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Abstract— We propose a hybrid model predictive control algo-
rithm, consensus complementarity control (C3), for systems that
make and break contact with their environment. Many state-
of-the-art controllers for tasks which require initiating contact
with the environment, such as locomotion and manipulation,
require a priori mode schedules or are so computationally
complex that they cannot run at real-time rates. We present a
method, based on the alternating direction method of multipli-
ers (ADMM), capable of high-speed reasoning over potential
contact events. Via a consensus formulation, our approach
enables parallelization of the contact scheduling problem. We
validate our results on three numerical examples, including two
frictional contact problems, and physical experimentation on an
underactuated multi-contact system.

I. INTRODUCTION

For many important tasks such as manipulation and loco-
motion, robots need to make and break contact with the
environment. Even though such multi-contact systems are
common, they are notoriously hard to control. The main
challenge is finding policies and/or trajectories that explicitly
consider the interaction of the robot with its environment
in order to enable stable, robust motion. For a wide range
of problems, it is computationally challenging to discover
control policies and/or trajectories [1] and the methods are
not suitable for running in real-time speeds for complex
problems.

Model predictive control (MPC) is one of the most powerful
tools for automatic control [2], [3]. Predominant in robotics
are MPC-based methods utilizing linearization, leading to
quadratic programs which can be solved efficiently [4],
[5]. However, for multi-contact systems, the algorithm must
also decide when to initiate or break contact. As a result,
linearizations are no longer appropriate and a hybrid formu-
lation is required.

When linearizations are not viable, the resulting MPC algo-
rithm includes the hybrid elements that result from making
and breaking of contact. Due to the computational com-
plexity of hybrid MPC, these methods can use a predefined
sequence of contacts [6], [7], specialize for legged systems
[8], [9], [10], [11], quasi-static manipulation [12], rely on
an offline phase [13], [14], or approximate the dynamics via
smooth contact models and change the dynamics (diagonal
approximations of contact matrix) to enable high perfor-
mance [15], [16], [17]. An unifying theme across much of
prior work is that these approaches require significant domain
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knowledge for simplifying the search for appropriate mode
sequences. On the other hand, developing MPC based control
techniques that can reason about contact events and that
do not require domain knowledge is a much harder task.
Marcucci and Tedrake [18] utilize mixed-integer program-
ming to optimize over control actions and mode sequences,
but the method requires significant online computation time.
Recently, contact-implicit control with a primal-dual interior-
point method has been explored with impressive results on
simulation but few details are available and the method has
not yet been validated on a physical system [19]. Operator
splitting has been used for solving hybrid MPC problems,
with local guarantees, but this approach is not suitable for
multi-contact control due to exponential increase in the
number of constraints based on number of contacts [20].

In contrast to prior work, here we focus on a specific
structure in multi-contact robotics and exploit this structure
via ADMM [21]. It has been explored for general mixed
integer programs [22], [23], [24] but has not been explored
for multi-contact systems. In this work, we will focus on
local linear complementarity system [25] approximations of
the nonlinear plants and explore ADMM for this particular
class of multi-contact systems.

The primary contribution of this paper is an algorithm, con-
sensus complementarity control (C3), for solving the hybrid
MPC problem approximately for multi-contact systems. We
exploit the distributed nature of ADMM and demonstrate
that the hard part of the problem, reasoning about contact
events, can be parallelized. This enables our algorithm to
be fast (∼ 16 Hz for a system with ten states and three
contacts), robust to disturbances and also minimizes the
effect of control horizon on the run-time of the algorithm.
We also demonstrate the effectiveness of our method on
numerical examples and present results on a hardware setup.
Experimental validation of contact-implicit MPC algorithms
is extremely rare. To the best of our knowledge, these are
the first real-time control results on an underactuated system
as complex and dynamic as the hybrid cart-pole.

II. BACKGROUND

The function IA is the 0 − ∞ indicator function for an
arbitrary setA such that IA(z) = 0 if z ∈ A and IA(z) =∞
if z /∈ A. N0 denotes natural numbers with zero.

A. Linear Complementarity Problem

In this work, we utilize complementarity problems to rep-
resent the contact forces. These models are common in
modeling multi-contact robotics problems [26] and can also



be efficiently learned from data [27]. The theory of linear
complementarity problems (LCP) is well established [28].

