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ABSTRACT

CONTROL OF MULTI-CONTACT SYSTEMS VIA LOCAL HYBRID MODELS

Alp Aydinoglu

Michael Posa

For many important tasks such as manipulation and locomotion, robots need to make and break

contact with their environment. Although such multi-contact systems are common, they pose a

significant challenge when it comes to analysis and control. This difficulty primarily stems from

two key factors: 1) the rapid increase in the number of possible ways that a system can move or

behave as the number of contacts increase (as a result of the hybrid structure), and 2) the inherent

nonlinearities present in the system’s dynamics. As a result, for tasks which require initiating

contact with the environment, many state-of-the-art methods struggle as the number of contacts

increase.

Considering the substantial difficulty of multi-contact problems, it’s only natural to raise the ques-

tion: How can we solve such problems? In addressing this query, this thesis directs its attention

toward the simplification of multi-contact problems. It does so by concentrating on local hybrid

approximations, wherein the non-smooth, hybrid structure is retained, while linearizing the smooth

elements within the dynamics to mitigate the complexities arising from nonlinearities. As a result,

we focus on local hybrid models called linear complementarity systems which are simple models

that qualitatively capture the underlying non-smooth, hybrid structure.

Employing these local hybrid models, this thesis presents scalable and fast algorithmic solutions

for challenging multi-contact problems. First, we present the first real-time MPC framework for

multi-contact manipulation. The method is based on the alternating direction method of multipli-

ers (ADMM) and is capable of high-speed reasoning over potential contact events. Then, we focus

on utilizing tactile measurements for reactive control, which is very natural yet underexplored in

the robotics community. We propose a control framework to design tactile feedback policies for
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multi-contact systems by exploiting the local complementarity structure of contact dynamics. This

framework can close the loop on tactile sensors and it is non-combinatorial, enabling optimiza-

tion algorithms to automatically synthesize provably stable control policies. Then, inspired by the

connection between rectified linear unit (ReLU) activation functions and linear complementarity

problems, we present a method to analyze stability of multi-contact systems in feedback with ReLU

network controllers.
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CHAPTER 1

INTRODUCTION

In recent years, robotic automation has excelled in dealing with repetitive tasks in static and struc-

tured environments. On the other hand, as robots slowly become an integral part of our society,

some will operate alongside humans, such as caring for elderly people, and most will need to per-

form in complex, unstructured environments in an agile manner. To achieve the promise of the field,

robots must effectively and safely reason about the physical interactions between themselves and

the environment (e.g. people, robots, inanimate objects). We refer to such physical interactions as

contact and many important tasks require reasoning about multiple contact interactions and are

multi-contact in nature. For example, dexterous manipulation and legged locomotion, fundamen-

tally require intentionally initiating contact with the environment to achieve positive results.

Even though multi-contact systems are common, they are notoriously hard to analyze or control

(Bemporad et al., 2000; Lauer, 2015), primarily because of two main reasons: 1) the rapid increase

in the number of possible ways that a system can move or behave as the number of contacts increase

(hybrid structure), 2) inherent nonlinearities in dynamics. To clarify the first point, consider the

task of pushing a box standing on a table. This simple system has three modes : sliding left,

sliding right and sticking. Now assume that one wants to plan a trajectory looking ten steps

ahead into the future. There are roughly sixty thousand potential outcomes one needs to consider

because there is a need to decide if the box is sliding left, sliding right or sticking at every planning

step. This is not surprising as a trajectory optimization problem with a multi-contact system is

an NP-hard problem (Pia et al., 2017). Regardless of these difficulties, researchers have developed

methods to perform stability analysis, design feedback control policies and discover interesting

trajectories (Johansson, 2003; Ferrari-Trecate et al., 2002; Posa et al., 2015, 2014; Pang et al., 2023;

Shirai et al., 2022; Önol et al., 2019; Winkler et al., 2018; Cheng et al., 2022; Raghunathan et al.,

2022) but existing methods struggle as the number of contacts increase.

As multi-contact problems are extremely challenging, it is natural to ask: How can one simplify
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the problem in a meaningful way? Universally, the most straightforward way of simplifying a

dynamical system is via linearization (Kuznetsov et al., 1998). For smooth systems, linearization

is really effective as it captures the first-order behavior of the system around the chosen operating

point and unlike multi-contact systems there is no need to reason about neighboring modes. Also,

there are plethora of tools to analyze and control linear systems (Chen, 1995; Garcia et al., 1989;

Borrelli et al., 2017; Zhakatayev et al., 2017; Ding et al., 2019). However, for multi-contact systems,

it is critical to reason about making and breaking contact. Unfortunately, this is not possible

using linear models because inherently a linearization is local to a single mode (i.e. not hybrid).

Throughout the thesis, we demonstrate that non-smooth multi-contact dynamics fundamentally

cannot be captured by linearization and removing the hybrid structure is not meaningful.

In consideration of these challenges, this thesis focuses on simplifying the multi-contact problems

by focusing on local hybrid approximations where we keep the non-smooth, hybrid structure but

linearize the smooth components in the dynamics. As a result, we obtain local hybrid models called

linear complementarity systems (Heemels et al., 2000). Focusing on these simple but expressive

models, this thesis presents scalable and fast algorithmic solutions for challenging multi-contact

problems. We develop methods to solve (adaptive) model predictive control problems at real-time

rates, design tactile feedback controllers and perform stability analysis for multi-contact systems in

closed-loop with neural network controllers.

1.1. Outline and Contributions

We start in Chapter 2 and summarize works related to stability analysis, control and planning for

multi-contact systems.

In Chapter 3, we introduce the necessary background on multi-contact dynamics, linear comple-

mentarity problems, linear complementarity systems and sum-of-squares programming.

Our main contributions start with Chapter 4, where we present the first real-time MPC framework

for multi-contact manipulation. We propose an algorithm, consensus complementarity control (C3),

for solving the hybrid MPC problem approximately for multi-contact systems (Aydinoglu and Posa,
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2022; Aydinoglu et al., 2023). We exploit the distributed nature of ADMM (combined with LCS

approximations) and demonstrate that the hard part of the problem, reasoning about contact events,

can be parallelized. This enables our algorithm to be fast, robust to disturbances and also minimizes

the effect of control horizon on the run-time of the algorithm. In addition, we present a real-time

adaptive learning framework that combines consensus complementary control with LCS learning

(Jin et al., 2022). We also present state-of-the-art experimental results demonstrating real-time

multi-contact control on two different hardware setups, including use of a Franka Emika Panda arm

interacting with objects while frequently making and breaking contact.

In Chapter 5, we focus on utilizing tactile information for reactive control, which is very natural,

yet underexplored in the robotics community. Towards this goal, we present an optimization-

based numerical approach for designing control policies that use feedback on the contact forces

(Aydinoglu et al., 2020, 2021b). Using LCS approximations, the proposed framework can synthe-

size control policies utilizing state and force feedback. The policy is provably stabilizing even

during contact mode transitions for systems with possibly non-unique solutions. To achieve this,

we choose a structure for controller and Lyapunov function designed specifically to leverage the

complementarity structure of contact. The controller structure is non-combinatorial in nature and

avoids enumerating the exponential number of potential hybrid modes that might arise from con-

tact. More precisely, the contributions of each contact are additive, rather than combinatorial.

Inspired by both prior work (Posa et al., 2015) and (Camlibel et al., 2001), we synthesize and verify

a corresponding non-smooth, piecewise quadratic Lyapunov function. Additionally, we are able to

explicitly define sparsity patterns allowing us to design controllers for systems where the full state

information might be lacking, such as when the state of an object is unknown but tactile infor-

mation is available. We also present a polynomial optimization program (Section 5.4, (5.21)) that

can describe the non-unique solution sets of linear complementarity problems which is an impor-

tant sub-step for tackling frictional contact problems. We demonstrate our approach on multiple

numerical examples, including quasi-static friction problems and a high dimensional problem with

ten contacts. Lastly, we validate our results on an experimental setup and show the effectiveness of

the proposed method on an underactuated multi-contact system.
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In Chapter 6, inspired by the connection between ReLU functions and linear complementarity

problems, we develop a method to analyze linear complementarity systems in feedback with ReLU

network controllers (Aydinoglu et al., 2021a). Our starting point is to show that we can represent

ReLU neural networks as linear complementarity problems (Lemma 22). Next, we demonstrate that

linear complementarity systems with neural network controllers have an equivalent LCS represen-

tation. Then, we leverage the theory of stability analysis for complementarity systems and derive

the discrete time version of the results in (Camlibel et al., 2007). We describe the sufficient condi-

tions for stability in the form of Linear Matrix Inequalities (LMI’s). Denoting by N the number of

neurons in the network plus the number of complementarity variables in the LCS, the size of the

LMI’s scales linearly with N . Furthermore, the maximum possible number of decision variables in

our LMI scales quadratically with N .

