

This chapter synthesizes the contributions of Chapter 5 and Chapter 6 into a full stack perceptive

locomotion architecture for the bipedal robot Cassie (Fig. 7.1). This architecture enables Cassie

to walk over previously unseen terrain by identifying safe terrain and planning stabilizing footsteps

subject to non-convex terrain constraints in real time. Because key results for the individual compo-

nents have been presented in Chapter 5 and Chapter 6, this chapter will focus on documenting the

system implementation used to produce these results, and discussing aspects of the overall system

performance related to interactions between the perception system and the locomotion controller.

The key consideration for how the controller and perception system interact is that restricting step-

pable area restricts the control authority of the ALIP model, especially in the lateral direction, which

lacks ankle torque. This increases the need for a consistent terrain segmentation and means that a

more conservative segmentation may not always be safer when it comes to closed-loop locomotion

performance.

7.1. Experimental Setup

This section explains the practical implementation of MPFC and our perception stack as an inte-

grated system. The parameters used for S3, MPFC, and their supporting algorithms are given in

Appendix B. The full perception and control system consists of six processes across three separate

computers (Fig. 7.2). Cassie’s target PC runs a Simulink Real-Time application which publishes

joint positions and velocities and IMU data, at 2kHz, and subscribes to torque commands. Com-

munication between the target PC and Cassie’s onboard Intel NUC occurs over UDP. The NUC

70

https://youtu.be/JK16KJXJxi4

runs the state estimator and a torque publisher to communicate with the target PC, and the OSC

process, which includes the CoM and swing foot planner.

71

Figure 7.1: The perception and control stack proposed in this chapter to achieve underactuated walking over discontinuous terrain.
Our perception stack (A) generates convex polygon foothold constraints for MPFC, a mixed-integer MPC style footstep planner
(B). MPFC sends the next footstep, step timing adaptation, and ankle torque plan to a low-level operational-space-control process
(C) which performs kHz level torque control.

72

The perception stack and MPFC are run on an off-board ThinkPad p15 Laptop with an 8-core, 2.3

GHz Intel 1180H processor and 24 GB of RAM. The perception stack performs elevation mapping,

terrain segmentation, and convex decomposition in one thread, and has a second thread to poll

the Intel RealSense. The state estimator, operational space controller, torque publisher, perception

stack, and MPFC communicate over LCM (Huang et al., 2010) for low latency.

Except for the low-level target PC, all processes use the Drake systems framework to drive their

operation (Russ Tedrake and the Drake Development Team, 2019). We solve the MPFC problem

using Gurobi, and the OSC QP using FCCQP (Acosta, 2024). We use the contact-aided invariant

extended Kalman filter developed by Hartley et al. (Hartley et al., 2020) to estimate the pose and

velocity of the floating base.

Open source code for all of our contributed components will be provided in dairlib5.

Figure 7.2: The experiment setup for the Physical Cassie robot showing which computers run which
processes. The robot is attached to a safety tether which remains slack while the robot is walking.

7.1.1. RealSense D455 Depth Camera

The RealSense is mounted to Cassie’s pelvis, pointed downward toward the terrain in front of the

robot. We use librealsense2 to subscribe to RealSense frames via a dedicated polling thread, with

the perception stack thread accessing these frames through a shared buffer. We apply a decimation
5https://github.com/DAIRLab/dairlib

73

https://github.com/DAIRLab/dairlib
https://github.com/DAIRLab/dairlib

filter to reduce point cloud density.

7.1.2. Robot-Centric Elevation Mapping

We use the framework of Fankhauser et al. (2018) to construct a robot-centric elevation map of the

terrain. This framework represents the terrain as a regular grid, with the height of each cell updated

by point cloud measurements through a Kalman filter. Because Cassie’s legs are visible in the camera

frame, we crop out any points inside bounding boxes around Cassie’s leg links. State estimate z-

drift is a well-known source of elevation mapping artifacts which must be corrected for an accurate

terrain estimate. Related works use perception information to correct drift (Miki et al., 2022b;

Bin et al., 2024), however this correction is not always sufficient when the walking motion generates

non-negligible impacts (Grandia et al., 2022), as is the case for most Cassie walking controllers. To

strongly correct for state estimate z-drift, before each point cloud update, we adjust the height of

the elevation map by adding the height difference between the elevation map and the current stance

foot. To account for outliers, we calculate the elevation map height as the median of a 4x4 pixel

grid, centered at the contact point.

7.2. Results

The perception and control architecture presented in this thesis enables Cassie to walk over previ-

ously unseen terrain by identifying safe terrain and planning stabilizing footsteps subject to non-

convex terrain constraints in real time. This section presents experiments to show these capabilities

and support our key claims. We perform simulation experiments to quantify the performance gap

between walking over known vs. online-identified safe terrain. On hardware, we showcase underac-

tuated walking over discontinuous terrain with Cassie, summarize the capabilities of MPFC and S3

as a complete system and highlighting the performance improvements as a result of the contributions

in Chapters 5 and 6.

7.2.1. Simulation Experiments

Our perceptive locomotion simulation is identical to the simulation developed for Chapter 5, except

that it simulates the invariant EKF Hartley et al. (2020) to provide state estimates to OSC, MPFC,

and the elevation mapping system, and uses a simulated depth sensor as input to the perception

74

pipeline. The S3 steppable area is more conservative than ground truth, resulting in a traversable

beam width of 35 cm and stair depth of 40 cm with perception, compared to 23 cm and 27 cm

respectively for ground truth terrain.

Repeating the stepping stone experiment from Section 5.3.1 shows that the more conservative step-

pable terrain estimation is particularly consequential for smaller footholds (Fig. 7.3).

Figure 7.3: Success rates for walking across randomly-generated stepping stones in simulation, where
the stepping stone sizes are distributed according to Table 5.1 based on the minimum side lenght,
dmin. Results with step-timing optimization are labeled Opt-T, and results without step timing
optimization are labeled Fixed-T. We report results with ground truth state and terrain (GT),
as well as with perceptive terrain using S3 (Perceptive). The lower success rate using perception
is primarily due to isotropic safety margin in S3 reducing the lateral steppable area compared to
ground-truth, which accounts for the width and length of the foot separately.

75

Figure 7.4: MPFC simulation experiments using ground truth vs. perceptive terrain. Top: we use ground truth terrain information
to walk over a 23 cm wide beam, and stairs with a rise of 15 cm and a depth of 27 cm. Bottom: Displaying the elevation map
for walking over the same terrain types using S3. Safety margin in S3 results in less steppable area than for ground truth, so the
minimum traversable dimensions are increased to 35 cm wide for the beam and 40 cm deep for the stairs.

76

7.2.2. Hardware Experiments

We demonstrate Cassie traversing discontinuous terrains using the presented perception and control

stack. Given the feature size limitations which can be effectively segmented by S3, we primarily test

on the Brick Steps terrain from the previous chapter, which we show another view of in Fig. 7.6,

as well as a similar set of steps nearby (Fig. 7.5).

Figure 7.5: Cassie walks up and down brick steps using the perception and control framework
developed in this thesis. Left: the physical robot and steps. Middle: an elevation map of the steps.
Right: the convex decomposition of the safe terrain.

The fastest time to ascend the steps in Fig. 7.6 was 13 seconds, from crossing edge of the bottom

step to the entire robot being above the top step. However, slower walking speeds were more reliable

given the limited friction of the steps. The longest continuous trial was 4:40 minutes, wherein Cassie

ascended the steps four times and descended them three times. In this trial, Cassie fell stepping

down the top step, which has the largest height change of all of the steps at 16 cm (Fig. 7.7). Since

this was the largest height-change we traversed on hardware, and the step which was least reliably

traversable, especially descending, we will dedicate some space here to discussing the challenges we

77

Figure 7.6: Another view of Cassie descending a set of steps using our full-stack perceptive locomo-
tion architecture.

observe crossing this step. First, significant CoM and swing foot accelerations are needed. The swing

foot acceleration sometimes compressed Cassie’s leaf springs enough to trigger the state estimator

contact detection, leading to incorrect velocity and pose estimates of the robot. Because the OSC

has only a one-step preview of the footstep plan, the CoM must complete the entire height change in

a single stride, creating large ground reaction forces, which was ultimately less forgiving if the robot

slipped. Finally, when stepping down, the swing-foot could create a large impact on touchdown,

leading to torque spikes and jumps in the angular momentum estimate.

In addition to the brick steps, we show Cassie stepping up over a more un-structured curb onto a

grassy knoll in Fig. 7.8. Further trials, including trials where Cassie deviates from the “obvious”

foothold sequence in order to take recovery steps, can be seen in the supplemental video 6.

Summary

Compared to our deadbeat ALIP footstep planner based on (Gong and Grizzle, 2021), MPFC is

more robust, even on hard, flat surfaces, due to the inclusion of workspace constraints, ankle torque,

and step timing optimization. MPFC and S3 also enable Cassie to walk up and down steps and curbs
6https://youtu.be/uhgyEdGdtVc?si=9IujrqUl_2kiF6dW

78

https://youtu.be/uhgyEdGdtVc?si=9IujrqUl_2kiF6dW

Figure 7.7: The top of the brick steps has the largest height change at 16 cm, which sometimes
challenges the OSC’s ability to track the CoM and swing foot, and creates large impacts when
stepping down.

up to 16 cm tall when each step is deep enough to have a valid S3 segmentation. In contrast to our

original perception implementation in (Acosta and Posa, 2023), using S3 for terrain segmentation

allows the robot to walk continuously with perception in the loop due to its temporal consistency,

despite artifacts from state-estimate drift and impacts. This is the case even on grass, where

proprioceptive and exteroceptive ground height estimates conflict. We discuss limitations of our full

stack implementation in Section 7.3.1.

Figure 7.8: Cassie steps over a high curb onto a grassy knoll.

79

7.3. Discussion

This section discusses implementation details, limitations, and failure modes. First, we discuss

design choices introduced to handle edge cases and increase the robustness of our implementation.

Inpainting

Because we only use a single depth camera, whose field of view does not span the entire diagonal

of the elevation map, we lack elevation data for terrain near the robot when not walking straight

forward, leaving the question of how S3 should classify these cells. During our hardware testing,

classifying these cells as unsafe caused the robot to fall when the operator drove the robot toward

unmapped regions. We solve this by inpainting the missing portions of the elevation map using the

Navier-Stokes based method implemented in OpenCV Bertalmio et al. (2001), before inputting the

elevation map to S3. This method matches the value and gradient of the image at the boundary of

the missing terrain. For many real world terrains, this continuous extrapolation is a safe assumption,

since obstacles extend uni-directionally across the entire map. In more dangerous environments,

and when missing elevation map values are primarily due to occlusions rather than a lack of sensor

coverage, such as in our simulation stepping stone experiments, a more conservative inpainting

scheme such as least-neighboring-value (Miki et al., 2022b) is appropriate. The ideal solution would

include additional depth sensors, however our solution highlights a general theme: due to Cassie’s

underactuation, it is often safer to resolve ambiguous design decisions by favoring steppability.

ALIP State Estimation

Impacts during touchdown and compliance in Cassie’s hip-roll joints can cause undesirable spikes

and oscillations in the lateral floating base velocity estimate, and therefore the angular momentum

estimate. We increase our controller’s robustness to these issues by using a Kalman filter with ALIP

dynamics to smooth our estimate of the ALIP state during single support. We use (4.11) for the

dynamics model, with full-state measurement, and assume a much higher measurement noise for

the angular momentum than for the CoM position.

80

Figure 7.9: Our proposed system naturally handles terrain with no obvious planar approximation.
Despite constantly varying height and surface normals, S3 classifies the entirety of this sinusoidal
terrain as safe, resulting in a single steppable region matching the extents of the map. Because
ALIP dynamics are height-independent, the z-coordinate of each planned footstep does not affect
the rest of the MPC solution. Therefore, we use the elevation map to determine the footstep height
sent to the low-level OSC.

Footstep Height Lookup

Before sending a footstep command to the OSC, we refine the vertical footstep position by looking

up the height of the planned footstep position on a smoothed, inpainted copy of the elevation map.

Because the ALIP dynamics do not depend on the vertical footstep position, we do not need to

propagate this adjustment back to MPFC. In addition to increasing the practical robustness of the

system, this allows Cassie to walk on undulating terrain without any modifications to the perception

or control stack (Fig. 7.9).

7.3.1. Limitations, Failure Modes, and Future Work

At a systems level, the fast swing foot motions and CoM height changes required to walk on steps

pushed the boundaries of what could be tracked with our OSC, limiting the step heights traversable

on hardware to 16 cm. More challenging terrains will require considering swing-foot and vertical

CoM dynamics at the MPC level, either by incorporating more detailed dynamics into MPFC, or

by using whole-body MPC to realize the MPFC footstep plans.