Definition 1: Given a vector q ∈ Rm, and a matrix
F ∈ Rm×m, the LCP(q, F ) describes the following math-
ematical program:

find λ ∈ Rm

subject to y = Fλ+ q,

0 ≤ λ ⊥ y ≥ 0.

Here, the vector λ typically represents the contact forces
and slack variables ([26]), y represents the gap function and
orthogonality constraint embeds the hybrid structure.

B. Linear Complementarity Systems

Linear complementarity systems (LCS) are useful because
they formulate the discrete-time dynamics of a multi-contact
system. We define an LCS as a difference equation coupled
with a variable that is the solution of an LCP.

Definition 2: A linear complementarity system describes the
trajectories (xk)k∈N0

and (λk)k∈N0
for an input sequence

(uk)k∈N0
starting from x0 such that

xk+1 = Axk +Buk +Dλk + d,

0 ≤ λk ⊥ Exk + Fλk +Huk + c ≥ 0,
(1)

where xk ∈ Rnx , λk ∈ Rnλ , uk ∈ Rnu , A ∈ Rnx×nx ,
B ∈ Rnx×nu , D ∈ Rnx×nλ , d ∈ Rnx , E ∈ Rnλ×nx , F ∈
Rnx×nλ , H ∈ Rnλ×nu and c ∈ Rnλ .

For a given k, xk and uk, the corresponding complementarity
variable λk can be found by solving LCP(Exk+Huk+c, F )
(see Definition 1). Similarly, xk+1 can be computed using
the first equation in (1) when xk, uk and λk are known. We
focus on cases where (xk)k∈N0

is unique, and note that this
holds for the examples in the paper. While non-uniqueness
can arise due to rigidity [29], control in these pathological
settings is outside the scope of this paper.

III. MODEL PREDICTIVE CONTROL OF MULTI-CONTACT
SYSTEMS

A. Problem Formulation

In this work, we want to solve the following mathematical
optimization problem:

min
xk,λk,uk

N−1∑
k=0

(xTkQkxk + uTkRkuk) + xTNQNxN

s.t. xk+1 = Axk +Buk +Dλk + d,

Exk + Fλk +Huk + c ≥ 0,

λk ≥ 0,

λTk (Exk + Fλk +Huk + c) = 0,

(x,λ,u) ∈ C,
for k = 0, . . . , N − 1, given x0,

(2)

where N is the planning horizon, Qk, QN are positive
semidefinite matrices, Rk are positive definite matrices and

C is a convex set (e.g. input bounds, safety constraints,
or goal conditions) and xT = [xT1 , . . . , x

T
N ], λT =

[λT0 , λ
T
1 , . . . , λ

T
N−1], u

T = [uT0 , u
T
1 , . . . , u

T
N−1].

Given x0, one solves the optimization (2) and applies u0
to the plant and repeats the process in every time step in a
receding horizon manner.

B. Mixed Integer Formulation

One straightforward, but computationally expensive, ap-
proach to solving (2) is via a mixed integer formulation
which exchanges the non-convex orthogonality constraints
for binary variables:

min
xk,λk,uk,sk

N−1∑
k=0

(xTkQkxk + uTkRkuk) + xTNQNxN

s.t. xk+1 = Axk +Buk +Dλk + d,

Msk ≥ Exk + Fλk +Huk + c ≥ 0,

M(1− sk) ≥ λk ≥ 0,

(x,λ,u) ∈ C, sk ∈ {0, 1}nλ ,
for k = 0, . . . , N − 1, given x0,

(3)

where 1 is a vector of ones, M is a scalar used for the big
M method and sk are the binary variables. This approach
requires solving 2Nnλ quadratic programs as a worst case.
This method is popular because, in practice, it is much faster
than this worst case analysis. Even still, for the multi-contact
problems explored in this work, directly solving (3) via state-
of-the-art commercial solvers remains too slow for real-time
control. Methods that learn the MIQP problem offline are
promising, but this line of work requires large-scale training
on every problem instance [30], [14].