We conclude in Chapter 7 with a summary and a discussion about the future challenges.
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CHAPTER 2

RELATED WORK

2.1. Multi-Contact Planning

Multi-contact robotics has drawn growing interest over the last decade (Wensing et al., 2022),

(Suomalainen et al., 2022). Early methods for both planning and control were focused on

known contact sequences and hierarchical planners (Park et al., 2007; Abe et al., 2007). Over

the course of the last decade, contact-implicit planners were developed (originally for offline mo-

tion synthesis (Posa et al., 2014)) and this body of work is growing rapidly (Önol et al., 2019),

(Manchester and Kuindersma, 2020). These were first paired with controllers designed to track the

planned mode (and limited to reasoning about that specific mode sequence) (Mastalli et al., 2020;

Sleiman et al., 2021).

Other approaches achieved real-time hybrid planning via utilizing task-specific model simplifica-

tions. Some of these methods specialize in legged systems (Bledt, 2020; Kuindersma et al., 2016;

Grandia et al., 2022) and focus on simplified dynamics models tailored for locomotion tasks, often

times combined with gait-scheduling heuristics. However, these methods rely heavily on application-

specific model simplifications and can not be applied across a wide range of robotics systems. Al-

ternative methods rely on an offline phase to reduce the search space. This can lead to efficient

real-time planning, but it requires a lengthy offline phase for each problem instance (Marcucci et al.,

2017; Hogan and Rodriguez, 2020; Cauligi et al., 2021; Zhu and Righetti, 2022). Others approxi-

mate the dynamics via smooth contact models and modify the dynamics (e.g. diagonal approx-

imation of Delassus operator) to enable high performance (Tassa et al., 2012; Koenemann et al.,

2015; Kumar et al., 2014). While such methods can perform well in simulation, they have not

been validated on hardware performing dynamic tasks that require constantly making and breaking

contact.

Building upon this growing body of literature, this thesis presents an approach to real-time generic

multi-contact MPC. In the preliminary version of our work (Aydinoglu and Posa, 2022), and in the
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related work (Cleac’h et al., 2023), there has been very recent progress in developing fast contact-

implicit MPC algorithms. While contact-implicit trajectory optimization approaches use global

models and can take minutes to solve (Posa et al., 2014; Önol et al., 2019), these novel approaches

focus on local hybrid models to significantly reduce the computational cost of optimal control. Le

Cleac’h/Howell et al. (Cleac’h et al., 2023) use a softened contact model in combination with a

custom primal-dual interior-point solver to achieve real-time rates. They focus on tracking a pre-

computed trajectory, which provides a nominal mode sequence to track (although their algorithm

can adapt this sequence online). In contrast, our approach (Section 4) is demonstrated to be fully

capable of mode sequence synthesis without the need for a nominal trajectory or any other offline

computations.

2.2. Adaptive MPC

Adaptive control focuses on real-time control of uncertain dynamical systems through adaptation

and learning (Annaswamy and Fradkov, 2021) and optimal control in this setting has been an on-

going research direction for many years (Becker et al., 1985). Researchers have developed robust

(adaptive) MPC methods (Tanaskovic et al., 2014; Fukushima et al., 2007; Weiss and Di Cairano,

2014; Desaraju et al., 2017). Also, there are multiple works that focus on applications such

as electric vehicles (Wang et al., 2018), climate control (Ma et al., 2012), wind turbine control

(Kou et al., 2016) or have combined adaptive control with MPC for applications on quadrotors

(Pereida and Schoellig, 2018). Similarly, there are multiple recent methods that perform adaptive

MPC under unknown noise distributions (Stamouli et al., 2022) or incorporate components from

adaptive control into learning-based MPC (Chee et al., 2023). (Guzman et al., 2022) presents an

adaptive MPC variant that automatically estimates control and model parameters by leveraging

ideas from Bayesian optimization performing manipulation tasks. Unlike our approach that focuses

on real-time adaptive MPC for systems that make and break contact, the authors focus on reaching

tasks avoiding any contact interaction.
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2.3. Tactile Feedback

The need for contact-aware control is driven, in part, by recent advances in tactile sensing (e.g

(Taylor et al., 2022; Guggenheim et al., 2017; Yuan et al., 2015; Kumar et al., 2016; Donlon et al.,

2018) and others). Given these advances, there has been ongoing research to design control policies

using tactile feedback for tasks that require making and breaking contact. However, these ap-

proaches are largely based on static assumptions, for instance with guarded moves (Howe, 1993), or

rely upon switching controllers (e.g. (Romano et al., 2011; Yamaguchi and Atkeson, 2016)). Other

recent methods incorporate tactile sensors within learning frameworks, though they offer no guar-

antees on stability (Merzic et al., 2018; Tian et al., 2019; Nadeau et al., 2020; Sunil et al., 2023;

Oller et al., 2023). By contrast to these methods, this thesis introduces an optimization-based nu-

merical approach for designing control policies that use feedback on the contact forces with provable

guarantees.

2.4. Analysis of Dynamical Systems with Neural Network Controllers

The connection between nonlinearities in neural networks and mathematical optimization has been

exploited recently in various contexts. In (Raghunathan et al., 2018; Fazlyab et al., 2019b,a) the

authors use quadratic constraints to describe ReLU activation functions followed by a semidefinite

relaxation to perform robustness analysis of ReLU networks. In (Fazlyab et al., 2019c), the authors

exploit the fact that all commonly used activation functions in deep learning are gradients of con-

vex potentials, hence they satisfy incremental quadratic constraints that can be used to bound the

global Lipschitz constant of feed-forward neural networks. The works (Dutta et al., 2019; Fan et al.,

2020; Tran et al., 2020) perform reachability analysis for closed-loop systems with neural network

controllers and (Sidrane and Kochenderfer, 2019) considers safety verification for such systems. The

work in (Amos and Kolter, 2017) integrates quadratic programs as end-to-end trainable deep net-

works to encode constraints and more complex dependencies between the hidden states. Yin et al.

(Yin et al., 2020) considers uncertain linear time-invariant systems with neural network controllers.

By over approximating the input-output map of the neural network and uncertainties by quadratic

and integral quadratic constraints, respectively, the authors develop an SDP whose solution yields
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quadratic Lyapunov functions. In (Chen et al., 2020) the authors develop a learning-based iterative

sample guided strategy based on the analytic center cutting plane method to search for Lyapunov

functions for piece-wise affine systems in feedback with ReLU networks where the generation of

samples relies on solving mixed-integer quadratic programs. In (Karg and Lucia, 2020), the authors

use a mixed-integer linear programming formulation to perform output range analysis of ReLU

neural networks and provide guarantees for constraint satisfaction and asymptotic stability of the

closed-loop system. Inspired by the previous work, we propose a method to analyze multi-contact

systems in feedback with ReLU network controllers.
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CHAPTER 3

BACKGROUND

3.1. Mathematical Definitions

We first introduce the some notation and definitions used throughout this thesis. For a positive

integer l, l̄ denotes the set {1, 2, . . . , l}. Given a matrix M ∈ R
k×l and two subsets I ⊆ k̄ and

J ⊆ l̄, we define MIJ = (mij)i∈I,j∈J . For the case where J = l̄, we use the shorthand notation

MI•. For two vectors a ∈ R
m and b ∈ R

m, the notation 0 ≤ a ⊥ b ≥ 0 is used to denote that

a ≥ 0, b ≥ 0, aT b = 0. The collection of all absolutely continuous functions on a closed interval

[α, β] is denoted as AC([α, β]). The indeterminates are denoted with bold vectors, e.g., x. The

function IA is the 0−∞ indicator function for an arbitrary set A such that IA(z) = 0 if z ∈ A and

IA(z) =∞ if z /∈ A. N0 denotes natural numbers with zero. For a positive semi-definite matrix Q,

Q1/2 denotes a matrix P such that PP = P TP = Q. The notation blkdiag(A0, . . . , AN ) denotes

a block diagonal matrix with entries in the given order (from top left (A0) to bottom right (AN )).