The limitation most most insufficiently addressed by this work was slipping. The robot would slip

as a result of other more minor limitations, or simply because of the low friction of the tested

environments. Most often, the robot would fall immediately upon slipping, but if it recovered,

the slip could introduce large errors into the elevation map which lead failure from an incorrect

segmentation or error in the estimated ground height. The likelihood of slips could be reduced by

81

more conservatively constraining the workspace of the ALIP model (effectively the friction cone), but

this cannot entirely eliminate the possibility. This vulnerability highlights that like all model-based

approaches, ours can be brittle to gaps between modeling assumptions and the real world. On the

perception side, S3 prevents inconsistent segmentation of reasonable elevation maps from causing

failures, but cannot correct maps which inaccurately reflect the real environment. For situations

such as tall grass, or recovering from slip-induced errors, methods are needed which can adaptively

rely on either perception or proprioception, and recognize and reset invalid maps.

7.4. Conclusion

This chapter presented the experimental setup and systems integration considerations for full-stack

perceptive locomotion on Cassie, leveraging the contributions from Chapter 5 and Chapter 6 of this

thesis. To our knowledge, this is the first hardware demonstration of a line-foot biped using vision

and model-based control to navigate discontinuous terrain. Our hardware experiments highlight the

need for balance between appropriately conservative terrain segmentation and preserving control

authority via foot placement for underactuated bipeds. Future work remains to expand the frame-

work to handle more challenging terrains, especially in terms of robustness to slip and blending

proprioceptive and perceptive terrain estimation.

82

CHAPTER 8

Cascaded Fidelity MPFC

This chapter aims to resolve two limitations of MPFC. First, the exponential complexity of MPFC

in the planning horizon prevents real-time planning further than two steps ahead, reducing the

closed-loop stability of MPFC on more challenging terrains. This exponential complexity is driven

by coupling of the optimal foothold choice across the planning horizon. We propose a new problem

formulation and general purpose solver based on the Alternating Direction Method of Multipliers

(ADMM) which handles the foothold constraints individually for each footstep, removing the com-

binatorial complexity of MPFC at the cost of optimality and feasibility guarantees. We show via

an ablation study over stepping stones that for a sufficiently long planning horizon, this strategy is

more successful at traversing challenging terrains than the MIQP solver with a two-step horizon.

Second, the step-to-step ALIP model does not consider swing-foot or vertical CoM dynamics, mak-

ing it difficult to execute the MPFC plan over large height changes. This could be resolved by

considering the full-order robot dynamics in the footstep planning problem. Whole-body MPC

can control highly dynamic locomotion over pre-defined stepping stones (Grandia et al., 2022), and

problem formulations have been proposed which adapt footstep plans to stepping stone constraints

within the MPC problem (Shim et al., 2023). However, applications of this second controller to

bipedal locomotion have been restricted to relatively simple terrains. In order to walk over more

complex terrains, a longer planning horizon than is currently achievable for whole-body MPC is

likely necessary. To that end, we propose using a cascaded-fidelity MPFC formulation (CF-MPFC),

and leveraging our new ADMM solver for efficient sequential quadratic programming with stepping

stone constraints. The cascaded-fidelity approach (Li and Wensing, 2024) involves composing dy-

namics models of decreasing complexity in series within a single MPC problem. This allows planning

over a long footstep horizon without the computational burden of considering a detailed model for

the entire horizon. We sequence whole-body dynamics with step-to-step ALIP dynamics, providing

a pathway toward real-time long-horizon footstep planning over stepping stones with whole-body

83

dynamics.

The remainder of the chapter is organized as follows. We first introduce the ADMM algorithm, and

show how to reformulate (5.1) such that it can be solved using ADMM. We then show simulation

experiments comparing the performance of ALIP MPFC using the new ADMM approach vs the

previous MIQP approach. Having verified the practical efficacy of the solver, we introduce a CF-

MPFC formulation which leverages this solver for sequential quadratic programming. We show

simulation experiments of Cassie walking over large step-ups and step-downs using CF-MPFC. We

conclude with a discussion of the remaining steps to achieve a real-time implementation of CF-

MPFC.

8.1. The Alternating Direction Method of Multipliers

Inspired by recent successes in multi-contact control (Aydinoglu et al., 2023; Yang and Posa, 2024),

we propose to split the MPFC problem into a convex QP and an additional set membership con-

straint on the decision variables (8.1). Here we review the generic recipe for solving such a problem

using ADMM (Boyd et al., 2011), starting with the problem statement:

minimize
x

f(x) (8.1a)

subject to bl ≤ Ax ≤ bu (8.1b)

x ∈ Xnc, (8.1c)

where f(x) is a convex quadratic cost, A, bl, and bu form a set of linear inequality constraints, and

Xnc is a potentially nonconvex set. We note that without (8.1c), (8.1) is a convex QP. We introduce

a copy of the decision variables, z, to write (8.1) in a consensus formulation

minimize
x,z

f(x) + Ilin(x) + Inc(z) (8.2a)

subject to W (x− z) = 0 (8.2b)

84

where Ilin(x) is the 0−∞ indicator function for the linear constraints

Ilin(x) =


0, bl ≤ Ax ≤ b,

∞, otherwise
, (8.3)

and similarly, Inc(x) is the 0−∞ indicator function for the potentially non-convex set membership

constraints

Inc(z) =


0, z ∈ Xnc,

∞, z /∈ Xnc
. (8.4)

The weighting matrix W is a positive definite, diagonal matrix, used to weight the norm used for

the projection step in the ADMM iterations. We derive the ADMM iterations for this problem in

Appendix C, reproducing them below:

xk+1 = argmin
x

f(x) + Ilin(x) +
ρ

2
∥W (x− zk + wk)∥22 (8.5a)

zk+1 = ΠWXnc(xk+1 + wk) (8.5b)

wk+1 = wk + xk+1 − zk+1, (8.5c)

where

ΠWXnc(v) = argmin
z

(v − z)TW TW (v − z) (8.6)

subject to z ∈ Xnc. (8.7)

When Xnc is convex, the iterates (8.5) will converge to an optimal solution, if one exists. How-

ever even when Xnc is non-convex, (8.5) has been shown empirically to generate useful solutions

(Takapoui et al., 2016). In the context of real-time control, often only a small number of ADMM

iterations are applied, in order to return a solution which is “good enough” on a predictable time-

line. However, if the problem has not converged within the iteration limit, the set membership

85

constraint (8.1c) may be unacceptably violated. To account for this, we use a polishing step similar

to the active-set polishing step in the OSQP solver (Stellato et al., 2020). We assume that for any

x ∈ Xnc, there is a unique maximum-volume convex polyhedron Cx such that x ∈ Cx ⊆ Xnc. After

ADMM has reached its iteration limit, m, we solve a final convex QP representing (8.1), with (8.1c)

replaced by the linear equality constraint representing x ∈ Cxpm , where xpm = ΠWXnc(xm). Putting

this together with the standard ADMM algorithm, we arrive at Algorithm 3.

Algorithm 3 ADMM Implementation
Input: Problem Data f,A, bl, bu,Xnc, Hyper-parameters m, ρ,W
Initialization:

x0 = z0 = argmin f(x) s.t. bl ≤ Ax ≤ bu
w0 = 0

for k = 0 . . .m do
Update xk+1 by solving (8.5a)
Update zk+1 by the projection (8.5b)
Update duals (8.5c)

Calculate convex restriction Cxnc for xnc = ΠWnc(xm)
Polishing step: x∗ = argmin f(x) s.t. bl ≤ Ax ≤ bu, x ∈ Cxnc
Output: Final solution x∗.

8.2. ALIP MPFC ADMM Formulation

Here we re-write the ALIP MPFC problem statement from Chapter 5 in the form Eq. (8.1), such

that we can apply Algorithm 3. We then benchmark the reformulation against the original MIQP

formulation.

86

8.2.1. Problem Reformulation

We remove the binary variables and instead enforce the stepping stone constraints directly using

the set membership formulation:

minimize
x,p,µ,u,T

Jmpc(x,p) + Jreg(T, u) (8.8a)

subject to x0 = Adxc +AAdxc(T − T ∗) +Bdu (8.8b)

xn+1 = As2sxn +Bs2s(pn+1 − pn) (8.8c)

pn ∈ P (8.8d)

CoM, Input,Timing, and Footstep limits,

where P =
⋃
i Pi is the union of the individual stepping stones. All of the constraints except

(8.8d) can be formulated as linear constraints. The ADMM projection step therefore only involves

a weighted projection of each footstep pn to the stepping stone constraints. This projection is

decoupled over the foothold horizon. Therefore, for M stepping stones, the projection step has a

complexity of MN rather than MN of the original mixed integer formulation. The projection for

each footstep is given by

ΠWn
P (pn), i∗ = argmin

p∈R3,i∈{1...M}
(pn − p)TW T

nWn(pn − p) (8.9a)

subject to p ∈ Pi. (8.9b)

For the polishing step, we construct a convex QP by replacing (8.8d) with the constraint pn ∈ Pi∗ .

8.2.2. Implementation

Based on manual tuning, we pick the weight matrix Wn such that W T
nWn = diag

[
0.3, 1.0, 0.3

]
,

weighting the y direction higher to account for Cassie’s lateral underactuation. With the exception

of the planning horizon, we use the same MPFC and OSC gains as the simulation experiments in

Chapter 5, given in Appendix B. We grid search over the ADMM step size ρ and iteration count m

to find the most successful parameters for walking over randomly placed 35 cm stepping stones (see

87

Figure 8.1: We grid search over the ADMM parameters which give the best closed-loop reliability
for walking over stepping stones with ALIP MPFC. We ultimately choose m = 0, ρ = 0.1.

Section 5.3.1 for the detailed experimental setup) with a planning horizon of 3 footsteps (Fig. 8.1).

Based on the results of the grid search, we choose m = 0 and ρ = 0.1 for our evaluation against

MIQP (although ρ does not matter for this choice of m). While some some choices of ρ with

multiple ADMM iterations give a slightly higher success rate, the difference is marginal, and the

effect is not consistent, so we ultimately conclude it is most robust to stick with zero iterations.

This corresponds to solving the MPFC problem without stepping stone constraints, projecting to

the nearest footholds under the ∥·∥Wn norm, then solving the convex QP of MPFC restricted to

those footholds.

The reader may wonder if ADMM with zero iterations is a reasonable choice for a local solver.

Similar methods have been used successfully for quadrupedal locomotion over rough terrain such

as (Grandia et al., 2022) and (Jenelten et al., 2020). These controllers define a set of desired foot

placements based on the Raibert heuristic before projecting each footstep to the nearest foothold

88

Figure 8.2: Success rate vs. planning horizon for traversing random stepping stones in simulation.
We perform 100 trials, randomizing the stepping stone dimensions and positions according to the
distributions in Table 5.1.

to define a convex foothold constraint for MPC. Compared to these heuristic methods, Algorithm 3

ensures that the initial footsteps are optimal with respect to the MPC problem, and provides the

ability to tune the projection to account for the robot’s dynamics.

8.2.3. Comparison with MIQP

We again use the stepping stone environment with dmin = 35cm to benchmark the ADMM-based

solution strategy against solving an MIQP. We compare the closed loop success rate for traversing

the stepping stones without falling in Fig. 8.2, noting that the MIQP solution strategy is more

successful for a horizon of 2 footsteps, while ADMM is more successful than the 2-step MIQP for

longer planning horizons. We also note that the success rate for the MIQP formulation decreases for

longer planning horizons, falling below the success rate of ADMM for the same planning horizon.

This is an unexpected result since the MIQP returns a globally optimal solution, suggesting that

our cost function may be counter-productive to choosing robust foothold choices7. We present some

hypotheses for why this might be the case, as well as a broader discussion on the trade-off between

solve-time and optimality in the discussion section of this chapter. We verify that the ADMM-based

approach yields faster solve times, allowing for more footsteps to be planned in real-time (Fig. 8.3).
7We note that solve times are not the cause of this discrepancy. Our simulation solves the MPFC problem and

steps the dynamics in series, so each controller is always being solved at 100 Hz in simulated time.

89

Figure 8.3: Distributions of solve times for ADMM vs. MIQP implementations of ALIP MPFC
walking over random 35-40 cm stepping stones. We compile the solve times over 100 trials for each
combination of solution method and planning horizon, resulting in over 100,000 data points per
box plot - the exact number varies due to some simulations terminating early due to a fall. Solve
times above the 99.9th percentile are shown as outliers. Simulations were performed on a MacBook
Pro with an Apple M1 Max CPU and 64 GB of RAM. The MIQP was solved with Gurobi using
4 threads, while ADMM was solved in a single thread, using OSQP for the ADMM iteration sub-
problems.