C. Consensus Complementarity Control (C3)

Utilizing ADMM, we will solve (2) more quickly than
with mixed integer formulations. Since the problem we are
addressing is non-convex, our method is not guaranteed to
find the global solution or converge unlike MIQP-based
approaches, but is significantly faster. We rewrite (2), equiv-
alently, in the consensus form [24] where we create copies
(named δk) of variables zTk = [xTk , λ

T
k , u

T
k ] and move the

constraints into the objective function using 0−∞ indicator
functions:

min
z

c(z) + ID(z) + IC(z) +
N−1∑
k=0

IHk(δk)

s.t. zk = δk, ∀k,
(4)

where zT = [zT0 , z
T
1 , . . . , z

T
N ], c(z) is the cost function in

(2), the set D includes the dynamics constraints:

∩N−1k=0 {z : xk+1 = Axk +Buk +Dλk + d},

the sets Hk represent the LCP (contact) constraints:

Hk = {(xk, λk, uk) : Exk + Fλk +Huk + c ≥ 0,

λk ≥ 0, λTk (Exk + Fλk +Huk + c) = 0}.



Note that we leverage the time-dependent structure in the
complementarity constraints to separate δk’s.

The general augmented Lagrangian ([21], Section 3.4.2.) for
the problem in consensus form (4) is:

L(z, δ, w) = c(z) + ID(z) + IC(z)

+

N−1∑
i=0

(
IHk(δk) + (rTkGkrk − wTkGkwk)

)
,

where wT = [wT0 , w
T
1 , . . . , w

T
N−1], wk are scaled dual

variables, rk = zk−δk+wk, Gk is a positive definite matrix,
and δT = [δT0 , δ

T
1 , . . . , δ

T
N−1]. Observe that the standard

augmented Lagrangian [24] is recovered for Gk = ρkI .

In order to solve (4), we apply the classical ADMM algo-
rithm, consisting of the following operations:

zi+1 = argminzL(z, δi0, . . . , δiN−1, wi1, . . . wiN−1), (5)

δi+1
k = argminδkL(z

i+1, . . . , δk, . . . , δ
i
N−1, w

i
0, . . . w

i
N−1),

(6)

wi+1
k = wik + zi+1

k − δi+1
k . (7)

Here, (5) requires solving a quadratic program, (6) is a
projection onto the LCP constraints and (7) is a dual variable
update. Next, we analyze these operations in the given order.
1) Quadratic Step: Equation (5) can be represented by the
convex quadratic program

min
z

c(z) +

N−1∑
i=0

(zk − δik + wik)
TGk(zk − δik + wik)

s.t. z ∈ D ∩ C.
(8)

The linear dynamics constraints are captured by the set
D, and the convex inequality constraints on states, inputs,
contact forces are captured by C. The complementarity
constraints do not explicitly appear, but their influence is
found, iteratively, through the variables δik.

The QP in (8) can be solved quickly via off-the-shelf solvers
and is analogous to solving the MPC problem for a linear
system without contact.
2) Projection Step: This step requires projecting onto the
LCP constraints Hk and is the most challenging part of the
problem. (6) can be represented with the following quadratic
program with a non-convex constraint:

min
δk

(δk − (zi+1
k + wik))

TGk(δk − (zi+1
k + wik))

s.t. δk ∈ Hk,
(9)

where δk = [(δxk)
T , (δλk )

T , (δuk )
T ]. In our setting, we will

consider three different projections. Two are approximate
projections, common for minimization problems over non-
convex sets [31].

Algorithm 1 Consensus Complementarity Control (C3)
Require: δ0k, w0

k, Gk, D, θ, ρk, N, x0
Initialization : i = 1

1: while i ≤ θ do
2: Compute zi+1 via (8)
3: Compute δi+1

k via (10), ∀k
4: wi+1

k ← wik + zi+1
k − δi+1

k ,∀k
5: Gk ← ρkGk,∀k
6: wk ← wk/ρk,∀k
7: end while
8: return u0

a) MIQP Projection: The projection can be calculated by
exactly formulating (9) as a small-scale MIQP

min
δk

(δk − (zi+1
k + wik))

TU(δk − (zi+1
k + wik))

s.t. Eδxk + Fδλk +Hδuk + c ≥ 0,

δλk ≥ 0,

(δλk )
T (Eδxk + Fδλk +Hδuk + c) = 0,

(10)

where U is a positive semi-definite matrix. This is a non-
convex QP due to the last (orthogonality) constraint. For
U = Gk, one recovers the problem in (9); however, in our
experience, we found significantly improved performance
using alternate, but fixed, choices for U . Observe that while
(10) is non-convex, it is written only in terms of variables
corresponding to a single time step k. While the original
MIQP formulation in (3) has Nnλ binary variables, here
we have N independent problems, each with nλ binary
variables. This decoupling leads to dramatically improved
performance (worst-case N2N vs 2Nnλ ).
b) LCP Projection: In cases where (10) cannot be solved
quickly enough, we propose two approximate solutions with
faster run-time. Consider the limiting case where U has no
penalty on the force elements. Here, (10) can be solved with
optimal objective value of 0 by setting δxk = z