The notation diag(a0, . . . , aN ) is used if entries ai are scalars.

3.2. Linear Complementarity Problem

We utilize complementarity problems to represent the contact forces (detailed explanation in Section

3.4). The theory of linear complementarity problems (LCP) is well established (Cottle et al., 2009).

Definition 1. Given a vector q ∈ R
m, and a matrix F ∈ R

m×m, the LCP (q, F ) describes the

following mathematical program:

find λ ∈ R
m

subject to y = Fλ+ q,

0 ≤ λ ⊥ y ≥ 0.

Here, the vector λ typically represents the contact forces and slack variables (Stewart and Trinkle,
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2000), y represents the gap function and orthogonality constraint embeds the hybrid structure.

The solution set of the LCP (q, F ) is denoted by

SOL(q, F ) = {λ : y = Fλ+ q, 0 ≤ λ ⊥ y ≥ 0}.

The LCP(q, F ) may have multiple solutions or none at all. The cardinality of the solution set

SOL(q, F ) depends on the matrix F and the vector q. In particular, if F is a P-matrix, SOL(q, F )

is always a singleton.

Definition 2. A matrix F ∈ R
m×m is a P-matrix, if the determinant of all of its principal sub-

matrices are positive; that is, det(Fαα) > 0 for all α ⊆ {1, . . . ,m}.

Theorem 3. (Cottle et al., 2009) The solution set SOL(q, F ) is a singleton for all q if F is a

P-matrix.

If we denote the unique element of SOL(q, F ) as λ(q), then λ(q) is a piece-wise linear function of q.

We can describe this function explicitly as in (Camlibel et al., 2007). Consider y = Fλ(q) + q, and

define the index sets

α(q) = {i : λi(q) > 0 = yi},

β(q) = {i : λi(q) = 0 ≤ yi},

Then, λ(q) is equivalent to

λα(q) = −(Fαα)
−1Iα•q, λβ(q) = 0, (3.1)

where α = α(q) and β = β(q). Furthermore, λ(q) as in (3.1) is Lipschitz continuous since it is a

continuous piece-wise linear function of q (Scholtes, 2012).

3.3. Linear Complementarity System

We use linear complementarity systems (LCS) as local representations of multi-contact systems (see

Chapters 4, 5, 6). An LCS (Heemels et al., 2000) is a differential/difference equation coupled with

a variable that is the solution of an LCP. Next, we describe the discrete-time and continuous-time
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LCS formulations. In this thesis, we overload the term LCS and refer to both discrete-time and

continuous-time formulations as LCS as it is clear from the context which one we are referring.

3.3.1. Discrete-Time LCS

Definition 4. A discrete-time linear complementarity system describes the trajectories (xk)k∈N0

and (λk)k∈N0 for an input sequence (uk)k∈N0 starting from x0 such that

xk+1 = Axk +Buk +Dλk + d,

0 ≤ λk ⊥ Exk + Fλk +Huk + c ≥ 0,

(3.2)

where xk ∈ R
nx , λk ∈ R

nλ , uk ∈ R
nu , A ∈ R

nx×nx , B ∈ R
nx×nu , D ∈ R

nx×nλ , d ∈ R
nx ,

E ∈ R
nλ×nx , F ∈ R

nλ×nλ , H ∈ R
nλ×nu and c ∈ R

nλ . Equation (3.2) is often called as generalized

LCS (Pang and Stewart, 2008) or inhomogeneous LCS (Camlibel et al., 2007) due to existence of

the vectors c and d, but we use LCS for brevity.

Vector xk represents the state and often consists of the generalized positions qk and velocities vk.

For a given k, xk and uk, the corresponding complementarity variable λk can be found by solving

LCP(Exk+Huk+c, F ) (see Definition 1). Similarly, xk+1 can be computed using the first equation

in (3.2) when xk, uk and λk are known.

3.3.2. Continuous-Time LCS

Definition 5. A continuous-time linear complementarity system describes the evolution of two

time-dependent trajectories x̄(t) ∈ R
nx and λ(t) ∈ R

m for a given u(t) ∈ R
nk and x̄(0) such that

˙̄x = Āx̄+Bu+ D̄λ+ a,

0 ≤ λ ⊥ Ēx̄+ F̄ λ+Hu+ c ≥ 0,

(3.3)

where Ā determines the autonomous dynamics of the state vector x̄, B models the effect of the input

on the state, D̄ describes the effect of the contact forces on the state and a models the constant forces

acting on the state.

Similar to the discrete-time case, the matrices Ē, F̄ ,H and the vector c capture the relationship
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between the contact force λ, the state vector x̄ and the input u. Note that the contact forces λ are

always non-negative which holds for basic model of normal force and slack variables are typically used

to represent sign-indefinite frictional forces. (3.3) implies that either λ = 0 or Ēx̄+F̄ λ+Hu+c = 0,

encoding the multi-modal dynamics of contact. Due to this complementarity structure, an LCS is

a compact representation, as the variables and constraints scale linearly with m, rather than with

the potential 2m hybrid modes (Camlibel et al., 2001), (Lin and Antsaklis, 2009).

3.4. Multi-Contact Dynamics

In Subsection 3.4.1, we introduce the continuous-time formulation of multi-contact dynamics with

frictional contact (without impacts) as such models are explored in Chapter 5 for designing tactile

feedback policies (for a through introduction, see (Halm, 2023; Brogliato, 2016; Stewart, 2000)).

In Subsection 3.4.2, we introduce the discrete-time formulations (Stewart and Trinkle, 2000;

Anitescu, 2006) that are used in real-time MPC problems in Chapter 4.

3.4.1. Continuous-time Formulation Without Impacts

Multi-contact dynamics with frictional contact (without impacts) can be modeled by the manipu-

lator equation:

M(q)v̇ + C(q, v) = Bu+ Jn(q)
Tλn + Jt(q)

Tλt, (3.4)

where q is the generalized positions vector, v is the generalized velocities, M(q) is the inertia matrix,

C(q, v) represents the combined Coriolis, centrifugal and gravitational terms, B maps control inputs

to joint coordinates, Jn(q) = [JT
n,1(q), . . . , J

T
n,nc

(q)]T and Jt(q) = [JT
t,1(q), . . . , J

T
t,nc

(q)]T are contact

Jacobians for normal and tangential directions (where nc is the number of pairs that can interact). λn

represents the contact-frame normal forces and λt represents the contact-frame tangential (friction)

forces which can be described by the following physical laws (Halm and Posa, 2023):

• Normal complementarity:

0 ≤ λn,i ⊥ ϕi(q) ≥ 0, (3.5)

where ϕi represents the signed-distance distance between the ith contact pair. Equation (3.5)
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represents that neither penetration nor force-at-a-distance are possible. If one is interested in

spring-type soft contact models (as in Section 5), it is possible to swap (3.5) with

0 ≤ λn,i ⊥ ϕi(q) + kiλn,i ≥ 0, (3.6)

where 1
ki

> 0 represents the stiffness of the spring for the pair i. We note that the constraints

(3.6) result in λn,i = max{0,− 1
ki
ϕi(q)}. If there is no penetration (ϕi(q) ≥ 0), then normal

contact force is zero, otherwise it is equal to the penetration depth scaled by 1
ki

.

• Maximal Dissipation: For each contact i, friction dissipates as much power (Jt,iv · λt,i) as

possible and Coulomb friction with coefficient µi lies in the admissible set {λt,i : ||λt,i|| ≤

µiλn,i}. The corresponding set of generalized forces are called the friction cone:

FC(q) =
∑

i∈{j:ϕj(q)≤0}

{JT
n,i(q)λn,i + JT

t,i(q)λt,i : ||λt,i||2 ≤ µiλn,i}.