8.3. Cascaded-Fidelity MPFC formulation

In this section, we design a cascaded fidelity MPC approach for walking over rough terrain. Note

that for the examples from here forward, we will be using a fixed-spring Cassie model. Therefore we

will be omitting the joints for the springs and the constraint forces which prevent their acceleration.

We start by transcribing a nonlinear trajectory optimization problem formulation for whole-body

MPC. We then describe how we add additional decision variables for the footstep positions and

ALIP states to the whole-body trajectory optimization problem.

90

8.3.1. Whole-Body MPC

Here we introduce whole-body MPC as a general trajectory optimization problem statement (8.10),

before describing the state-space, constraint sets, and costs in detail. We then describe our quadra-

ture approach for transcribing (8.10) as a nonlinear program.

Trajectory Optimization Formulation

The trajectory optimization problem is given by

min
x(t),ν(t)

Φ(x(T)) +

∫ T

0
L(x(t), ν(t), t) dt (8.10a)

subject to ẋ(t) = f(x(t), ν(t)) (8.10b)

x(0) = x0 (8.10c)

ν(t) ∈ N (8.10d)

x(t) ∈ X (8.10e)

g(x, ν) = 0, (8.10f)

where x(t) = {q(t), v(t)}, ν(t) = {λh(t), λc(t), u(t)}, and the individual state and input components

are as described in the Chapter 4 subsection on rigid body dynamics. The stacked contact forces

are λc and the holonomic constraint forces from loop closures in the robot’s structure are λh. The

dynamics are given by

q̇ =N(q)v (8.11)

v̇ =M(q)−1
(
Bu+ Jc(q)

Tλc + Jh(q)
Tλh − C(q, v)

)
, (8.12)

where N(q) maps the angular velocity to the time derivative of the floating base orientation,

M(q), C(q, v), B, Jc(q), Jh(q) are the mass matrix, Coriolis and gravity forces, selection matrix,

contact Jacobian, and holonomic constraint Jacobian.

The input constraint set is given by the friction cone constraint on the contact forces, and input

bounds on the motor torques: N = {ν | λc ∈ F and umin ≤ u ≤ umax}. In general, the state

91

constraint set can include collision constraints between the robot and itself, and the robot and its

surroundings (Chiu et al., 2022), as well as velocity limits. However for simplicity, in this work we

only include joint limits: X = {x | qmin ≤ q ≤ qmax}. There is also a unit norm constraint on

the quaternion degrees of freedom, however we only enforce that constraint implicitly through the

integration scheme to avoid over-constraining the problem.

We use the general g(x, ν) = 0 constraint to encode contact constraints. This will be more naturally

expressed once we have discretized the problem into a nonlinear program, but informally, these

constraints are instantaneously given by the no slip condition

Jc,iv = 0 ∀i ∈ active contact points, (8.13)

λc,i = 0 ∀i /∈ active contact points. (8.14)

The set of active contact points is time-varying. The cost function is given by (8.15), where qquat

is the components of the position corresponding to the floating base orientation, q are all of the

positions, ·des(t) is a desired trajectory for some quantity, and ∥·∥2Q = (·)TQ(·). We suppress the

dependence of the state and input trajectories on t for brevity.

L(x, ν, t) =∥AngleAxis(qquat, qquat,des(t))∥2qquat + ∥q − qdes(t)∥
2
Qq + ∥v − vdes(t)∥

2
Qv

+ ∥λ− λdes(t)∥2Qλ + ∥u− udes(t)∥
2
Qu

+ α(t)∥ψsw(q, t)∥2Qψ , (8.15)

where ψsw(q, t) is given by

max(0, ϕsw,des(t)− ϕsw(q, t)) (8.16)

and ϕsw(q) is the signed distance between the swing foot and the terrain. This cost for the swing

foot clearance avoids enforcing a maximum swing clearance, which would prevent the swing foot

from crossing gaps in the terrain. The scaling factor α(t) decreases the swing foot clearance cost

over the MPC horizon, providing freedom to explore motions which initially penetrate the terrain,

92

Table 8.1: Whole-Body MPC Timing Parameters

Symbol Meaning Value
h time step 0.05 s
Tss single-stance duration 0.3 s
Tds double-stance duration 0.1 s
K whole-body mpc planning horizon 16

but are refined in subsequent solves to be collision free. The terminal cost is given by

Φ(x(T)) = ∥AngleAxis(qquat(T), qquat,des(T))∥2Qquat,T

+ ∥q(T)− qdes(T)∥2Qq,T + ∥v(T)− vdes(T)∥2Qv,T . (8.17)

Note that all of the costs function terms are linear or nonlinear least squares costs. We will use

this in our solution strategy to efficiently form a Gauss-Newton approximation of the cost Hessian

in our SQP iterations.

Nonlinear Program Formulation

Now that we have specifically enumerated the costs and constraints in our trajectory optimization,

we discuss transcribing it as the nonlinear program (8.18). Our approach uses standard methods and

is similar to that of Khazoom et al. (2024). The positions, velocities, and inputs are represented

by piecewise quadratic, linear, and constant splines, respectively, with K segments per spline.

The kth spline segment has endpoints at times tk−1 and tk, and the timestep is written as hk =

tk+1 − tk. We choose the nominal h, and the single and double stance durations and such that

Tss and Tds are both evenly divisible by h (Table 8.1). We also choose K, such that Kh is evenly

divisible by Tss + Tds, which makes the model-stitching constraint more convenient to express

(this is explained in the next section on cascaded-fidelity mpfc). We use trapezoidal collocation

to enforce the relationship between positions and velocities, and forward Euler integration to get

from accelerations to velocities. We enforce the acceleration constraints using inverse dynamics

for improved computational efficiency and numerical robustness over a forward dynamics approach

(Katayama and Ohtsuka, 2021). Inverse dynamics calculates the generalized forces which need to

be applied to a rigid body system to produce a given generalized acceleration (e.g. ID(q, v, v̇) =

93

M(q)v̇ +C(q, v)), and can be computed efficiently without explicitly constructing the mass-matrix

via the Recursive Newton-Euler Algorithm (RNEA) (Luh et al., 1980). The resulting nonlinear

program is given by

minimize
{xk,νk}

Φ(xK) +
K∑
k=0

hk
2
(Lk + Lk+1) (8.18a)

subject to qk+1 − qk =
hk
2

(N(qk)vk +N(qk+1)vk+1) (8.18b)

ID
(
qk, vk,

vk+1 − vk
hk

)
= Buk + Jc(qk)

Tλc,k + Jh(qk)
Tλh,k (8.18c)

Jh(qk)vk = 0 (8.18d)

γk,iJc,k,ivk = 0 (8.18e)

Input, Friction, and Position Limits, (8.18f)

where Lk = L(xk, νk, tk). In the contact constraint (8.18e), the i subscript references to the ith

contact point, and γk,i is 1 when the ith contact point is in contact for knot point k, and 0 otherwise.

Similarly to Khazoom et al. (2024), because the walking task is not torque limited, we only include

u in the input vector for the first 3 knot points. For subsequent knot points, we enforce only the

rows of (8.18c) corresponding to the un-actuated coordinates. This improves the efficiency of solving

(8.18) by reducing the number of variables and constraints.

8.3.2. Cascaded Fidelity MPC Over Stepping Stones

In this section, we discuss additional decision variables, costs, and constraints we add to (8.18) to

enforce stepping stone constraints and append ALIP dynamics to the end of the planning horizon.

The variables and constraints for the entire problem are illustrated in Fig. 8.4.

We include decision variables for the footstep positions, pn over a footstep planning horizon of N

footsteps (indexed as n = 0 . . . N − 1). Note that this is distinct from the whole-body planning

horizon K). We include the stepping stone constraints on the footstep variables:

pn ∈ P. (8.19)

94

For the footsteps which are within the whole-body planning horizon, we add a constraint that the

position of the robot’s swing foot at touchdown must be equal to the next stance foot position:

psw(qTD,n, tTD,n) = pn. (8.20)

where psw(q, t) computes the position of the robot’s swing foot at time t, and TD, n indexes the

knot point corresponding to the nth touchdown event.

For convenience, we denote the number of footsteps contained by the whole-body horizon as F =

K Tds+Tss
h . We choose K,Tds, Tss, and h such that F is always an integer. We include S = N −

F + 1 knot points for the step-to-step ALIP state, xas , plus an additional copy of the ALIP state

representing the mid-stance ALIP state at the final whole-body state knot point. We relate the

full-order state to the ALIP state via the model-stitching constraint

xac =g(xK , tK) =



CoMx(qK)− pstance,x(qK , tk)

CoMy(qK)− pstance,y(qK , tk)

Lx(qK , vK , tK)

Ly(qK , vK , tK)


(8.21)

x0 =exp(A(tTD,2 − tk))xc (8.22)

where Lx and Ly are computed about pstance. Because the whole-body horizon is evenly divided by

the total gait cycle time, pstance is always represented by the same footstep variable, simplifying the

book-keeping needed to update the MPC problem data at each time-step.

95

Figure 8.4: Model schedule, footstep schedule, and gait schedule for Cascaded-Fidelity MPFC.

96

The full Cascaded-Fidelity MPFC problem statement is given by

minimize
{xk}k=0...K ,

{νk}k=0...K−1,
{pn}n=0...N−1,
{xas}s=0...S ,

xac

Φ(xK) + Ja,S(x
a
S) +

K∑
k=0

hk
2
(Lk + Lk+1) +

S−1∑
s=0

Ja,s(x
a
s) +

N−2∑
n=0

Jp(pn, pn+1) (8.23a)

subject to qk+1 − qk =
hk
2

(N(qk)vk +N(qk+1)vk+1) (8.23b)

ID
(
qk, vk,

vk+1 − vk
hk

)
= Buk + Jc(qk)

Tλc,k + Jh(qk)
Tλh,k (8.23c)

Jh(qk)vk = 0 (8.23d)

γk,iJc,k,ivk = 0 (8.23e)

psw(qTD,n, tTD,n) = pn ∀n < K
Tds + Tss

h
(8.23f)

xac = g(xK , tK) (8.23g)

xa0 = exp(A(tTD,2 − tk)) (8.23h)

xas+1 = As2sx
a
s +Bs2s(ps+F − ps+F−1) (8.23i)

pn ∈ P, (8.23j)

where Ja and Jp are costs on the ALIP states and footsteps, which are the same as for ALIP

MPFC, given in Section 5.1.1.

Whole-Body Reference Design

For simplicity as a proof of concept, this study considers the task of forward walking. The desired

orientation trajectory qquat,des(t) represents a constant orientation aligned with the world frame.

The desired generalized velocities vdes(t) are zero, except for the horizontal linear velocity of the

floating base vfloating base,xy, which is set to a constant value of the desired walking velocity. We find

a reference for the joint angles, inputs, and constraint forces based on a user-specified stance width,

97

l, and floating base height H via inverse kinematics with a fixed-point constraint (8.24).

q∗, λ∗, u∗ = argmin
q,λ,u

λTλ+ uTu (8.24a)

subject to C(q, 0) = Bu+ JTλ (q)λ (8.24b)

qfloating base,xyz = [0, 0, H]T (8.24c)

qhip yaw,L = 0 (8.24d)

qhip yaw,R = 0 (8.24e)

qquat = [0, 0, 0, 1]T (8.24f)

pright foot(q) = [0,−l/2, 0]T (8.24g)

pleft foot(q) = [0, l/2, 0]T (8.24h)

ϕloop-closure(q) = 0, (8.24i)

where the constraint forces λ arise from Cassie’s loop closures and contact forces for both feet.

We then compute the desired joint trajectory as qjoint,des(t) = q∗joint, and the desired floating base

position trajectory as

qfloating base,xyz(t) = pstance(q0, 0) +


tvdes,x

tvdes,y ± l
2

H

 . (8.25)

The reference inputs and constraint forces are udes(t) = u∗ and λdes(t) = λ∗ during double stance.

For single stance, we set the components of λdes and udes corresponding to swing leg to 0, and the

components corresponding to the stance leg to the corresponding components of 2λ∗ or 2u∗.