(i+1),x
k +w

(i),x
k

and δuk = z
(i+1),u
k +w

(i),u
k . Then, δλk can be found by solving

LCP(Eδxk +Hδ
u
k + c, F ). We note that this projection is dif-

ferent than shooting based methods since we are simulating
the z(i+1),x,u

k + w
(i),x,u
k instead of z(i+1),x,u

k .
c) ADMM Projection: We note that (10) is a quadratically
constrained quadratic program, where prior work has solved
problems of this form using ADMM [24]. This leads to
nested ADMM algorithms, but this formulation can pro-
duce faster solutions than MIQP solvers without guarantees
that it produces a feasible or optimal value. Note that
this formulation fared poorly when applied directly to the
original problem (2), rarely satisfying the complementarity
constraints.

Solving the full MIQP (10) typically is the best at exploring
a wide range of modes, while the LCP projection is usually
fastest (depending on matrix F ). ADMM projection can be
viewed as a middle ground.

After discussing each of the individual steps, we present the



TABLE I
PROJECTION RUN-TIME AND AVERAGED COST-TO-GO

Projection Method Mean ± Std (s) Cost
LCP 1.4 · 10−5 ± 1.8 · 10−6 19.16

MIQP 1 · 10−3 ± 1.2 · 10−4 27.28

ADMM 5.3 · 10−4 ± 3.3 · 10−5 33.58

full C3 algorithm (Algorithm 1). Here, both δ0k and w0
k are

usually initialized as zero vectors. Gk are positive definite
matrices, θ > 0 is the number of ADMM steps, ρk > 0 is the
penalty parameter. Given an horizon N , and an initial state
x0, the algorithm returns u0 which is applied to the system.
This procedure is repeated in every time step as in receding
horizon controllers. In the interest of real-time rates, we run
a fixed number of ADMM steps (θ).

IV. NUMERICAL EXAMPLES

For these results, OSQP [32] is used to solve quadratic pro-
grams and Gurobi [33] is used for mixed integer programs.
PATH [34] and Lemke’s algorihm have been used to solve
LCP’s. SI units (meter, kilogram, second) are used. For all
the examples, Gk = ρkGk−1 is used where G0 = G is
positive definite. The experiments are done on a desktop
computer with the processor Intel i7-11800H and 16GB
RAM. Reported run-times include all steps in the algorithm.
Aside from these third-party solvers, code was implemented
in Python. We expect that further improvements in runtime
would be achievable using C++. The code for all examples is
available1. Experiments are also shown in the supplementary
video.

A. Cart-pole with Soft Walls

We consider a cart-pole that can interact with soft walls as
in [18], [35]. This is a benchmark in contact-based control
algorithms. Here, x(1) represents the position of the cart, x(2)

represents the position of the pole and x(3), x(4) represent
their velocities respectively. The forces that affect the pole
are described by λ(1) and λ(2) for right and left walls
respectively.

The model is linearized around x(2) = 0 where mc = 0.978
is the mass of the cart, mp = 0.411 is the combined mass
of the pole and the rod, lp = 0.6 is the length of the pole,
lc = 0.4267 is the length of the center of mass position, k1 =
k2 = 50 are the stiffness parameter of the walls, d = 0.35
is the distance between the origin and the soft walls. Then,
we discretize the dynamics using the explicit Euler method
with time step Ts = 0.01 to obtain the system matrices and
use the model in [35]. We note that the MIQP formulation
(as in (3)) runs at approximately 10 Hz.

We design a controller where θ = 10, G = 0.1I , ρk = 2, and
N = 10. There is a clear trade-off between solve time and
planning horizon [36]. We test all three projection methods
described in Section III and report run-times (single solve of
(10)) on Table I averaged for 1000 solves. We also report

1https://github.com/AlpAydinoglu/coptimal

Fig. 1. Lifting an object using two grippers indicated by red circles. The
soft limits where the grippers should not cross are indicated by yellow lines.

the average of cost-to-go value assuming all of the methods
can run at 100 Hz (only the MIQP projection cannot). Even
though the MIQP projection is usually better at exploring
new contacts, it does not always result in a better cost. We
note that the controller can run slightly faster than 240 Hz
if LCP-based projection is used. For this example, the QP in
(8) has no inequality constraints and can therefore the KKT
conditions can be directly solved.