A common variant that we focus on this thesis is the linearized Coulomb model (Stewart and Trinkle,

2000), where the admissible set is replaced with {λt,i ∈ µiλn,iconv({d1, . . . , dne})} for some unit-

length vectors D = [d1, . . . , dne ]. This leads to a linearized friction cone LFC(q) such that LFC(q) ⊆

FC(q) (Halm, 2023). Using the linearized friction cone, one can describe the frictional forces, λD,

with the following complementarity relations (Halm and Posa, 2018):

0 ≤ λD,i ⊥ JD,i(q)v + 1γi ≥ 0, (3.7)

0 ≤ γi ⊥ µiλn,i − 1TλD,i ≥ 0,

where 1 is a vector of ones, γi is a slack variable that corresponds to contact pair i and JD,i(q) =

DTJt,i(q). Since λt,i = DλD,i, it follows that (3.4) is equivalent to:

M(q)v̇ + C(q, v) = Bu+
∑

i

JT
n,i(q)λn,i + JT

D,i(q)λD,i
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where λn,i and λD,i are defined as in complementarity equations (3.5), (3.6), (3.7).

As discussed, we represent multi-contact dynamics with frictional contact using (3.4) with the con-

straints (3.5), (3.6), (3.7). Such constrained dynamical system models are equivalent to differential

inclusions (Smirnov, 2002). We discuss more about stability and solutions of differential inclusions

in Chapter 5.

3.4.2. Discrete-time Formulation

Next, we define two discrete-time semi-implicit schemes that are used in Sections 4 and 6. For the

discrete-time formulations, we use ∆t to describe the discretization time-step, nc is the number of

rigid body pairs that can interact, ne represents the number of edges of the polyhedral approximation

of the friction cone (as discussed in Section 3.4.1), and Jn, Jt are contact Jacobians for normal and

tangential directions. In addition, Et = blkdiag(e, . . . , e) with e = [1, . . . , 1] ∈ R
1×ne and ϕ

represents the distance between rigid body pairs.

Stewart and Trinkle Formulation (Stewart and Trinkle, 2000)

Initially, we will explore Stewart and Trinkle formulation due to its intuitive, simple form. In almost

all the examples in Chapter 4 (and partially in Chapter 6), we use this semi-implicit time-stepping

scheme:

qk+1 = qk +∆tvk+1,

vk+1 = vk +∆tM−1(qk)

(

Buk − C(qk, vk) + Jn(qk)
Tλn

k + Jt(qk)
Tλt

k

)

.
(3.8)

The forces λn
k and λt

k can be described via the following complementarity problem:

0 ≤ γk ⊥ µλn
k − Etλ

t
k ≥ 0,

0 ≤ λn
k ⊥ ϕ(qk) + Jn(qk)(qk+1 − qk) ≥ 0,

0 ≤ λt
k ⊥ ET

t γk + Jt(qk)vk+1 ≥ 0,

(3.9)

where γk is a slack variable, µ = diag(µ1, . . . , µnc) represents the coefficient of friction between

rigid body pairs.
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Anitescu Formulation (Anitescu, 2006)

In Section 4.6, we use a learning algorithm (Jin et al., 2022) that relies on convexity of the contact

model (i.e. F = F (xk) as in (3.2) is positive semi-definite for any xk) but Stewart and Trinkle

formulation does not satisfy this assumption. Hence, we focus on the Anitescu formulation since it

is a convex contact model:

qk+1 = qk +∆tvk+1,

vk+1 = vk +M−1(qk)

(

∆tBuk −∆tC(qk, vk) + Jc(qk)
Tλk

)

,
(3.10)

where the contact Jacobian is defined as Jc = ET
t Jn(qk) + µJt(qk). Via the complementarity

equations, λk is described as:

0 ≤ λk ⊥
ET

t ϕ(qk)

∆t
+

1

∆t
ET

t Jn(qk)(qk+1 − qk) + µJt(qk)vk+1 ≥ 0. (3.11)

3.5. Local Hybrid Approximations of Multi-Contact Dynamics

In this section, we discuss about the local hybrid approximations of multi-contact dynamics. First,

we underline that all of the nonlinear hybrid models (both continuous-time and discrete-time)

introduced in Section 3.4 can be described with elements (M,C,B, Jn, Jt, ϕ, µ). For compactness

(with a slight abuse of notation), we denote a nonlinear multi-contact model as M where M =

{M,C,B, J, ϕ, µ}.

ModelsM as in Section 3.4 has been employed for trajectory optimization of multi-contact robotics

(Posa et al., 2014), though such methods have been limited to offline motion planning due to the

inherent complexity in the nonlinear model. To reduce the complexity of such models, it is possible

to locally approximate M with a linear complementarity system (defined in Section 3.3). Even

though an LCS approximation is slightly less complex than the nonlinear model, it still captures

the multi-modal nature of the problem and enables one to make decisions such as making or breaking

contact (as demonstrated in Sections 4.4 and 4.5). Hence we focus on LCS approximations as they

lead to more tractable optimal control problems than their nonlinear counterparts but note that
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these are still hybrid optimal control problems that are difficult to solve (Section 4.3).

Next, given a model M, we will describe how to obtain an LCS approximation. Towards this

direction, we first focus on the Stewart and Trinkle model from Section 3.4.2 and present an approach

to obtain an LCS approximation given the complementarity system model (3.8)-(3.9). For a given

state (x∗)T = [(q∗)T , (v∗)T ] and input u∗, we approximate (3.8) as:

qk+1 = qk +∆tvk+1,

vk+1 = vk +∆t(Jf









qk

vk

uk









+D1λ
n
k +D2λ

t
k + dv).

(3.12)

Here Jf = Jf (q
∗, v∗, u∗) is the Jacobian of f(q, v, u) = M−1(q)Bu − M−1(q)C(q, v) evalu-

ated at (q∗, v∗, u∗), dv = f(q∗, v∗, u∗) − Jf

[

(q∗)T (v∗)T (u∗)T
]T

is a constant vector, D1 =

M−1(q∗)Jn(q
∗)T and D2 = M(q∗)−1Jt(q

∗)T represent the effect of contact forces. Similarly, we

approximate (3.9) with the following LCP:

0 ≤ γk ⊥ µλn
k − Etλ

t
k ≥ 0,

0 ≤ λn
k ⊥ ϕ(q∗) + Jn(q

∗)qk +∆tJn(q
∗)vk+1 − Jn(q

∗)q∗ ≥ 0,

0 ≤ λt
k ⊥ ET

t γk + Jt(q
∗)vk+1 ≥ 0.

(3.13)

We underline that the second equation in (3.13) is equivalent to ϕ(q∗) + Jn(q
∗)(qk+1 − q∗). Fur-

thermore this holds for any k as it follows from the Taylor expansion of ϕ(q) around q∗ where

ϕ(q) ≈ ϕ(q∗) + Jn(q
∗)(q− q∗). Observe that (3.12) and (3.13) can be written in the LCS form (3.2)

where xTk = [qTk , v
T
k ] and λT

k = [γTk , (λ
n
k)

T , (λt
k)

T ].

Similarly (for the Anitescu formulation), given state (x∗)T = [(q∗)T , (v∗)T ] and input u∗, we can
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approximate (3.10) as:

qk+1 = qk +∆tvk+1,

vk+1 = vk +∆tJf









qk

vk

uk









+Dλk + dv.
(3.14)

where Jf , dv are same as in (3.12) and D = M−1(q∗)Jc(q
∗)T . The complementarity part (3.11) is:

0 ≤ λk ⊥
1

∆t
ET

t

(

ϕ(q∗) + Jn(q
∗)qk − Jn(q

∗)q∗
)

+ Jc(q
∗)vk+1 ≥ 0. (3.15)

Similar to the LCS approximation of the Stewart and Trinkle formulation, (3.14) and (3.15) can be

written in the LCS form (3.2) where xTk = [qTk , v
T
k ].

It is important to note that to obtain these LCS models, we approximate the differentiable terms

(of the model M), which arise form standard Lagrangian dynamics, by linearizing with respect to

(q, v, u) about (q∗, v∗, u∗) but leave the multi-modal structure intact.

3.6. Sum-of-squares

In Chapter 5, describing the non-unique solution sets of LCP’s is posed as a question of non-

negativity of polynomials on basic semialgebraic sets. Towards this direction, sum-of-squares (SOS)

optimization is used.

A multivariate polynomial p(x) is a sum-of-squares (SOS) if there exist polynomials qi(x) such that

p(x) =
∑

i

q2i (x).