98

Solution method

We represent (8.23) as a general nonlinear program with non-convex set-membership constraints,

minimize
z

J (z, t) (8.26a)

subject to l(t) ≤ c(z, t) ≤ u(t) (8.26b)

z ∈ Znc (8.26c)

Where the dependence of the costs and constraints on t represents the parameterization of the

problem based on the current time with-respect to the nominal gait switching pattern. For the ith

control iteration, we use the current solution zi to solve one SQP iteration of the form (8.27), using

the ADMM solver in Algorithm 3 to find a search direction δi:

δi = argmin
δ

1

2
δT∇2

zJ (zi, t)δ +∇zJ (zi, t)T δ (8.27a)

subject to l(t) ≤ ∇zc(zi, t)T δ ≤ u(t) (8.27b)

zi + δ ∈ Znc. (8.27c)

The cost hessian ∇2
zJ (z, t) is the Gauss-Newton Hessian to ensure that the cost function for the

SQP subproblems is positive-semidefinite. For each individual cost term, the Guass-Newton hessian

is given by

∇2
z

(
1

2
∥r(zi)∥2W

)
= R(zi)

TWR(zi), (8.28)

where R(z) = ∂r
∂z is the Jacobian of the residual r. The Guass-Newton Hessian for the full cost is

then the sum of the Hessians of the individual cost terms. After solving (8.27) for a search direction,

we update z via

zi+i = zi + βiδi (8.29)

where βi is computed via the filter line-search proposed in (Grandia et al., 2022).

99

Implementation Details

We solve the SQP subproblems using the same ADMM parameters and footstep constraint projec-

tion weights as the ALIP MPFC example. Before each solve, we adapt the timestep size, hk, during

the initial stance phase, such that the knot points are evenly spaced, and contact transitions occur

exactly at the knot points. The cost weights and planning horizon details for our implementation

are given in Appendix D.

Because CF-MPFC plans over whole-body dynamics, the resulting solutions are already dynamically

feasible, so we simply track the solution using PD control with feedforward torques at the actuated

joints:

ucmd(t) = usol(t) +Kp(qsol(t)− q) +Kd(vsol(t)− v) (8.30)

where Kp ∈ Rnu×nq and Kd ∈ Rnu×nv are proportional and derivative gain matrices which select

the actuated coordinates from the position and velocity error vectors. A comparison of the overall

control architectures for ALIP MPFC and CF-MPFC is given in Fig. 8.5.

8.4. Evaluation

This section gives a proof-of-concept evaluation of CF-MPFC. First we show that CF-MPFC is able

to traverse larger height changes than ALIP MPFC, then we profile the CF-MPFC solver iterations

to determine future steps toward a real-time implementation.

8.4.1. Height Change Test

Cassie traverses 20, 25, and 30 cm height changes in simulation in one continuous trial (Fig. 8.7).

Because the swing foot planner does not account for the robot’s dynamics, ALIP MPFC is not able

to traverse the same terrain, as the swing foot does not make it all the way onto the 20 cm block, and

Cassie slips off (Fig. 8.6). For completeness, we also show CF-MPFC traversing the same stepping

stones, narrow beam, and stairs as ALIP MPFC was demonstrated on in Section 5.3.1 (Fig. 8.8).

100

Figure 8.5: Comparison of the control architectures for ALIP MPFC (top) and CF-MPFC (bottom).

101

Figure 8.6: ALIP MPFC fails to complete a 20 cm step up due to the swing foot not making it on
to the step. Relying on a heuristic swing foot planner places a high burden on the OSC tracking
performance compared to CF-MPFC, which accounts for the robot’s dynamics when planning a
swing foot motion.

102

Figure 8.7: Cassie successfully traversing up to 30 cm height changes using CF-MPFC in simulation.

103

Figure 8.8: Cassie traverses a narrow beam, stepping stones, and stairs using CF-MPFC.

8.4.2. Profiling

Our implementation of CF-MPFC is not yet solvable in real time. We break-down the SQP iteration

computation time by sub-task in Table 8.2. The data is from walking over the tall boxes in Fig. 8.7.

The controller is running on a MacBook Pro with a 10-core Apple M1 Max CPU and 64 GB of

RAM. To reach a 70 Hz. solve time, we need to decrease the total solve-time by approximately one

order of magnitude as well as reduce jitter.

104

Table 8.2: Computation Time Breakdown for CF-MPFC Iterations

Subtask Setup QP Solve QP Line Search Total
Mean Computation time (s) 0.023 0.115 0.002 0.139
Std. 0.002 0.044 0.000 0.044
Max. 0.038 0.179 0.003 0.217
Min. 0.020 0.026 0.001 0.049

Most of the computation time comes from two factors. First, we use finite-differencing to take the

gradients of the nonlinear constraints. This is not only slow, but ignores advantageous sparsity

structure, increasing the solve time of the resulting QP. We provide analytical gradients for most of

the cost components, which is faster than finite differencing, but still potentially ignores sparsity.

Similar methods generally use Pinocchio (Carpentier et al., 2019) with automatic differentiation or

code generation tools (e.g. Casadi (Andersson et al., 2019)) to quickly generate sparse gradients of

the nonlinear costs and constraints.

More challenging is the fact that we use relatively slow OSQP settings to reliably solve the polishing

step QP in Algorithm 3. To ensure that the foothold constraints are not violated, we require OSQP

to perform up to 1000 iterations, and we leave ρ-scaling enabled, which requires additional matrix

factorizations. Future work will consider alternate solvers, and attempt to scale the constraints such

that the QP solve times are competitive with state-of-the-art. Khazoom et al. (2024), for example,

cite using 20 OSQP iterations with a fixed ρ to achieve a 90 Hz update rate with 32 knot points.

8.5. Discussion

This chapter explores handling challenging optimal control problems with local methods. We lever-

age ADMM for handling stepping stone constraints, and sequential quadratic programming for

handling nonlinear dynamics and cost functions. Because we lack optimality guarantees for such

methods, we rely on empirical validation, which has the limitation of unclear generalization beyond

the test conditions. Although, as seen from Fig. 8.2, the trade-off between computational speed

(via local solutions) and optimality is not necessarily straight-forward. The fact that the globally

optimal solution leads to worse closed-loop behavior suggests that our cost function, which prior-

itizes velocity tracking, is not the correct choice for robust foothold selection. Future work could

105

look at the bias imposed on foothold selection by the ADMM approach and attempt to capture this

in a convex quadratic cost term. Additionally, for Algorithm 3, future work involves characterizing

under what conditions the polishing step is infeasible, and if there are easy fall-back methods for

repairing an infeasible stepping stone sequence.

Local methods are also inherently less exploratory. This is especially relevant for CF-MPFC, where

we are using a local solution to address the challenges posed by both combinatorial foothold choices

and nonlinear dynamics. For example, at lower commanded velocities, CF-MPFC struggles to find

solutions which make forward progress when approaching tall step-ups. The robot either gets too

close to the obstacle before finding a solution which steps onto it, ultimately tripping, or the swing

foot penalty pushes it away from the obstacle and it steps in place indefinitely.

From an implementation perspective, both ALIP MPFC and CF-MPFC required a large number of

maximum iterations in the polishing step QP to reliably satisfy the foothold constraints, and using

a different solver than OSQP may provide better performance.

8.6. Conclusion

In this chapter, we provide a local solver based on ADMM which eliminates the combinatorial

complexity of MPFC, ultimately enabling real-time footstep planning with a horizon of four footsteps

instead of two, increasing reliability over a challenging stepping stone task.

We apply this solver to the sequential quadratic programming subproblems of a cascaded-fidelity

MPFC formulation. By combining whole-body MPC with long-horizon footstep planning over

constrained footholds, we provide a proof of concept for an exceedingly general-purpose walking

controller. In addition to the solve-time improvements discussed in Section 8.4.2, future work

can consider including gait-timing adaptation and self collision constraints to further improve the

robustness of the controller and enable behaviors such as cross-over stepping.

106

CHAPTER 9

Conclusions and Future Work

In this thesis, we address the challenge of underactuated bipedal walking over rough terrain, pro-

viding real-time algorithms for perception and control which respectively exceed the robustness

and generality of previous model-based approaches. This chapter briefly recapitulates our specific

contributions before offering some broader opinions and discussion of potential future work.

In Chapter 5, we introduce Model Predictive Footstep Control, an MPC-style reactive footstep

planner for underactuated walking over stepping stones, which jointly optimizes over reduced order

model dynamics, footstep plans, and the discrete choice of stepping surface. We formulate MPFC

as a single MIQP which can be solved at over 100 Hz. to stabilize walking over discontinuous terrain

without a pre-specified foothold sequence.

In Chapter 6, we argue that plane segmentation, the most popular choice for identifying safe terrain

from vision, is fundamentally brittle. We introduce an algorithm which is structurally similar to

existing approaches but which omits a plane segmentation step, and show that our algorithm is

faster and more consistent in classifying the steppable terrain. We develop a convex decomposition

pipeline for converting the resulting steppability mask into a set of convex polygons representing

the safe terrain.

Chapter 7 ties together the contributions from Chapter 5 and Chapter 6 into the first hardware

demonstration of Cassie traversing discontinuous terrain with model-based control.

Finally, Chapter 8 increases the robustness and generality of MPFC specifically. First, we increase

the robustness of MPFC by planning over longer footstep horizons in real time using ADMM. We

show that longer planning horizons with a locally optimal solver yield a higher closed-loop success

rate than a globally optimal short horizon plan generated through the MIQP formulation. Second,

we increase the height changes traversable by Cassie using a cascaded-fidelity MPC formulation

which sequences whole-body dynamics with step-to-step ALIP dynamics. We formulate a single

107

optimization problem over the stepping stone choice, whole-body dynamics, and footstep positions,

providing a discussion of necessary steps for a real-time implementation.

9.1. Lessons Learned

At time of writing, the field is continuing to move from MPC toward sim-to-real RL as a popular

approach for legged locomotion. While MPC will likely remain a key approach in the near and

medium term, we should ask what insights can we draw from this thesis that are durable to such

trends, in that they are applicable to a wide range of methods and problem settings.

In the broader context of designing robotics systems for deployment in unstructured environments,

there are three major lessons. First, modeling choices, and how they are interpreted for the purpose

of algorithm design, have an out-sized impact on algorithm performance, both in terms of speed and

reliability. Our work on S3 most clearly emphasizes this point - we improve the terrain segmentation

speed and robustness by recognizing that piecewise planar terrain is a convenient assumption for

numerical optimization, not a prescription for how to design a terrain segmentation algorithm. For

the foreseeable future, roboticists will have to think carefully about how information is used across

an entire system to design appropriate subsystems for sensing or acting on that information.

Second, while general purpose solvers are convenient for prototyping algorithms, many optimiza-

tion problems encountered in robotics have some structure which makes them easier to solve than

a general instance of their problem class. In this context, it is often relatively easy to write a solver

which outperforms general purpose methods on these specific problems. This fact has been lever-

aged extensively across robotics, especially in optimization-based control (e.g. Kuindersma et al.

(2014); Nguyen et al. (2024)), and simulating contact between rigid bodies (Castro et al., 2023;

Le Cleac’h et al., 2023). In this thesis, we leverage custom solvers for fast whole-body control us-

ing FCCQP (Acosta, 2024), making cut selections in the whittling algorithm, and using ADMM

for MPFC in Chapter 8. A concrete recommended first step, especially for small problems with

demanding solve time requirements, is to write out the optimality requirements, and see if a simple

closed form or iterative approach presents itself.

108

Finally, for complicated systems such as a perceptive locomotion stack, often the only way to identify

the most impactful research questions is to run hardware experiments. This can be accomplished

by starting with a best guess for how to do it based on the state of the art, and recording enough

data from each subsystem to diagnose failure points. Before we started our work on perceptive

locomotion, we assumed that we would be able to use an off-the-shelf solution for plane segmentation,

and that the control design would be the hard part. This did not turn out to be the case. Our first

iteration of MPFC, while not as effective as the final version presented here, was already somewhat

functional and represented increased capabilities over the state of the art. It took another year

and a half and some new ideas to get the perception system in a state where Cassie could walk

continuously with vision in the loop. Hopefully, this thesis can serve as a reference for getting a

baseline implemented quickly, and outlining some of the hazards which lay in the path. Good luck!

9.2. Future Work

MPFC was one of several early works for solving the stepping stone problem with dynamics con-

straints in real time, and the field continues to push capabilities in this direction (Zhou et al., 2025).

That said, we impose significant structure in order to reach the real-time requirements needed for

hardware deployment. We assume a linear reduced order model, convex quadratic costs, and a con-

vex polygon terrain representation. In addition to pushing our whole-body MPFC implementation

into real time, we should also consider whether a nonlinear or non-convex cost in the ALIP MPFC

problem would lead to more robust foothold selections. Recent progress in sampling-based MPC

(Xue et al., 2024; Howell et al., 2022) suggests that a sampling-based approach may be effective for

optimizing over non-convex costs, and planning footsteps directly on the steppability segmentation.