B. Finger Gaiting

Next, we lift a rigid object upwards using four fingers. The
setup for this problem is illustrated in Figure 1. The red
circles indicate where the grippers interact the object and
we assume that the grippers are always near the surface of
the object and the force they apply on the object can be
controlled. This force affects the friction between the object
and grippers. Since the grippers never leave the surface, we
assume that there is no rotation. The goal of this task is to
lift the object vertically, while the fingers are constrained to
stay close to their original locations (soft constraints shown
in yellow). This task, therefore, requires finger gaiting to
achieve large vertical motion of the object.

We use the formulation in [26] for modeling the system and
denote the positions of the grippers as g(1), g(2) respectively
and position of the object as o. We choose g = 9.81 as
gravitational acceleration and µ = 1 is the coefficient of
friction for both grippers.

We design a two different controllers based on Algorithm

Fig. 2. Finger gaiting with θ = 10. Blue shading implies that gripper
1 is applying normal force to the object whereas red shading implies that
gripper 2 is applying normal force.



1 where G = I , N = 10. Both controllers use the MIQP
projection method since other two projection methods failed
to find stable motions. For this example, we use θ = 10,
ρk = 1.2. Parallelization leads to ≈ 2.5x speedup for this
particular example and we are able to run at 10 Hz. We also
enforce limits:

1 ≤ g(1) ≤ 3, ∀k,
3 ≤ g(2) ≤ 5, ∀k.

We performed 100 trials starting from different initial condi-
tions where o(0) ∼ U [−6,−8], g(1)(0) ∼ U [2, 3] , g(2)(0) ∼
U [3, 4] are uniformly distributed and both the grippers and
the object have zero initial speed. The controller managed
to stabilize the system in all cases. As seen in Figure 2, the
grippers first throw the object into the air and then catch it
followed by some finger gaiting.

C. Pivoting

In this example, we consider pivoting a rigid object that can
make and break contact with the ground inspired by Hogan
et. al [37]. Two fingers (indicated via blue) interact with the
object as in Figure 3. The goal is to balance the rigid-object
at the midpoint.

The positions of the fingers with respect to the object are
described via f1, f2 respectively. The normal force that the
fingers exert onto the box can be controlled. The center of
mass position is denoted by x and y respectively, α denotes
the angle with the ground and w = 1, h = 1 are the
dimensions of the object. The coefficient of friction for the
fingers are µ1 = µ2 = 0.1, and the coefficient of friction with
the ground is µ3 = 1. We take the gravitational acceleration
as g = 9.81 and mass of the object as m = 1. The fingers
start close to the pivot point where f1 = −0.3, f2 = −0.7
and the objects configuration is given by x = 0, y = 1.36 and
α = 0.2. The goal is to balance the object at the midpoint
(x = 0, y =

√
2, α = π/4) while simultaneously moving

the fingers towards the end of the object (f1 = f2 = 0.9).

We model the system using an implicit time-stepping scheme
[26]. The system has 3 contacts, where the finger contacts
are represented by 3 complementarity variables each, and the

Fig. 3. Pivoting a rigid object with two fingers (blue). The object can
make and break contact with the ground and gray areas represent the friction
cones.

Fig. 4. Pivoting example, Gaussian disturbances with standard deviations
σ. Blue shading implies that gripper 1 is applying normal force to the object
whereas red shading implies that gripper 2 is applying normal force.

ground contact is modeled via 4 complementarity variables.
The system has ten states (nx = 10), 10 complementarity
variables (nλ = 10) and 4 inputs (nu = 4). More concretely,
it has 36 hybrid modes.

For this example, as the LCS-representation is only an
approximation, we compute a new local LCS approximation
at every time step k. We pick θ = 5, N = 10, ρk = 1.1
and use the local LCS approximation given at time-step k
while planning. Parallelization leads to ≈ 4x speedup for this
particular example and controller can run around 16 Hz.