The existence of a sum-of-squares decomposition of a polynomial can be decided by solving a

semidefinite programming feasibility problem (Parrilo, 2003), which is a convex optimization prob-

lem. We represent the semialgebraic conditions using the S-procedure technique (Stengle, 1974),
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(Boyd et al., 1994). For example, to show that (Vandenberghe and Boyd, 1996)

f(x) ≥ 0, ∀x ∈ {z : g(z) ≥ 0, h(z) = 0},

it is sufficient to find polynomials σ1(x), σ2(x), q(x) s.t.

σ1(x)f(x)− σ2(x)g(x)− q(x)h(x) ≥ 0,

σ1(x)− 1 ≥ 0, (3.16)

σ2(x) ≥ 0.

If constraints are in the form of (3.16) and the objective function is linear in the coefficients of

any unknown/free polynomials, then the optimization problem can be represented as a semidefinite

program (SDP) using the SOS relaxation.
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CHAPTER 4

REAL-TIME MULTI-CONTACT MODEL PREDICTIVE CONTROL VIA ADMM

Parts of this chapter were previously published as parts of Alp Aydinoglu and Michael Posa. Real-

Time Multi-Contact Model Predictive Control via ADMM. In 2022 International Conference on

Robotics and Automation (ICRA), pages 3414–3421, ©2022 IEEE.

4.1. Introduction

Focusing on strategically approximating the multi-contact dynamics via LCS approximations, we

propose a hybrid model predictive control algorithm, consensus complementarity control (C3), for

systems that make and break contact with their environment. Many state-of-the-art controllers

for tasks which require initiating contact with the environment, such as locomotion and manipula-

tion, require a priori mode schedules or are too computationally complex to run at real-time rates.

We present a method based on the alternating direction method of multipliers (ADMM) that is

capable of high-speed reasoning over potential contact events. Via a consensus formulation, our

approach enables parallelization of the contact scheduling problem. Furthermore, we also combine

C3 with a residual learner to accomplish tasks where good estimates of model parameters are not

available. We validate our results on six numerical examples, including five high-dimensional fric-

tional contact problems, and a physical experimentation on an underactuated multi-contact system.

We further demonstrate the effectiveness of our method on a physical experiment accomplishing a

high-dimensional, multi-contact manipulation task with a robot arm.

4.2. Problem Formulation

We are interested in solving optimal control problems with model M (as described in Section 3.4).

We consider discrete-time formulations as in (Posa et al., 2014):

min
qk,vk,uk,λk

∑

k

gc(qk, vk, uk) (4.1)

s.t. (qk+1, vk+1, qk, vk, uk, λk) respectsM (4.2)
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where gc is the cost function (often quadratic). In most of the examples in this paper, we transcribe

(4.2) using the model described in Section 3.4.2. Furthermore, instead of solving the problem with

the nonlinear model, we follow the procedure in Section 3.5 and obtain an LCS approximation.

Moving forward, we focus on LCS models of the form (3.2) as it is a general form. We do not

include time-varying LCS (where matrices such as A in (3.2) depend on k) for ease of notation

but note that the work in this chapter can easily be extended to the time-varying setting (and

code we provide can deal with time-varying LCS). With a slight abuse of notation, we denote the

models as L∆t(x, u) where dependence on a given state x∗ and input u∗ (e.g. as in (3.12), (3.13))

is suppressed. Furthermore we use the notation (xk+1, λk) = L∆t(xk, uk) to denote the state of the

LCS system after one time step (∆t time later). Here, λk is the solution of LCP(Exk +Huk + c, F )

and xk+1 = Axk +Buk +Dλk + d.

4.3. Model Predictive Control of Multi-Contact Systems

As we consider LCS models, we focus on the following mathematical optimization problem:

min
xk,λk,uk

N−1∑

k=0

(xTkQkxk + uTkRkuk) + xTNQNxN

s.t. xk+1 = Axk +Buk +Dλk + d,

Exk + Fλk +Huk + c ≥ 0,

λk ≥ 0,

λT
k (Exk + Fλk +Huk + c) = 0,

(x,λ,u) ∈ C,

for k = 0, . . . , N − 1, given x0,

(4.3)

where N is the planning horizon, Qk, QN are positive semidefinite matrices, Rk are positive definite

matrices and C is a convex set (e.g. input bounds, safety constraints, or goal conditions) and

xT = [xT1 , . . . , x
T
N ], λT = [λT

0 , λ
T
1 , . . . , λ

T
N−1], u

T = [uT0 , u
T
1 , . . . , u

T
N−1].

Given x0, one solves the optimization (4.3) and applies u0 to the plant and repeats the process in
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every time step in a receding horizon manner.

4.3.1. Mixed Integer Formulation

One straightforward, but computationally expensive, approach to solving (4.3) is via a mixed integer

formulation which exchanges the non-convex orthogonality constraints for binary variables:

min
xk,λk,uk,sk

N−1∑

k=0

(xTkQkxk + uTkRkuk) + xTNQNxN

s.t. xk+1 = Axk +Buk +Dλk + d,

Msk ≥ Exk + Fλk +Huk + c ≥ 0,

M(1− sk) ≥ λk ≥ 0,

(x,λ,u) ∈ C, sk ∈ {0, 1}nλ ,

for k = 0, . . . , N − 1, given x0,

(4.4)

where 1 is a vector of ones, M is a scalar used for the big M method and sk are the binary variables.

This approach requires solving 2Nnλ quadratic programs as a worst case. This method is popular

because, in practice, it is much faster than this worst case analysis. Even still, for the multi-contact

problems explored in this chapter, directly solving (4.4) via state-of-the-art commercial solvers

remains too slow for real-time control. Methods that learn the MIQP problem offline are promising,

but this line of work requires large-scale training on every problem instance (Cauligi et al., 2020),

(Aydinoglu et al., 2021a).

4.3.2. Consensus Complementarity Control (C3)

Utilizing a method based on ADMM, we will solve (4.3) more quickly than with mixed integer

formulations. Since the problem we are addressing is non-convex, our method is not guaranteed to

find the global solution or converge unlike MIQP-based approaches, but is significantly faster. First,

we rewrite (4.3), equivalently, in the consensus form (Park and Boyd, 2017) where we create copies

(named δk) of variables zTk = [xTk , λ
T
k , u

T
k ] and move the constraints into the objective function using
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0−∞ indicator functions:

min
z

c(z) + ID(z) + IC(z) +
N−1∑

k=0

IHk
(δk)

s.t. zk = δk, ∀k,
(4.5)

where zT = [zT0 , z
T
1 , . . . , z

T
N−1]. Note that δT = [δT0 , δ

T
1 , . . . , δ

T
N−1] is a copy of zT and equality

constraints can also be written as z = δ. c(z) is the cost function1 in (4.3). The set D includes the

dynamics constraints:

∩N−2
k=0 {z : xk+1 = Axk +Buk +Dλk + d},

and the sets Hk represent the LCP (contact) constraints:

Hk = {(xk, λk, uk) : Exk + Fλk +Huk + c ≥ 0,

λk ≥ 0, λT
k (Exk + Fλk +Huk + c) = 0}.

Note that we leverage the time-dependent structure in the complementarity constraints to separate

δk’s so that each set Hk depends only on δk, and not variables corresponding to any other timestep.

The general augmented Lagrangian ((Boyd et al., 2011), Section 3.4.2.) for the problem in consensus

form (4.5) is (Appendix for details):

Lρ(z, δ, w) = c(z) + ID(z) + IC(z)

+
N−1∑

k=0

(
IHk

(δk) + ρ(rTk Gkrk − wT
k Gkwk)

)
, (4.6)

where ρ > 0 is the penalty parameter, wT = [wT
0 , w

T
1 , . . . , w

T
N−1], wk are scaled dual variables,

rk = zk−δk+wk, Gk is a positive definite matrix. Observe that the standard augmented Lagrangian

(Park and Boyd, 2017) is recovered for Gk = I for all k.