While the contributions of this thesis expand the capabilities of underactuated bipeds to include

discontinuous terrain, low level challenges impact the physical system’s robustness and ability to

traverse more challenging terrains such as conventional stairs. This is especially relevant to the

model’s assumption of which points on the robot are in no-slip contact with the ground. Our

state estimator assumes no-slip contact, leading to position and velocity estimation errors when the

robot does slip, which propagate to the elevation mapping and control systems. Further research

109

is needed in general into state estimation for bipedal robots which is robust to the contact state.

Incorporating visual information can be a source of this robustness, albeit with a non-trivial increase

in the implementation effort required (Wisth et al., 2023). Along this line, MPC formulations should

be developed which are robust to the nominal contact mode, either through detection and adaptation

of the actual contact configuration, or by specifying desired behavior which is open-loop robust to

variations in the contact timing and configurations. This could also include the ability to recognize

and leverage partial footholds and line contacts for traversing the most challenging terrains. This

type of robustness and full leveraging of the dynamics is often associated with sim-to-real RL (e.g.

Miki et al. (2022a); Siekmann et al. (2021)), although finding approaches which maintain these

qualities while achieving the precision of model-based footstep planning remains an open question.

Ultimately, by introducing a safe terrain segmentation algorithm which is robust and easy to im-

plement, and extending state-of-the-art model-based controllers to handle discrete footholds, this

thesis provides a concrete starting point for addressing these problems inside of a full-stack hardware

implementation.

110

APPENDIX A

ALIP MPFC IMPLEMENTATION DETAILS

A.1. ALIP S2S Lateral Reset Map Adjustment

Because Bds is decoupled in x and y in (4.19), our MPFC implementation assumes f(t) = 1 for the

lateral components of the ALIP state, which corresponds to instantaneous weight transfer at the

beginning of double-stance. In this case, (4.19) evaluates to

Bds = A−1(Ar − I)BCoP . (A.1)

This helps the robot more closely track the desired step width by compensating for systematic error

in swing foot tracking. The robot consistently steps with a wider step width than the commanded

footstep position. Due to compliance and backlash in Cassie’s hip roll joints, we are unable to raise

the PD gains on the lateral swing foot position beyond the values in Table B.2. Adjusting the

reset map to assume instantaneous weight transfer acts as a feedforward correction by increasing

the model’s estimate of how much momentum will be absorbed by a larger lateral footstep size. To

calculate the final value of Bds, we take the inner 2×2 submatrix, which corresponds to the coronal

plane, from (A.1), and the 4 corner values from (4.20), which correspond to the sagittal plane.

A.1.1. Constructing the Desired-Velocity Subspace for MPFC

Here we derive the affine subspace of P2 orbits which achieve a given desired velocity vdes. We will

define the projection matrices Π0 and Π1, and the offsets d0 and d1, and then for the general case,

we have that

Πn+2 = Πn

dn+2 = dn

We start by unrolling the s2s dynamics over two footsteps, and applying the P2 orbit constraint

x2 = x0:

111

x0 = A2
s2sx0 +As2sBs2sδp0 +Bs2sδp1. (A.2)

We substitute the velocity constraint (δp0 + δp1) = 2Ts2svdes into (A.2) and solve for x0:

x0 = G(As2sBs2s −Bs2s)δp0 + 2Ts2sGBs2svdes, (A.3)

where G = (I − A2
s2s)

−1. From (A.3) we have a definition of the desired velocity subspace as an

offset based on vdes and the span of L0 = G(As2s − I)Bs2s ∈ R4×2. We convert this to the desired

form (5.3) by left-multiplying with Π0, a projection matrix to the orthogonal complement of the

range of L0. Because Π0 maps L0δp0 to zero for any δp0 by construction, this leaves us with

Π0x0 = 2Π0Ts2sGBs2svdes, (A.4)

so d0(vdes) = 2Ts2sGBs2svdes. To find Π1, we use

x1 = As2sx0 +Bs2sδp0

∴ x1 = As2s(L0δp0 + d0) +Bs2sδp0

∴ x1 = (As2sL0 +B)δp0 +As2sd0

∴ L1 = As2sL0 +B, d1 = As2sd0. (A.5)

Π1 is similarly constructed as a projection to span(L1)
⊥.

112

APPENDIX B

MPFC AND S3 PARAMETERS

The following tables give the parameters used for each component of our stack. Diagonal matrices

are represented as d[· · ·], where the arguments to d represent the entries on the diagonal of the

matrix. While we did not extensively tune MPFC costs, we found it worked best to set QN at least

100× larger than Q for the position coordinates. This avoided short-sighted behavior when walking

over edges, and could maybe be reduced for longer planning horizons.

Compared to hardware, our simulation experiments feature increased MPFC state costs and OSC

PD gains, and decreased S3 resolution and hysteresis. These differences showcase the full potential

of our method with more-precise swing-foot tracking. We switch the inpainting approach from

Navier-Stokes (NS) to Least-Neighboring-Value (LNV) to align with the discrete terrain tested in

sim.

Table B.1: MPFC Parameters

+ Symbol Meaning Hardware Simulation
N MPFC Horizon 2 steps 2 steps
tmin Min. SS duration 0.27 s 0.27 s
tmax Max. SS duration 0.33 s 0.33 s
H ALIP height 0.85 m 0.85 m
Tss Nominal SS duration 0.3 s 0.3 s
Tds DS duration 0.1 s 0.1 s
wT Time weight 100 100
l Step width 0.2 m 0.15 m
wu Ankle torque weight 0.01 0.01
umax Max. ankle torque 22 Nm 22 Nm
QN Terminal state cost d[100, 100, 1, 1] d[1000, 1000, 20, 20]
Q Runnning state cost d[0.001, 0.1, 0.01, 0.001] d[10, 10, 5, 5]
R Running step size cost d[25, 25, 0] d[25, 25, 0]
– CoM soft pos. limits ± [0.35, 0.35] m ± [0.4, 0.4] m
– CoM soft vel. limits ± [2.5, 1.5] m/s ± [2.5, 1.5] m/s
– Soft constraint cost 1000 1000

113

Table B.2: OSC Gains (Hardware)

OSC Objective W Kp Kd
Toe joint angle 1 1500 10
Hip yaw angle 2 40 2
CoM [x, y, z] [0, 0, 10] [0, 0, 100] [0, 0, 6]
Pelvis [roll, pitch, yaw] [2, 4, 0.02] [200, 200, 0] [10, 10, 4]
Swing Foot [x, y, z] [4, 4, 2] [220, 180, 180] [6, 5.5, 5.5]
Ankle Torque 10 – –

Table B.3: OSC Gains (Simulation)

OSC Objective W Kp Kd
Toe joint angle 1 1500 10
Hip yaw angle 2 100 4
CoM [x, y, z] [0, 0, 10] [0, 0, 80] [0, 0, 10]
Pelvis [roll, pitch, yaw] [2, 4, 0.02] [200, 200, 0] [10, 10, 10]
Swing Foot [x, y, z] [4, 4, 2] [400, 400, 400] [20, 20, 25]
Ankle Torque 10 – –

Table B.4: Perception Stack Parameters

Symbol Meaning Hardware Simulation
Elevation Mapping

– Map Size 3× 3 m 2.5× 2.5 m
– Map Resolution 0.03 m 0.025 m

S3
khyst Safety Hysteresis 0.6 0.4
ksafe Safety Threshold 0.7 0.7

– Safety Margin Kernel Size 4 px 4 px
σLoG LoG Standard Dev. for ccurve 2 px 2 px
αc ccurve scaling parameter 5 5
– cinc kernel size 5 px 5 px
– Inpainting NS LNV

Convex Decomposition
d ACD Concavity Limit 0.25 m 0.25 m

114

APPENDIX C

ADMM DERIVATION WITH WEIGHTED PROJECTION

This appendix derives the somewhat non-standard ADMM iterations used in Chapter 8

minimize
x,z

f(x) + Ilin(x) + Inc(z) (C.1a)

subject to W (x− z) = 0. (C.1b)

Letting y be the dual variable associated with the W (x − z) = 0 constraint, the augmented

Lagrangian for (C.1) is

Lρ(x, z, y) = f(x) + Ilin(x) + Inc(z) + yTW (x− z) + ρ

2
∥W (x− z)∥22. (C.2)

The ADMM iterations are then given by

xk+1 = argmin
x

f(x) + Ilin(x) + yTkW (x− zk) +
ρ

2
∥W (x− zk)∥22 (C.3)

zk+1 = argmin
z

Inc(z) + yTkW (xk+1 − z) +
ρ

2
∥W (xk+1 − z)∥22 (C.4)

yk+1 = yk + ρW (xk+1 − zk+1) (C.5)

We introduce a scaled dual variable w such that y = ρWw. We rewrite the augmented Lagrangian

using the scaled variable

Lρ(w, z, w) =f(x) + Ilin(x) + Inc(z) + ρwTW TW (x− z) + ρ

2
∥W (x− z)∥22 (C.6)

=f(x) + Ilin(x) + Inc(z) +
ρ

2
∥W (x− z + w)∥ − ρ

2
∥Ww∥22 (C.7)

Additionally, the dual update is given as

ρWwk+1 = ρWwk + ρW (xk+1 − zk+1). (C.8)

115

Because W is positive definite, we can simplify this to wk+1 = wk + xk+1 − zk+1. This gives the

the following ADMM iterations, where constant terms have been omitted from each optimization

problem:

xk+1 = argmin
x

f(x) + Ilin(x) +
ρ

2
∥W (x− zk + wk)∥22 (C.9)

zk+1 = argmin
z

Inc(z) +
ρ

2
∥W (xk+1 − z + wk)∥22 (C.10)

wk+1 = wk + xk+1 − zk+1. (C.11)

The z update can be expressed as the following weighted projection, where dk = xk+1 − wk

zk+1 = argmin
z

(dk − z)TW TW (dk − z) (C.12a)

subject to z ∈ Xnc. (C.12b)

116

APPENDIX D

CASCADED FIDELITY MPFC GAINS

This section provides the parameters for the CF-MPFC implementation. Successfully traversing

tall obstacles was somewhat sensitive to the floating base position costs, however the same costs

transferred to the beam, stairs, and stepping stones.

Table D.1: CF-MPFC Parameters

Symbol Meaning Value
K Number of Knot Points 16
h Timestep 0.05
– Full-torque knots 3
µ Friction Coefficient 0.6
H Desired Height 0.95 m
l stance width 0.2 m
N Total Footsteps 4
Tss single-stance duration 0.3 s
Tds double-stance duration 0.4 s
Qψ swing clearance cost-weight 4000

In Table D.2, the order of the positions is

[qquat,w, qquat,x, qquat,y, qquat,z, qfloating base,x, qfloating base,y, qfloating base,z

qhip roll,L, qhip yaw,L, qhip pitch,L, qknee,L, qankle,L, qtoe,L

qhip roll,R, qhip yaw,R, qhip pitch,R, qknee,R, qankle,R, qtoe,R]

and the order of the velocities is

[vωx, vωy, vωz, vfloating base,x, vfloating base,y, vfloating base,z

vhip roll,L, vhip yaw,L, vhip pitch,L, vknee,L, vankle,L, vtoe,L

vhip roll,R, vhip yaw,R, vhip pitch,R, vknee,R, vankle,R, vtoe,R]

117

Table D.2: CF-MPFC Whole-Body Cost Weights

Position Weights
Qq diag[1e-4, 1e-4, 1e-4, 1e-4, 2, 2, 8,

0.01, 5, 3.5, 4.0, 0.8, 1,
0.01, 5, 3.5, 4.0, 0.8, 1]

Qquat [1, 1, 1]
Velocity Weights

Qv diag[1, 0.2, 5, 1.0, 0.1, 0.1,
0.001, 0.01, 0.01, 0.001, 1e-4, 0.01,
0.001, 0.01, 0.01, 0.001, 1e-4, 0.01]
Lambda Weights

Wλ diag[1e-4, 1e-4,
1e-4, 1e-4, 1e-5, 1e-4, 1e-4,
1e-5, 1e-4, 1e-4, 1e-5, 1e-4, 1e-4, 1e-5]

Input Weights
Wu (Hip roll) diag[0.00005, 0.00005,

(Hip yaw) 0.001, 0.001,
(Hip pitch) 0.001, 0.001,

(Knee) 1e-4, 1e-4,
(Toe) 0.001, 0.001]

Final Weights
Qq,T diag[0.01, 0.01, 0.01, 0.01, 1, 1, 10,

1, 10, 1, 0.1, 0.1, 1,
1, 10, 1, 0.1, 0.1, 1]

Qquat,T diag[5, 5, 10]
Qv,T diag[1, 1, 1, 4, 4, 2,

1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1]

Table D.3: CF-MPFC ALIP cost weights

Q 4I4×4

QN 10I4×4

R diag[15, 15, 0]

118

BIBLIOGRAPHY

Bernardo Aceituno-Cabezas, Carlos Mastalli, Hongkai Dai, Michele Focchi, Andreea Radulescu,
Darwin G. Caldwell, José Cappelletto, Juan C. Grieco, Gerardo Fernández-López, and Claudio
Semini. Simultaneous Contact, Gait, and Motion Planning for Robust Multilegged Locomotion
via Mixed-Integer Convex Optimization. IEEE Robotics and Automation Letters, 3(3):2531–2538,
July 2018. ISSN 2377-3766. doi: 10.1109/LRA.2017.2779821.