Figure 4 demonstrates the robustness of the controller for
different Gaussian disturbances (added to dynamics) with
standard deviations (for σ = 0.1, 0.5). Note that at every
time step, all positions and velocities (including angular)
are affected by the process noise. The object approximately
reaches the desired configuration (midpoint where α = π

4 )
for σ = 0, 0.05, 0.1 and starts failing to get close to the
desired configuration for σ = 0.5. Plots with σ = 0 and
σ = 0.05 are omitted as those were similar to the one with
σ = 0.1. We emphasize that the process noise causes un-
planned mode changes and the controller seamlessly reacts.
This example demonstrates that our method works well with
successive linearizations as many multi-contact systems can
not be captured via a single LCS approximation.

V. EXPERIMENTAL VALIDATION

We test the multi-contact MPC algorithm on an experimental
cart-pole system with soft walls shown in Figure 5 replicating
the system described in IV-A. A DC motor with a belt drive
generates the linear motion of the cart. Soft walls are made
of open-cell polyurethane foam.

We consider the linear model as in IV-A (also used in [35])
where mc = 0.978 is the mass of the cart, mp = 0.411 is
the mass of the pole and the rod, lp = 0.6 is the length of
the pole, lc = 0.4267 is the length of the center of mass
position, k1 = k2 = 100 are the stiffness parameters of the
walls and d = 0.39 is the distance between the origin and
walls.



Fig. 5. Experimental setup for cart-pole with soft walls.

The parameters of the MPC algorithm are N = 10, ρ = 2.3,
θ = 10, and G = 0.5I . We use the LCP-based projection
method, and solve the quadratic programs via utilizing the
KKT system. We note that the algorithm is capable of
running faster than 240 Hz as mentioned previously, but due
to high communication delays between our motor controller
and computer, we run the system at 100 Hz. In Figure 6, we
illustrate, for one particular state, the evolution of the contact
force throughout the ADMM process (at ADMM steps 1, 3,
and 10). Notice that as the the algorithm progresses, contact
forces become more realistic.

We initialize the cart at the origin and introduce random
perturbations to cover a wide range of initial conditions that
lead to contact events. Specifically, we start the cart-pole at
the origin where our controller is active. Then, we apply
an input disturbance ud ∼ U [10, 15] for 250 ms to force
contact events. We repeated this experiment 10 times and
our controller managed to stabilize the system in all trials.

To empirically evaluate the gap between C3, which is sub-
optimal, and true solutions to (2), and to assess the impact
of modeling errors, we report the cost-to-go values for our
method, MIQP solution (as in (3)), and the actual observed
states. More precisely, given the current state of the nonlinear
plant, we calculate the cost as in (2) using the inputs
recovered from both the C3 algorithm and MIQP algorithm.

Fig. 6. Evolution of contact force and complementarity violation during
ADMM iteration when the cart is close to a contact surface.

Fig. 7. Cost-to-go values for the cart-pole experiment.

Since C3 algorithm is not guaranteed to produce a (x, u, λ)
that strictly satisfies complementarity, the predicted cost may
not match the simulated cost once u is applied. For the actual
plant, we use the data from N steps into the future and calcu-
late the same cost. Notice that even though the cost-to-go of
MIQP solution is always lower, as expected, the optimality
gap is fairly small. This highlights that C3 finds near-optimal
solutions, at least for this particular problem. Also, notice
that the actual cost-to-go matches the planned one which
further motivates the applicability of LCS representations in
model-based control for nonlinear multi-contact systems.

VI. CONCLUSION

In this work, we present an algorithm, C3, for model
predictive control of multi-contact systems. The algorithm
relies on solving QP’s accompanied by projections and both
can be solved efficiently for multi-contact systems. The
effectiveness of our approach is verified on three numerical
examples and our results are validated on an experimental
setup. For fairly complex examples with frictional contact,
our method has a fast run-time. We also demonstrate with
the experiment that our heuristic can find close-to-optimal
strategies.

The framework tackles the hybrid MPC problem by shift-
ing the complexity to the projection sub-problems. While
projections are decoupled in time, they are still difficult
to solve. Here, we demonstrate three potential approaches
to this projection stage, but exploring alternative heuristics
is of future interest. In addition, the choice of parameters
(such as G and U ) greatly affects the performance of the
algorithm and exploring different approaches for deciding on
parameters is of future interest too. Further evaluation, for
instance on true dexterous manipulation, and the integration
with learned models [27] is in the scope of future work.
Additionally, we anticipate that code optimization will lead
significant improvements (3x or more) in control rate.
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