1The cost function has the form c(z) =
∑N−1

k=0 (xT
k Qkxk + uT

k Rkuk) + ||Q
1/2
N (AxN−1 +BuN−1 +DλN−1 + d)||22.
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In order to solve (4.5), we apply the ADMM algorithm, consisting of the following operations

(Appendix for details):

zi+1 = argminzLρ(z, δi, wi), (4.7)

δi+1
k = argminδk

Lkρ(zi+1
k , δk, w

i
k), ∀k, (4.8)

wi+1
k = wi

k + zi+1
k − δi+1

k , ∀k, (4.9)

where Lkρ(zk, δk, wk) = IHk
(δk) + ρ(rTk Gkrk − wT

k Gkwk). Here, (4.7) requires solving a quadratic

program, (4.8) is a projection onto the LCP constraints and (4.9) is a dual variable update. Next,

we analyze these operations in the given order.

Quadratic Step

Equation (4.7) can be represented by the convex quadratic program

min
z

c(z) +

N−1∑

k=0

(zk − δik + wi
k)

TρGk(zk − δik + wi
k)

s.t. z ∈ D ∩ C.
(4.10)

The linear dynamics constraints are captured by the set D, and the convex inequality constraints on

states, inputs, contact forces are captured by C. The complementarity constraints do not explicitly

appear, but their influence is found, iteratively, through the variables δik.

The QP in (4.10) can be solved quickly via off-the-shelf solvers and is analogous to solving the MPC

problem for a linear system without contact.

Projection Step

This step requires projecting onto the LCP constraints Hk and is the most challenging part of

the problem. (4.8) can be represented with the following quadratic program with a non-convex

constraint:

min
δk

(δk − (zi+1
k + wi

k))
TρGk(δk − (zi+1

k + wi
k))

s.t. δk ∈ Hk,

(4.11)
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where δk = [(δxk )
T , (δλk )

T , (δuk )
T ]. In our setting, we will consider three different projections. Two are

approximate projections, common for minimization problems over non-convex sets (Diamond et al.,

2018).

MIQP Projection The projection can be calculated by exactly formulating (4.11) as a small-

scale MIQP

min
δk,sk

(δk − (zi+1
k + wi

k))
TU(δk − (zi+1

k + wi
k))

s.t. Msk ≥ Eδxk + Fδλk +Hδuk + c ≥ 0,

M(1− sk) ≥ δλk ≥ 0,

sk ∈ {0, 1}nλ ,

(4.12)

where U is a positive semi-definite matrix. For U = ρGk, one recovers the problem in (4.11);

however, in our experience, we found significantly improved performance using alternate, but fixed,

choices for U . Observe that while (4.12) is non-convex, it is written only in terms of variables

corresponding to a single time step k. While the original MIQP formulation in (4.4) has Nnλ binary

variables, here we have N independent problems, each with nλ binary variables. This decoupling

leads to dramatically improved performance (worst-case N2nλ vs 2Nnλ).

LCP Projection In cases where (4.12) cannot be solved quickly enough, we propose two approxi-

mate solutions with faster run-time. Consider the limiting case where U has no penalty on the force

elements. Here, (4.12) can be solved with optimal objective value of 0 by setting δxk = z
(i+1),x
k +w

(i),x
k

and δuk = z
(i+1),u
k +w

(i),u
k . Then, δλk can be found by solving LCP(Eδxk+Hδuk+c, F ). We note that this

projection is different than shooting based methods since we are simulating the z
(i+1),x,u
k + w

(i),x,u
k

instead of z(i+1),x,u
k .

ADMM Projection We note that (4.12) has an equivalent quadratically constrained quadratic

program (QCQP) representation, where prior work has solved problems of this form using ADMM

((Park and Boyd, 2017), Section 4.4). This approach relies on the fact that QCQPs with a single

constraint are solvable in polynomial time via the bisection method ((Park and Boyd, 2017), Ap-

pendix B). Performing the projection step via this method leads to nested ADMM algorithms, but

this formulation can produce faster solutions than MIQP solvers without guarantees that it produces
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Algorithm 1 Consensus Complementarity Control (C3)

Require: θ = {Qk, Rk, QN , δ0k, w
0
k, Gk, s, ρ, ρs, N}, L∆t, x0

Initialization : i = 1
1: while i ≤ s do
2: Compute zi+1 via (4.10)
3: Compute δi+1

k via (4.12), ∀k
4: wi+1

k ← wi
k + zi+1

k − δi+1
k , ∀k

5: ρ← ρsρ
6: wi+1

k ← wi+1
k /ρs, ∀k

7: i← i+ 1
8: end while
9: return u0 from zs+1

a feasible or optimal value. Note that this formulation fared poorly for high dimensional projec-

tions or when applied directly to the original problem (4.3), rarely satisfying the complementarity

constraints.

Solving the full MIQP (4.12) typically is the best at exploring a wide range of modes, while the LCP

projection is usually the fastest (depending on matrix F ). The ADMM projection can be viewed

as a middle ground. We underline that both MIQP and LCP projections produce feasible solutions

(for the projection step) whereas ADMM projection has no such guarantee. For frictional contact

problems (Sections 4.4 and 4.5), we observed that the MIQP projection performed better than the

others.

After discussing each of the individual steps, we present the full C3 algorithm (Algorithm 1). Here

θ represents the C3 parameters. Both δ0k and w0
k are usually initialized as zero vectors. Gk are

positive definite matrices, s > 0 is the number of ADMM steps, ρs > 0 is the scaling parameter for

ρ, and N is the number of planning steps. Furthermore L∆t is the LCS model and x0 is an initial

state. Given this information, the algorithm returns u0 as in standard model-predictive control

frameworks.

4.4. Illustrative Examples

In this section, we demonstrate the effectiveness of C3 presenting multiple simulation results and

an hardware experiment with an under-actuated multi-contact system. Concrete steps of method
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Figure 4.1: Lifting an object using two grippers indicated by red circles. The soft limits where the
grippers should not cross are indicated by yellow lines.

Algorithm 2

Require: M, θ, ∆t, û
1: Estimate state as x̂
2: Obtain LCS model L∆t around (x̂, û) using M
3: Run Algorithm 1 with L∆t, θ, x̂ and obtain u0

used throughout this section is shown in Algorithm 2. Given a multi-contact model M, we obtain

an LCS model L∆t around the estimated state x̂ and nominal input û. Then, we run Algorithm 1

to compute u0 and that is directly applied to the system.

For these results, OSQP (Stellato et al., 2020) is used to solve quadratic programs and Gurobi

(Gurobi Optimization, LLC, 2021) is used for mixed integer programs. PATH (Dirkse and Ferris,

1995) and Lemke’s algorihm have been used to solve LCP’s. SI units (meter, kilogram, second) are

used. The experiments are done on a desktop computer with the processor Intel i7-11800H and

16GB RAM. Reported run-times include all steps in the algorithm. The code for all examples is

available2. Experiments are also shown in the supplementary video3.

4.4.1. Finger Gaiting

In this subsection, we want to show that our algorithm is capable of mode exploration. Our goal is

to lift a rigid object upwards using four fingers. The setup for this problem is illustrated in Figure

2https://github.com/AlpAydinoglu/coptimal
3https://youtu.be/XBzlyNhKl8w
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Figure 4.2: Finger gaiting with s = 10. Blue shading implies that gripper 1 is applying normal force
to the object whereas red shading implies that gripper 2 is applying normal force.

4.1. The red circles indicate where the grippers interact the object and we assume that the grippers

are always near the surface of the object and the force they apply on the object can be controlled.

This force affects the friction between the object and grippers. Since the grippers never leave the

surface, we assume that there is no rotation. The goal of this task is to lift the object vertically,

while the fingers are constrained to stay close to their original locations (soft constraints shown in

yellow). This task, therefore, requires finger gaiting to achieve large vertical motion of the object.

We use the formulation in (Stewart and Trinkle, 2000) for modeling the system and denote the

positions of the grippers as g(1), g(2) respectively and position of the object as o. We choose

g = 9.81 as gravitational acceleration and µ = 1 is the coefficient of friction for both grippers.

We design a controller based on Algorithm 1 where Gk = I, N = 10. The controller uses the

MIQP projection method since other two projection methods failed to find stable motions. For this

example, we use s = 10 and ρs = 1.2. Parallelization leads to ≈ 2.5x speedup for this particular

example and we are able to run at 30.3 Hz. We also enforce limits:

1 ≤ g(1) ≤ 3, ∀k,

3 ≤ g(2) ≤ 5, ∀k.
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Figure 4.3: Pivoting a rigid object with two fingers (blue). The object can make and break contact
with the ground and gray areas represent the friction cones.