Brian Acosta. FCCQP: A Whole Body Control QP Solver with Full Friction Cones, 2024. URL
https://github.com/Brian-Acosta/fcc_qp/.

Brian Acosta and Michael Posa. Bipedal Walking on Constrained Footholds with MPC Footstep
Control. In 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids),
pages 1–8, December 2023. doi: 10.1109/Humanoids57100.2023.10375170.

Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl. CasADi – A
software framework for nonlinear optimization and optimal control. Mathematical Programming
Computation, 11(1):1–36, 2019. doi: 10.1007/s12532-018-0139-4.

Taylor Apgar, Patrick Clary, Kevin Green, Alan Fern, and Jonathan Hurst. Fast online trajectory
optimization for the bipedal robot cassie. In Robotics: Science and Systems, volume 101, 2018.

Alp Aydinoglu, Adam Wei, and Michael Posa. Consensus Complementarity Control for Multi-
Contact MPC, April 2023.

Hamid Benbrahim and Judy A. Franklin. Biped dynamic walking using reinforcement learn-
ing. Robotics and Autonomous Systems, 22(3):283–302, 1997. ISSN 0921-8890. doi: https:
//doi.org/10.1016/S0921-8890(97)00043-2. URL https://www.sciencedirect.com/science/article/
pii/S0921889097000432. Robot Learning: The New Wave.

M. Bertalmio, A.L. Bertozzi, and G. Sapiro. Navier-stokes, fluid dynamics, and image and video
inpainting. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. CVPR 2001, volume 1, pages I–I, 2001. doi: 10.1109/CVPR.2001.
990497.

Sylvain Bertrand, Inho Lee, Bhavyansh Mishra, Duncan Calvert, Jerry Pratt, and Robert Griffin.
Detecting Usable Planar Regions for Legged Robot Locomotion. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4736–4742, October 2020. doi:
10.1109/IROS45743.2020.9341000. URL https://ieeexplore.ieee.org/abstract/document/9341000.
ISSN: 2153-0866.

Teng Bin, Jianming Yao, Tin Lun Lam, and Tianwei Zhang. Real-Time Polygonal Semantic Map-
ping for Humanoid Robot Stair Climbing. In 2024 IEEE-RAS 23rd International Conference on
Humanoid Robots (Humanoids), November 2024.

119

https://github.com/Brian-Acosta/fcc_qp/
https://www.sciencedirect.com/science/article/pii/S0921889097000432
https://www.sciencedirect.com/science/article/pii/S0921889097000432
https://ieeexplore.ieee.org/abstract/document/9341000

R. Blickhan. The spring-mass model for running and hopping. Journal of Biomechanics, 22(11):
1217–1227, 1989. ISSN 0021-9290. doi: https://doi.org/10.1016/0021-9290(89)90224-8. URL
https://www.sciencedirect.com/science/article/pii/0021929089902248.

H.G. Bock and K.J. Plitt. A multiple shooting algorithm for direct solution of optimal control
problems*. IFAC Proceedings Volumes, 17(2):1603–1608, 1984. ISSN 1474-6670. doi: https:
//doi.org/10.1016/S1474-6670(17)61205-9. URL https://www.sciencedirect.com/science/article/
pii/S1474667017612059. 9th IFAC World Congress: A Bridge Between Control Science and
Technology, Budapest, Hungary, 2-6 July 1984.

Paul T Boggs and Jon W Tolle. Sequential quadratic programming. Acta numerica, 4:1–51, 1995.

Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory,
pages 144–152, 1992.

Boston Dynamics. Starting on the Right Foot with Reinforcement Learning. URL https:
//bostondynamics.com/blog/starting-on-the-right-foot-with-reinforcement-learning/.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed Op-
timization and Statistical Learning via the Alternating Direction Method of Multipliers. Now
Foundations and Trends, 2011. doi: 10.1561/2200000016.

Duncan Calvert, Bhavyansh Mishra, Stephen McCrory, Sylvain Bertrand, Robert Griffin, and Jerry
Pratt. A Fast, Autonomous, Bipedal Walking Behavior over Rapid Regions. In 2022 IEEE-RAS
21st International Conference on Humanoid Robots (Humanoids), pages 24–31, November 2022.
doi: 10.1109/Humanoids53995.2022.10000120.

Justin Carpentier, Guilhem Saurel, Gabriele Buondonno, Joseph Mirabel, Florent Lamiraux, Olivier
Stasse, and Nicolas Mansard. The pinocchio c++ library – a fast and flexible implementation of
rigid body dynamics algorithms and their analytical derivatives. In IEEE International Sympo-
sium on System Integrations (SII), 2019.

Alejandro M. Castro, Frank N. Permenter, and Xuchen Han. An unconstrained convex formulation
of compliant contact. IEEE Transactions on Robotics, 39(2):1301–1320, 2023. doi: 10.1109/TRO.
2022.3209077.

Joel Chestnutt, James Kuffner, Koichi Nishiwaki, and Satoshi Kagami. Planning biped navigation
strategies in complex environments. In IEEE Int. Conf. on Humanoid Robotics (Humanoids’ 03),
2003.

Jia-Ruei Chiu, Jean-Pierre Sleiman, Mayank Mittal, Farbod Farshidian, and Marco Hutter. A
collision-free mpc for whole-body dynamic locomotion and manipulation. In 2022 Interna-
tional Conference on Robotics and Automation (ICRA), pages 4686–4693, 2022. doi: 10.1109/
ICRA46639.2022.9812280.

120

https://www.sciencedirect.com/science/article/pii/0021929089902248
https://www.sciencedirect.com/science/article/pii/S1474667017612059
https://www.sciencedirect.com/science/article/pii/S1474667017612059
https://bostondynamics.com/blog/starting-on-the-right-foot-with-reinforcement-learning/
https://bostondynamics.com/blog/starting-on-the-right-foot-with-reinforcement-learning/

Thomas Corbères, Carlos Mastalli, Wolfgang Merkt, Ioannis Havoutis, Maurice Fallon, Nicolas
Mansard, Thomas Flayols, Sethu Vijayakumar, and Steve Tonneau. Perceptive Locomotion
through Whole-Body MPC and Optimal Region Selection, May 2023.

Hongkai Dai and Russ Tedrake. Optimizing robust limit cycles for legged locomotion on unknown
terrain. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pages 1207–1213,
2012. doi: 10.1109/CDC.2012.6425971.

Min Dai, Xiaobin Xiong, and Aaron Ames. Bipedal Walking on Constrained Footholds: Momen-
tum Regulation via Vertical COM Control. In 2022 International Conference on Robotics and
Automation (ICRA), pages 10435–10441, May 2022. doi: 10.1109/ICRA46639.2022.9812247.

Robin Deits and Russ Tedrake. Footstep planning on uneven terrain with mixed-integer convex
optimization. In 2014 IEEE-RAS International Conference on Humanoid Robots, pages 279–286,
November 2014. doi: 10.1109/HUMANOIDS.2014.7041373.

Moritz Diehl, Hans Georg Bock, and Johannes P. Schlöder. A real-time iteration scheme for
nonlinear optimization in optimal feedback control. SIAM Journal on Control and Optimiza-
tion, 43(5):1714–1736, 2005. doi: 10.1137/S0363012902400713. URL https://doi.org/10.1137/
S0363012902400713.

Yanran Ding, Chuanzheng Li, and Hae-Won Park. Kinodynamic Motion Planning for Multi-
Legged Robot Jumping via Mixed-Integer Convex Program. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3998–4005, October 2020. doi:
10.1109/IROS45743.2020.9341572.

Oluwami Dosunmu-Ogunbi, Aayushi Shrivastava, Grant Gibson, and Jessy W. Grizzle. Stair Climb-
ing using the Angular Momentum Linear Inverted Pendulum Model and Model Predictive Control,
July 2023.

Helei Duan, Ashish Malik, Jeremy Dao, Aseem Saxena, Kevin Green, Jonah Siekmann, Alan Fern,
and Jonathan Hurst. Sim-to-Real Learning of Footstep-Constrained Bipedal Dynamic Walking.
In 2022 International Conference on Robotics and Automation (ICRA), pages 10428–10434, May
2022. doi: 10.1109/ICRA46639.2022.9812015.

Helei Duan, Bikram Pandit, Mohitvishnu S Gadde, Bart Jaap van Marum, Jeremy Dao, Chanho
Kim, and Alan Fern. Learning vision-based bipedal locomotion for challenging terrain. arXiv
preprint arXiv:2309.14594, 2023.

Johannes Englsberger, Christian Ott, and Alin Albu-Schäffer. Three-dimensional bipedal walking
control using divergent component of motion. In 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2600–2607, 2013. doi: 10.1109/IROS.2013.6696723.

Michael Ernst, Harmut Geyer, and Reinhard Blickhan. Spring-Legged Locomotion on Uneven
Ground: A Control Approach to Keep the Running Speed Constant, pages 639–644. aug

121

https://doi.org/10.1137/S0363012902400713
https://doi.org/10.1137/S0363012902400713

2009. doi: 10.1142/9789814291279_0078. URL https://www.worldscientific.com/doi/abs/10.
1142/9789814291279_0078.

Maurice Fallon and Matt Antone. Plane Seg – Robustly and Efficiently Extracting Contact Regions
from Depth Data, 2019. URL https://github.com/ori-drs/plane_seg.

Maurice F. Fallon, Pat Marion, Robin Deits, Thomas Whelan, Matthew Antone, John McDonald,
and Russ Tedrake. Continuous humanoid locomotion over uneven terrain using stereo fusion. In
2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages 881–
888, November 2015. doi: 10.1109/HUMANOIDS.2015.7363465.

Péter Fankhauser, Michael Bloesch, and Marco Hutter. Probabilistic Terrain Mapping for Mobile
Robots With Uncertain Localization. IEEE Robotics and Automation Letters, 3(4):3019–3026,
October 2018. ISSN 2377-3766. doi: 10.1109/LRA.2018.2849506.

Nolan Fey, Robert J. Frei, and Patrick M. Wensing. 3D Hopping in Discontinuous Terrain Using
Impulse Planning with Mixed-Integer Strategies. IEEE Robotics and Automation Letters, pages
1–8, 2024. ISSN 2377-3766, 2377-3774. doi: 10.1109/LRA.2024.3397528.

R. J. Full and D. E. Koditschek. Templates and anchors: neuromechanical hypotheses of legged
locomotion on land. Journal of Experimental Biology, 202(23):3325–3332, 12 1999. ISSN 0022-
0949. doi: 10.1242/jeb.202.23.3325. URL https://doi.org/10.1242/jeb.202.23.3325.

Mariano Garcia, Anindya Chatterjee, Andy Ruina, and Michael Coleman. The Simplest Walk-
ing Model: Stability, Complexity, and Scaling. Journal of Biomechanical Engineering, 120
(2):281–288, April 1998. ISSN 0148-0731. doi: 10.1115/1.2798313. URL https://doi.
org/10.1115/1.2798313. _eprint: https://asmedigitalcollection.asme.org/biomechanical/article-
pdf/120/2/281/5766768/281_1.pdf.

Carlos E. García, David M. Prett, and Manfred Morari. Model predictive control: Theory
and practice—a survey. Automatica, 25(3):335–348, 1989. ISSN 0005-1098. doi: https:
//doi.org/10.1016/0005-1098(89)90002-2. URL https://www.sciencedirect.com/science/article/
pii/0005109889900022.

Hartmut Geyer, Andre Seyfarth, and Reinhard Blickhan. Compliant leg behaviour explains basic
dynamics of walking and running. Proceedings of the Royal Society B: Biological Sciences, 273
(1603):2861–2867, 2006. doi: 10.1098/rspb.2006.3637. URL https://royalsocietypublishing.org/
doi/abs/10.1098/rspb.2006.3637.

Grant Gibson, Oluwami Dosunmu-Ogunbi, Yukai Gong, and Jessy Grizzle. Terrain-Adaptive, ALIP-
Based Bipedal Locomotion Controller via Model Predictive Control and Virtual Constraints. In
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 6724–
6731, October 2022. doi: 10.1109/IROS47612.2022.9981969.