We performed 100 trials starting from different initial conditions where o(0) ∼ U [−6,−8], g(1)(0) ∼

U [2, 3] , g(2)(0) ∼ U [3, 4] are uniformly distributed and both the grippers and the object have zero

initial speed. The controller managed to lift the object in all cases. We present a specific example

in Figure 4.2 where the grippers first throw the object into the air and then catch it followed by

some finger gaiting.

4.4.2. Pivoting

Here, we want to demonstrate that our algorithm is capable of making decisions about stick-slip

transitions as well as making/breaking contact. We consider pivoting a rigid object that can make

and break contact with the ground inspired by Hogan et. al (Hogan et al., 2020). Two fingers

(indicated via blue) interact with the object as in Figure 4.3. The goal is to balance the rigid-object

at the midpoint.

The positions of the fingers with respect to the object are described via f1, f2 respectively. The

normal force that the fingers exert onto the box can be controlled. The center of mass position

is denoted by x and y respectively, α denotes the angle with the ground and w = 1, h = 1 are

the dimensions of the object. The coefficient of friction for the fingers are µ1 = µ2 = 0.1, and the
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Figure 4.4: Pivoting example, Gaussian disturbances with standard deviations σ. Blue shading
implies that gripper 1 is applying normal force to the object whereas red shading implies that
gripper 2 is applying normal force.

coefficient of friction with the ground is µ3 = 1. We take the gravitational acceleration as g = 9.81

and mass of the object as m = 1. We model the system using an implicit time-stepping scheme

(Stewart and Trinkle, 2000). The system has 3 contacts, where the finger contacts are represented

by 3 complementarity variables each, and the ground contact is modeled via 4 complementarity

variables. The system has ten states (nx = 10), ten complementarity variables (nλ = 10) and 4

inputs (nu = 4). More concretely, it has 36 hybrid modes.

For this example, as the LCS-representation is only an approximation, we compute a new local

LCS approximation at every time step k. We pick s = 5, N = 10, ρs = 1.1 and use the local LCS

approximation given at time-step k while planning. Parallelization leads to ≈ 4x speedup for this

particular example and controller can run around 43.4 Hz.

We present an example where the fingers start close to the pivot point where f1 = −0.3, f2 = −0.7

and the objects configuration is given by x = 0, y = 1.36 and α = 0.2. The goal is to balance the

object at the midpoint (x = 0, y =
√
2, α = π/4) while simultaneously moving the fingers towards

the end of the object (f1 = f2 = 0.9). Figure 4.4 demonstrates the robustness of the controller for

different Gaussian disturbances (added to dynamics) with standard deviations (for σ = 0.1, 0.5).
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Table 4.1: Projection Run-time and averaged cost-to-go

Projection Method Mean ± Std (s) Cost

LCP 1.4 · 10−5 ± 1.8 · 10−6 22.09

MIQP 1 · 10−3 ± 1.2 · 10−4 24.98

ADMM 5.3 · 10−4 ± 3.3 · 10−5 35.74

Note that at every time step, all positions and velocities (including angular) are affected by the

process noise. The object approximately reaches the desired configuration (midpoint where α = π
4 )

for σ = 0, 0.05, 0.1 and starts failing to get close to the desired configuration for σ = 0.5. Plots

with σ = 0 and σ = 0.05 are omitted as those were similar to the one with σ = 0.1. We emphasize

that the process noise causes unplanned mode changes and the controller seamlessly reacts. This

example demonstrates that our method works well with successive linearizations as many multi-

contact systems can not be captured via a single LCS approximation.

4.4.3. Cart-pole with Soft Walls

In this subsection, we focus on an under-actuated, multi-contact system and demonstrate the ef-

fectiveness of our approach via hardware experiments. We consider a cart-pole that can inter-

act with soft walls as in Figure 4.5. This is a benchmark in contact-based control algorithms

Figure 4.5: Experimental setup for cart-pole with soft walls.
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(Marcucci and Tedrake, 2020; Aydinoglu et al., 2021b). In the hardware setup, a DC motor with

a belt drive generates the linear motion of the cart. Soft walls are made of open-cell polyurethane

foam. The experiments in this subsection are done on a desktop computer with the processor Intel

i7-6700HQ and 16GB RAM.

First, numerical experiments are presented. Here, x(1) represents the position of the cart, x(2)

represents the position of the pole and x(3), x(4) represent their velocities respectively. The forces

that affect the pole are described by λ(1) and λ(2) for right and left walls respectively.

The model is linearized around x(2) = 0 and mc = 0.978 is the mass of the cart, mp = 0.411

is the combined mass of the pole and the rod, lp = 0.6 is the length of the pole, lc = 0.4267 is

the length of the center of mass position, k1 = k2 = 50 are the stiffness parameter of the walls,

d = 0.35 is the distance between the origin and the soft walls. Dynamics are discretized using the

explicit Euler method with time step Ts = 0.01 to obtain the system matrices and use the model in

(Aydinoglu et al., 2021b). We note that the MIQP formulation (as in (4.4)) runs at approximately

10 Hz.

We design a controller where s = 10, ρ = 0.1, Gk = I, ρs = 2, and N = 10. There is a clear

trade-off between solve time and planning horizon (Li et al., 2021). We test all three projection

methods described in Section 4.3 and report run-times (single solve of (4.12)) on Table 4.1 averaged

for 800 solves. We also report the average of cost-to-go value assuming all of the methods can run

at 100 Hz. Even though the MIQP projection is usually better at exploring new contacts, it does

not always result in a better cost. We note that the controller can run slightly faster than 240 Hz if

the LCP-based projection is used. For this example, the QP in (4.10) has no inequality constraints

and can therefore the KKT conditions can be directly solved.

Next, we test the multi-contact MPC algorithm on the experimental setup shown in Figure 4.5.

We consider the same LCS model with k1 = k2 = 100 as the stiffness parameters of the walls and

d = 0.39 as the distance between the origin and walls.

For the actual hardware experiments, the parameters of the MPC algorithm are N = 10, ρs = 2.3,
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Figure 4.6: Evolution of contact force and complementarity violation during ADMM iteration when
the cart is close to a contact surface.

s = 10, and Gk = I, ρ = 0.5. We use the LCP-based projection method, and solve the quadratic

programs via utilizing the KKT system. While the algorithm is capable of running faster than 240

Hz, due to the limited bandwidth between our motor controller and computer, we run the system

at 100 Hz. In Figure 4.6, we illustrate, for one particular state, the evolution of the contact force

throughout the ADMM process (at ADMM steps 1, 3, and 10). Notice that as the the algorithm

progresses, complementarity violation decreases.

Figure 4.7: Approximate cost-to-go values for the cart-pole experiment.
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Figure 4.8: Manipulating a rigid object (sphere) with a spherical end-effector attached to the Franka
Emika Panda arm.

We initialize the cart at the origin and introduce random perturbations to cover a wide range of

initial conditions that lead to contact events. Specifically, we start the cart-pole at the origin where

our controller is active. Then, we apply an input disturbance ud ∼ U [10, 15] for 250 ms to force

contact events. We repeated this experiment 10 times and our controller managed to stabilize the

system in all trials.

To empirically evaluate the gap between C3, which is sub-optimal, and true solutions to (4.3),

and to assess the impact of modeling errors, we report the approximate cost-to-go values for our

method, MIQP solution (as in (4.4)), and the actual observed states. More precisely, given the

current state of the nonlinear plant, we calculate the cost as in (4.3) using the inputs recovered

from both the C3 algorithm and MIQP algorithm. Since C3 algorithm is not guaranteed to produce

a (x, u, λ) that strictly satisfies complementarity, the predicted cost may not match the simulated

cost once u is applied. For the actual plant, we use the data from N steps into the future and

calculate the same cost. Notice that even though the cost-to-go of MIQP solution is always lower,

as expected, the optimality gap is fairly small. This highlights that C3 finds near-optimal solutions,

at least for this particular problem. Also, notice that the actual cost-to-go matches the planned

one which further motivates the applicability of LCS representations in model-based control for
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Figure 4.9: Key elements of the controller diagram.

nonlinear multi-contact systems.