Yukai Gong and Jessy Grizzle. One-Step Ahead Prediction of Angular Momentum about the Contact

122

https://www.worldscientific.com/doi/abs/10.1142/9789814291279_0078
https://www.worldscientific.com/doi/abs/10.1142/9789814291279_0078
https://github.com/ori-drs/plane_seg
https://doi.org/10.1242/jeb.202.23.3325
https://doi.org/10.1115/1.2798313
https://doi.org/10.1115/1.2798313
https://www.sciencedirect.com/science/article/pii/0005109889900022
https://www.sciencedirect.com/science/article/pii/0005109889900022
https://royalsocietypublishing.org/doi/abs/10.1098/rspb.2006.3637
https://royalsocietypublishing.org/doi/abs/10.1098/rspb.2006.3637

Point for Control of Bipedal Locomotion: Validation in a LIP-inspired Controller. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 2832–2838, May 2021. doi:
10.1109/ICRA48506.2021.9560821.

Yukai Gong, Ross Hartley, Xingye Da, Ayonga Hereid, Omar Harib, Jiunn-Kai Huang, and Jessy
Grizzle. Feedback Control of a Cassie Bipedal Robot: Walking, Standing, and Riding a Segway,
September 2018.

Ambarish Goswami. Postural stability of biped robots and the foot-rotation indicator (fri)
point. The International Journal of Robotics Research, 18(6):523–533, 1999. doi: 10.1177/
02783649922066376. URL https://doi.org/10.1177/02783649922066376.

Ruben Grandia, Fabian Jenelten, Shaohui Yang, Farbod Farshidian, and Marco Hutter. Perceptive
Locomotion through Nonlinear Model Predictive Control, August 2022.

Robert Griffin, James Foster, Stefan Pasano, Brandon Shrewsbury, and Sylvain Bertrand. Reach-
ability Aware Capture Regions with Time Adjustment and Cross-Over for Step Recovery. In
2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids), pages 1–8,
December 2023. doi: 10.1109/Humanoids57100.2023.10375180.

Robert J. Griffin, Georg Wiedebach, Stephen McCrory, Sylvain Bertrand, Inho Lee, and Jerry
Pratt. Footstep planning for autonomous walking over rough terrain. In 2019 IEEE-RAS 19th
International Conference on Humanoid Robots (Humanoids), pages 9–16, 2019. doi: 10.1109/
Humanoids43949.2019.9035046.

Zhaoyuan Gu, Nathan Boyd, and Ye Zhao. Reactive locomotion decision-making and robust motion
planning for real-time perturbation recovery. In 2022 International Conference on Robotics and
Automation (ICRA), pages 1896–1902, 2022. doi: 10.1109/ICRA46639.2022.9812068.

Zhaoyuan Gu, Yuntian Zhao, Yipu Chen, Rongming Guo, Jennifer K. Leestma, Gregory S. Saw-
icki, and Ye Zhao. Robust-Locomotion-by-Logic: Perturbation-Resilient Bipedal Locomotion via
Signal Temporal Logic Guided Model Predictive Control, March 2024.

Zhaoyuan Gu, Junheng Li, Wenlan Shen, Wenhao Yu, Zhaoming Xie, Stephen McCrory, Xianyi
Cheng, Abdulaziz Shamsah, Robert Griffin, C. Karen Liu, Abderrahmane Kheddar, Xue Bin
Peng, Yuke Zhu, Guanya Shi, Quan Nguyen, Gordon Cheng, Huijun Gao, and Ye Zhao. Humanoid
locomotion and manipulation: Current progress and challenges in control, planning, and learning,
2025. URL https://arxiv.org/abs/2501.02116.

C.R. Hargraves and S.W. Paris. Direct trajectory optimization using nonlinear programming and
collocation. Journal of Guidance, Control, and Dynamics, 10(4):338–342, 1987. doi: 10.2514/3.
20223. URL https://doi.org/10.2514/3.20223.

Ross Hartley, Maani Ghaffari, Ryan M Eustice, and Jessy W Grizzle. Contact-aided invariant
extended Kalman filtering for robot state estimation. The International Journal of Robotics

123

https://doi.org/10.1177/02783649922066376
https://arxiv.org/abs/2501.02116
https://doi.org/10.2514/3.20223

Research, 39(4):402–430, March 2020. ISSN 0278-3649. doi: 10.1177/0278364919894385.

Ayonga Hereid, Eric A. Cousineau, Christian M. Hubicki, and Aaron D. Ames. 3d dynamic walking
with underactuated humanoid robots: A direct collocation framework for optimizing hybrid zero
dynamics. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages
1447–1454, 2016. doi: 10.1109/ICRA.2016.7487279.

Armin Hornung and Maren Bennewitz. Adaptive level-of-detail planning for efficient humanoid
navigation. In 2012 IEEE International Conference on Robotics and Automation, pages 997–
1002, 2012. doi: 10.1109/ICRA.2012.6224898.

Taylor Howell, Nimrod Gileadi, Saran Tunyasuvunakool, Kevin Zakka, Tom Erez, and Yuval Tassa.
Predictive Sampling: Real-time Behaviour Synthesis with MuJoCo, dec 2022. URL https://arxiv.
org/abs/2212.00541.

Taylor A. Howell, Brian E. Jackson, and Zachary Manchester. Altro: A fast solver for constrained
trajectory optimization. In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 7674–7679, 2019. doi: 10.1109/IROS40897.2019.8967788.

Albert S. Huang, Edwin Olson, and David C. Moore. LCM: Lightweight Communications and
Marshalling. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 4057–4062, October 2010. doi: 10.1109/IROS.2010.5649358.

Marco Hutter, C. David Remy, Mark A. Höpflinger, and Roland Siegwart. Slip running with an
articulated robotic leg. In 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 4934–4939, 2010. doi: 10.1109/IROS.2010.5651461.

David H. Jacobson and David Q. Mayne. Differential Dynamic Programming. Elsevier, New York,
1970.

Fabian Jenelten, Takahiro Miki, Aravind E Vijayan, Marko Bjelonic, and Marco Hutter. Perceptive
locomotion in rough terrain – online foothold optimization. IEEE Robotics and Automation
Letters, 5(4):5370–5376, 2020. doi: 10.1109/LRA.2020.3007427.

Fabian Jenelten, Ruben Grandia, Farbod Farshidian, and Marco Hutter. TAMOLS: Terrain-Aware
Motion Optimization for Legged Systems. IEEE Transactions on Robotics, 38(6):3395–3413,
December 2022. ISSN 1941-0468. doi: 10.1109/TRO.2022.3186804.

Fabian Jenelten, Junzhe He, Farbod Farshidian, and Marco Hutter. Dtc: Deep tracking control.
Science Robotics, 9(86):eadh5401, 2024. doi: 10.1126/scirobotics.adh5401. URL https://www.
science.org/doi/abs/10.1126/scirobotics.adh5401.

S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa. The 3D linear inverted pendulum
mode: A simple modeling for a biped walking pattern generation. In Proceedings 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), volume 1, pages 239–246

124

https://arxiv.org/abs/2212.00541
https://arxiv.org/abs/2212.00541
https://www.science.org/doi/abs/10.1126/scirobotics.adh5401
https://www.science.org/doi/abs/10.1126/scirobotics.adh5401

vol.1, October 2001. doi: 10.1109/IROS.2001.973365.

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa. Biped
walking pattern generation by using preview control of zero-moment point. In 2003 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No.03CH37422), volume 2, pages 1620–1626
vol.2, 2003. doi: 10.1109/ROBOT.2003.1241826.

Sotaro Katayama and Toshiyuki Ohtsuka. Efficient solution method based on inverse dynamics
for optimal control problems of rigid body systems. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 2070–2076, 2021. doi: 10.1109/ICRA48506.2021.
9561109.

Majid Khadiv, Alexander Herzog, S. Ali A. Moosavian, and Ludovic Righetti. Walking Control
Based on Step Timing Adaptation, March 2020.

O. Khatib. A unified approach for motion and force control of robot manipulators: The operational
space formulation. IEEE Journal on Robotics and Automation, 3(1):43–53, 1987. doi: 10.1109/
JRA.1987.1087068.

Charles Khazoom, Seungwoo Hong, Matthew Chignoli, Elijah Stanger-Jones, and Sangbae Kim.
Tailoring solution accuracy for fast whole-body model predictive control of legged robots. IEEE
Robotics and Automation Letters, 9(12):11074–11081, 2024. doi: 10.1109/LRA.2024.3455907.

Donghyun Kim, Jared Di Carlo, Benjamin Katz, Gerardo Bledt, and Sangbae Kim. Highly dy-
namic quadruped locomotion via whole-body impulse control and model predictive control. arXiv
preprint arXiv:1909.06586, 2019.

Gijeong Kim, Donghun Kang, Joon-Ha Kim, Seungwoo Hong, and Hae-Won Park. Contact-implicit
model predictive control: Controlling diverse quadruped motions without pre-planned contact
modes or trajectories. The International Journal of Robotics Research, 0(0), 2024. doi: 10.1177/
02783649241273645.

J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue. Online footstep planning for
humanoid robots. In 2003 IEEE International Conference on Robotics and Automation (Cat.
No.03CH37422), volume 1, pages 932–937 vol.1, September 2003. doi: 10.1109/ROBOT.2003.
1241712.

Scott Kuindersma, Frank Permenter, and Russ Tedrake. An efficiently solvable quadratic program
for stabilizing dynamic locomotion. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 2589–2594, 2014. doi: 10.1109/ICRA.2014.6907230.

Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valenzuela, Hongkai Dai, Frank Per-
menter, Twan Koolen, Pat Marion, and Russ Tedrake. Optimization-based locomotion plan-
ning, estimation, and control design for the atlas humanoid robot. Autonomous Robots, 40
(3):429–455, March 2016. ISSN 1573-7527. doi: 10.1007/s10514-015-9479-3. URL https:

125

https://doi.org/10.1007/s10514-015-9479-3
https://doi.org/10.1007/s10514-015-9479-3

//doi.org/10.1007/s10514-015-9479-3.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
legged robots. 2021.

Simon Le Cleac’h, Mac Schwager, Zachary Manchester, Vikas Sindhwani, Pete Florence, and Sumeet
Singh. Single-level differentiable contact simulation. IEEE Robotics and Automation Letters, 8
(7):4012–4019, 2023. doi: 10.1109/LRA.2023.3268824.

He Li and Patrick M. Wensing. Cafe-Mpc: A Cascaded-Fidelity Model Predictive Control Frame-
work with Tuning-Free Whole-Body Control, March 2024.

Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for nonlinear biological
movement systems. In First International Conference on Informatics in Control, Automation and
Robotics, volume 2, pages 222–229. SciTePress, 2004.

Jyh-Ming Lien and Nancy M. Amato. Approximate convex decomposition of polygons. Computa-
tional Geometry, 35(1):100–123, August 2006. ISSN 0925-7721. doi: 10.1016/j.comgeo.2005.10.
005.

J. Y. S. Luh, M. W. Walker, and R. P. C. Paul. On-Line Computational Scheme for
Mechanical Manipulators. Journal of Dynamic Systems, Measurement, and Control, 102
(2):69–76, June 1980. ISSN 0022-0434. doi: 10.1115/1.3149599. URL https://doi.org/
10.1115/1.3149599. _eprint: https://asmedigitalcollection.asme.org/dynamicsystems/article-
pdf/102/2/69/5696694/69_1.pdf.

Tobia Marcucci, Jack Umenberger, Pablo Parrilo, and Russ Tedrake. Shortest paths in graphs of
convex sets. SIAM Journal on Optimization, 34(1):507–532, 2024.

Carlos Mastalli, Saroj Prasad Chhatoi, Thomas Corbéres, Steve Tonneau, and Sethu Vijayakumar.
Inverse-dynamics mpc via nullspace resolution. IEEE Transactions on Robotics, 39(4):3222–3241,
2023. doi: 10.1109/TRO.2023.3262186.

Stephen McCrory, Bhavyansh Mishra, Robert Griffin, Jerry Pratt, and Hakki Erhan Sevil. Bipedal
navigation planning over rough terrain using traversability models. In SoutheastCon 2023, pages
89–95, 2023. doi: 10.1109/SoutheastCon51012.2023.10115107.

Tad McGeer. Passive dynamic walking. The International Journal of Robotics Research, 9(2):62–82,
1990. doi: 10.1177/027836499000900206. URL https://doi.org/10.1177/027836499000900206.

Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hut-
ter. Learning robust perceptive locomotion for quadrupedal robots in the wild. Science Robotics,
7(62):eabk2822, January 2022a. doi: 10.1126/scirobotics.abk2822.

Takahiro Miki, Lorenz Wellhausen, Ruben Grandia, Fabian Jenelten, Timon Homberger, and Marco

126

https://doi.org/10.1007/s10514-015-9479-3
https://doi.org/10.1007/s10514-015-9479-3
https://doi.org/10.1007/s10514-015-9479-3
https://doi.org/10.1115/1.3149599
https://doi.org/10.1115/1.3149599
https://doi.org/10.1177/027836499000900206

Hutter. Elevation Mapping for Locomotion and Navigation using GPU, April 2022b.

Bhavyansh Mishra, Duncan Calvert, Sylvain Bertrand, Stephen McCrory, Robert Griffin, and
Hakki Erhan Sevil. GPU-Accelerated Rapid Planar Region Extraction for Dynamic Behaviors
on Legged Robots. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 8493–8499, September 2021. doi: 10.1109/IROS51168.2021.9636009. URL
https://ieeexplore.ieee.org/document/9636009/?arnumber=9636009. ISSN: 2153-0866.

Khai Nguyen, Sam Schoedel, Anoushka Alavilli, Brian Plancher, and Zachary Manchester. Tinympc:
Model-predictive control on resource-constrained microcontrollers. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages 1–7, 2024. doi: 10.1109/ICRA57147.
2024.10610987.

Quan Nguyen, Ayonga Hereid, Jessy W. Grizzle, Aaron D. Ames, and Koushil Sreenath. 3D dynamic
walking on stepping stones with control barrier functions. In 2016 IEEE 55th Conference on
Decision and Control (CDC), pages 827–834, Las Vegas, NV, USA, December 2016. IEEE. ISBN
978-1-5090-1837-6. doi: 10.1109/CDC.2016.7798370.

Quan Nguyen, Xingye Da, J. W. Grizzle, and Koushil Sreenath. Dynamic Walking on Stepping
Stones with Gait Library and Control Barrier Functions, pages 384–399. Springer International
Publishing, Cham, 2020. ISBN 978-3-030-43089-4. doi: 10.1007/978-3-030-43089-4_25. URL
https://doi.org/10.1007/978-3-030-43089-4_25.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Operations
Research. Springer, New York, 2 edition, 2006. ISBN 978-0-387-30303-1.

Katsuhiko Ogata. Modern Control Engineering. Prentice Hall PTR, USA, 4th edition, 2001. ISBN
0130609072.

Giulia Piovan and Katie Byl. Approximation and control of the slip model dynamics via partial
feedback linearization and two-element leg actuation strategy. IEEE Transactions on Robotics,
32(2):399–412, 2016. doi: 10.1109/TRO.2016.2529649.

Michael Posa, Scott Kuindersma, and Russ Tedrake. Optimization and stabilization of trajectories
for constrained dynamical systems. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 1366–1373, 2016. doi: 10.1109/ICRA.2016.7487270.

Matthew J. Powell and Aaron D. Ames. Mechanics-based control of underactuated 3D robotic
walking: Dynamic gait generation under torque constraints. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 555–560, Daejeon, South Korea,
October 2016. IEEE. ISBN 978-1-5090-3762-9. doi: 10.1109/IROS.2016.7759108.

Jerry Pratt, John Carff, Sergey Drakunov, and Ambarish Goswami. Capture point: A step toward
humanoid push recovery. In 2006 6th IEEE-RAS International Conference on Humanoid Robots,
pages 200–207, 2006. doi: 10.1109/ICHR.2006.321385.

127

https://ieeexplore.ieee.org/document/9636009/?arnumber=9636009
https://doi.org/10.1007/978-3-030-43089-4_25

Marc H Raibert and H Benjamin Brown. Dynamically Stable Legged Locomotion. 1983.

Marc H. Raibert, H. Benjamin Brown, and Michael Chepponis. Experiments in Balance with a 3D
One-Legged Hopping Machine. The International Journal of Robotics Research, 3(2):75–92, June
1984. ISSN 0278-3649. doi: 10.1177/027836498400300207.

Jenna Reher and Aaron D. Ames. Inverse Dynamics Control of Compliant Hybrid Zero Dynamic
Walking. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages
2040–2047, May 2021. doi: 10.1109/ICRA48506.2021.9560906.

Jenna Reher, Eric A. Cousineau, Ayonga Hereid, Christian M. Hubicki, and Aaron D. Ames. Re-
alizing dynamic and efficient bipedal locomotion on the humanoid robot durus. In 2016 IEEE
International Conference on Robotics and Automation (ICRA), pages 1794–1801, 2016. doi:
10.1109/ICRA.2016.7487325.

Fanny Risbourg, Thomas Corbères, Pierre-Alexandre Léziart, Thomas Flayols, Nicolas Mansard,
and Steve Tonneau. Real-time Footstep Planning and Control of the Solo Quadruped Robot in 3D
Environments. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 12950–12956, October 2022. doi: 10.1109/IROS47612.2022.9981539.

Giulio Romualdi, Stefano Dafarra, Giuseppe L’Erario, Ines Sorrentino, Silvio Traversaro, and
Daniele Pucci. Online non-linear centroidal mpc for humanoid robot locomotion with step adjust-
ment. In 2022 International Conference on Robotics and Automation (ICRA), pages 10412–10419,
2022. doi: 10.1109/ICRA46639.2022.9811670.

Russ Tedrake and the Drake Development Team. Drake: Model-Based Design and Verification for
Robotics, 2019.

Ruwen Schnabel, Roland Wahl, and R. Klein. Efficient ransac for point-cloud shape detection.
Computer Graphics Forum, 26, 2007. URL https://api.semanticscholar.org/CorpusID:12349413.

Jaehyun Shim, Carlos Mastalli, Thomas Corbères, Steve Tonneau, Vladimir Ivan, and Sethu
Vijayakumar. Topology-Based MPC for Automatic Footstep Placement and Contact Sur-
face Selection. In 2023 IEEE International Conference on Robotics and Automation (ICRA),
pages 12226–12232, London, United Kingdom, May 2023. IEEE. ISBN 9798350323658. doi:
10.1109/ICRA48891.2023.10160333.

Jonah Siekmann, Kevin Green, John Warila, Alan Fern, and Jonathan Hurst. Blind Bipedal Stair
Traversal via Sim-to-Real Reinforcement Learning. In Robotics: Science and Systems XVII.
Robotics: Science and Systems Foundation, July 2021. ISBN 978-0-9923747-7-8. doi: 10.15607/
RSS.2021.XVII.061.

Jean-Pierre Sleiman, Farbod Farshidian, Maria Vittoria Minniti, and Marco Hutter. A unified mpc
framework for whole-body dynamic locomotion and manipulation. IEEE Robotics and Automation
Letters, 6(3):4688–4695, 2021. doi: 10.1109/LRA.2021.3068908.

128

https://api.semanticscholar.org/CorpusID:12349413

Daeun Song, Pierre Fernbach, Thomas Flayols, Andrea Del Prete, Nicolas Mansard, Steve Tonneau,
and Young J. Kim. Solving Footstep Planning as a Feasibility Problem Using L1-Norm Mini-
mization. IEEE Robotics and Automation Letters, 6(3):5961–5968, July 2021. ISSN 2377-3766.
doi: 10.1109/LRA.2021.3088797.

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: an operator splitting solver
for quadratic programs. Mathematical Programming Computation, 12(4):637–672, 2020. doi:
10.1007/s12532-020-00179-2. URL https://doi.org/10.1007/s12532-020-00179-2.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.html.

Reza Takapoui, Nicholas Moehle, Stephen Boyd, and Alberto Bemporad. A simple effective heuris-
tic for embedded mixed-integer quadratic programming. In 2016 American Control Conference
(ACC), pages 5619–5625, 2016. doi: 10.1109/ACC.2016.7526551.

Yuval Tassa, Nicolas Mansard, and Emo Todorov. Control-limited differential dynamic program-
ming. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages 1168–
1175, 2014. doi: 10.1109/ICRA.2014.6907001.

Russ Tedrake. Underactuated Robotics. 2023. URL https://underactuated.csail.mit.edu.

Russ Tedrake, Scott Kuindersma, Robin Deits, and Kanako Miura. A closed-form solution for
real-time zmp gait generation and feedback stabilization. In 2015 IEEE-RAS 15th International
Conference on Humanoid Robots (Humanoids), pages 936–940, 2015. doi: 10.1109/HUMANOIDS.
2015.7363473.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ international conference on intelligent robots and systems (IROS), pages 23–30. IEEE,
2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Steve Tonneau, Daeun Song, Pierre Fernbach, Nicolas Mansard, Michel Taix, and Andrea Del Prete.
SL1M: Sparse L1-norm Minimization for contact planning on uneven terrain. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 6604–6610, Paris, France,
May 2020. IEEE. ISBN 978-1-72817-395-5. doi: 10.1109/ICRA40945.2020.9197371.

Patrick M. Wensing and David E. Orin. Generation of dynamic humanoid behaviors through task-
space control with conic optimization. In 2013 IEEE International Conference on Robotics and
Automation, pages 3103–3109, May 2013a. doi: 10.1109/ICRA.2013.6631008.

129

https://doi.org/10.1007/s12532-020-00179-2
http://incompleteideas.net/book/the-book-2nd.html
https://underactuated.csail.mit.edu

Patrick M. Wensing and David E. Orin. High-speed humanoid running through control with a
3d-slip model. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5134–5140, 2013b. doi: 10.1109/IROS.2013.6697099.

Patrick M Wensing, Michael Posa, Yue Hu, Adrien Escande, Nicolas Mansard, and Andrea
Del Prete. Optimization-based control for dynamic legged robots. IEEE Transactions on
Robotics (TRO), October 2023. doi: 10.1109/TRO.2023.3324580. URL https://ieeexplore.ieee.
org/document/10286076.

Eric R. Westervelt, Jessy W. Grizzle, and Daniel E. Koditschek. Hybrid zero dynamics of planar
biped walkers. IEEE transactions on automatic control, 48(1):42–56, 2003.

Eric R. Westervelt, Jessy W. Grizzle, Christine Chevallereau, Jun Ho Choi, and Benjamin Morris.
Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, 1 edition, 2007. doi: 10.
1201/9781420053739.

David Wisth, Marco Camurri, and Maurice Fallon. Vilens: Visual, inertial, lidar, and leg odometry
for all-terrain legged robots. IEEE Transactions on Robotics, 39(1):309–326, 2023. doi: 10.1109/
TRO.2022.3193788.

Zhaoyang Xiang, Victor Paredes, and Ayonga Hereid. Adaptive Step Duration for Precise Foot
Placement: Achieving Robust Bipedal Locomotion on Terrains with Restricted Footholds, March
2024.

Xiaobin Xiong and Aaron Ames. 3-D Underactuated Bipedal Walking via H-LIP Based Gait Syn-
thesis and Stepping Stabilization. IEEE Transactions on Robotics, 38(4):2405–2425, August 2022.
ISSN 1941-0468. doi: 10.1109/TRO.2022.3150219.

Haoru Xue, Chaoyi Pan, Zeji Yi, Guannan Qu, and Guanya Shi. Full-order sampling-based mpc for
torque-level locomotion control via diffusion-style annealing, 2024. URL https://arxiv.org/abs/
2409.15610.

Will Yang and Michael Posa. Dynamic on-palm manipulation via controlled sliding. In Robotics:
Science and Systems (RSS), July 2024. URL https://roboticsconference.org/program/papers/
12/.

William Yang and Michael Posa. Impact-invariant control: Maximizing control authority during
impacts. arXiv preprint arXiv:2303.00817, 2023.

Shangqun Yu, Nisal Perera, Daniel Marew, and Donghyun Kim. Learning generic and dynamic
locomotion of humanoids across discrete terrains. arXiv preprint arXiv:2405.17227, 2024.

Ziyi Zhou, Qian Meng, Hadas Kress-Gazit, and Ye Zhao. Physically-feasible reactive synthesis
for terrain-adaptive locomotion via trajectory optimization and symbolic repair, 2025. URL
https://arxiv.org/abs/2503.03071.

130

https://ieeexplore.ieee.org/document/10286076
https://ieeexplore.ieee.org/document/10286076
https://arxiv.org/abs/2409.15610
https://arxiv.org/abs/2409.15610
https://roboticsconference.org/program/papers/12/
https://roboticsconference.org/program/papers/12/
https://arxiv.org/abs/2503.03071

	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	Bipedal Robot Terminology
	Related Work
	Background
	Model Predictive Footstep Control
	Stable Steppability Segmentation and Convex Decomposition
	Full-Stack Perceptive Locomotion Experiments
	Cascaded Fidelity MPFC
	Conclusions and Future Work
	ALIP MPFC IMPLEMENTATION DETAILS
	MPFC AND S3 PARAMETERS
	ADMM DERIVATION WITH WEIGHTED PROJECTION
	CASCADED FIDELITY MPFC GAINS
	BIBLIOGRAPHY