4.5. Robot Arm Manipulation

In this section, we demonstrate the effectiveness of our method on multiple robot arm manipulation

tasks. In addition to that, we show that C3 can reliably be used as a high-level, real-time controller

for multi-contact manipulation tasks that require high-speed reasoning about contact events. For

these tasks, our goal is moving one or more rigid spheres along a desired trajectory using a Franka

Emika Panda Arm with a spherical end-effector (Figure 4.8). We note that the tasks involve multi-

contact interaction between the arm and sphere(s). The robot has to decide on which side/location

to make contact, and, in the multi-sphere case, which sphere to touch. Similar to the finger gaiting

task in Section 4.4, and in contrast with comparatively simpler planar pushing tasks, these sphere-

rolling problems require constantly making and breaking contact to reposition the hand. In addition

to that the spheres are quite rigid, and they roll with very little dissipation. Hence it is critical for

the controller to make rapid decisions to prevent them from escaping.

Towards this goal, we use the control architecture in Figure 4.9. In this scheme, C3 block acts as

a high-level controller and provides the desired state, contact force pair as proposed in Algorithm

3 (often times via using a simplified model of the robot). Then, a low-level impedance controller
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Algorithm 3

Require: M, θ, ∆t, û
1: Estimate state as x̂
2: Obtain LCS model L∆t around (x̂, û) using M
3: Run Algorithm 1 with L∆t, θ, x̂ and obtain uC3

4: Compute ∆tc: Time spent during steps 1,2,3
5: return (xd, λd) = L∆tc(x̂, uC3)

tracks these desired values. Please check the Appendix for details on Algorithm 3, the simplified

model and the impedance control scheme.

Both C3 and the impedance controller were implemented using the Drake toolbox

(Tedrake and the Drake Development Team, 2019), and simulations were performed in Drake

environment. OSQP (Stellato et al., 2020) is used to solve quadratic programs and Gurobi

(Gurobi Optimization, LLC, 2021) is used for mixed integer programs. The experiments are done

on a desktop computer with the processor Intel i7-11800H and 16GB RAM. Reported run-times

include all steps in the algorithm.

4.5.1. Simulation example: Trajectory tracking with a single ball

In this subsection, our goal is to move a rigid ball in a circular path inspired by works such as

(Kurtz and Lin, 2022). We also aim to make our simulation experiments as close to our hardware

experiments (Section 4.5.3) as possible. For the hardware experiments, the vision setup tracks

position of the ball, but not orientation. To emulate this, we measure the translational ball state

xbx,y,z at 80 Hz rate and estimate translational velocity of the ball via finite differencing. Similarly,

angular velocity is estimated by assuming that the ball is always rolling without slipping. The

angular displacement is calculated by integrating the estimated angular velocity.

To track a circular path, we form an LCS approximation around the current state and a quadratic

cost for distance to a target state. The target (desired) state for the ball xbd is calculated according to

its current state xb. Let (xc, yc) = (0.55, 0) be the center of the desired ball path and r = 0.1 be its

radius. We define αb as the current phase angle of the ball along its circular path, measured clockwise

from the positive y-axis of Franka’s base frame. More concretely, αb = atan2(xbx−xc, xby−yc), where
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Figure 4.10: 2D toy model to explain the time-based heuristic: Green represents the end-effector
bias in Phase I and black represents the end-effector bias in Phase II.

xbx and xby are the current x and y coordinates of the ball respectively. Given the center of the path

(xc, yc), the radius of the path r, and the phase angle of the ball αb, we generate the next desired

ball state xbd as:

xbd,x = xc + rsin(αb + αl),

xbd,y = yc + rcos(αb + αl),

(4.13)

where xbd,x is the desired x coordinate of the ball, xbd,y is the desired y coordinate of the ball and

αl = 20o is a design parameter that controls how far ahead the desired ball state should be along

the circle with respect to its current position.

One might easily warm-start C3 with an initial trajectory, and corresponding nominal hybrid plan.

Here, to demonstrate that the algorithm can reliably discover trajectories in real-time from scratch,

we explicitly do not provide such a warm-start. Instead, we add a time-based heuristic as shown

in Figure 4.10. In Phase I (1 s long), we pick the end-effector bias slightly above the ball’s current

state (shown in green). In Phase II (0.5 s long), we pick a set of end-effector biases so that it

ends up slightly behind the ball with respect to the desired ball location (shown in black) and also

increase the cost on end-effector deviation. It is extremely important to note that we do not specify

when and how the contact interactions should happen. All the end-effector biases are above the

ball, and algorithm decides that the end-effector should interact with the ball on its own (as there
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is also penalty on ball location error). Moreover, C3 can decide that an interaction should happen

in either Phase I and Phase II, but we softly encourage interactions to happen in Phase I and the

end-effector to reposition in Phase II.

The simplified model, Ms, has nineteen states (nx = 19), twelve complementarity variables (nλ =

12) and three inputs (nu = 3). We design a high-level controller where s = 2, ρ = 0.1, Gk = I,

ρs = 3, ∆t = 0.1 and N = 5. The controller, C3, can run around 73 Hz. We strictly follow

Algorithm 3 where a different LCS model L is generated using Ms to generate the desired state,

contact force pair, (xd, λd). Afterwards, the impedance controller (B.5) is used to track the the

state, contact force pair as discussed.

We performed two different trials to demonstrate the accuracy of our approach as well its robustness

against disturbances. For the first (shown as blue in Figure 4.11), we assume that there is no noise

on ball position estimation. It is important to emphasize that there are still errors caused due to

imperfect state estimation (as we emulate the hardware vision setup) but C3 is robust to these

errors and the ball stays within the 2 cm error band.

Figure 4.11: Trajectory tracking with single ball: blue represents the slow trajectory ( ∼ 30 s for
full circle) and green represents the fast trajectory ( ∼ 21 s for full circle).
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Figure 4.12: The Franka Emika Panda manipulating multiple rigid spheres.

For the second example (shown in green), our goal is to demonstrate that C3 is robust and can

recover even if things go wrong (e.g. ball goes out of 2 cm error band). We add noise in state

estimation of the ball (Gaussian noise with 1 mm standard deviation) and increase the cost on

desired ball location error to achieve faster motions. Since we increase the cost on ball position

error, C3 gives more aggressive commands to the low-level controller. Regardless, the ball stays

in 2 cm error band in roughly 75% of the motion. Even if the ball rolls away from the 2 cm

error band, the controller manages to recover and bring it back into the band utilizing its real-time

planning capabilities. This further demonstrates the ability of C3 to recover from perturbations via

re-planning contact sequences. In the supplementary video, we present multiple circular trajectories

tracked in a row (for both cases) to demonstrate the reliability of our approach.

4.5.2. Simulation example: Trajectory tracking with multiple balls

We consider a similar scenario to the previous example but with multiple balls (Figure 4.12). The

goal is to manipulate all of the balls to follow a line. Since the number of potential interactions

(ball-ball and end-effector-ball interactions) are higher than the previous example, the hybrid deci-

sion making problem is significantly harder to solve. As the number of balls increase, the problem

becomes extremely high dimensional (with respect to both the state and the complementarity vari-

38



able). To slightly reduce the dimension of this problem, we assume that the balls are always on the

table and do not slide. We have tried this task both with 2 balls and 3 balls. The reduced-order

model for 2-ball setup has fourteen states (nx = 14), eighteen complementarity variables (nλ = 18)

and three inputs (nu = 3). For the 3-ball setup, the reduced-order model has eighteen states

(nx = 18), thirty six complementarity variables (nλ = 36) and three inputs (nu = 3).

For ith ball, xbi , we pick the desired ball state as:

xbid,x = xc,

xbid,y = xbiy − dy,

where xc is a constant value and dy is the desired translation on y-direction. We also follow the

same heuristic as the previous section and set the end-effector bias with respect to the ball that has

made the least progress in the y direction.

For the 2-ball setup, we design a controller that can run around 40 Hz where s = 2, ρ = 0.1, Gk = I,

ρs = 3, ∆t = 0.1 and N = 5. Similar to the previous section, we follow Algorithm 3 to generate

desired states and forces (xd, λd). Impedance controller (B.5) is used to track the desired states,

and feedforward torque term is taken as zero (τff = 0) for this specific example. For the 3-ball

setup, everything else is the same but the controller can only run around 20 Hz.

It is important to emphasize that we do not warm-start our algorithm with an initial trajectory

and C3 decides on contact interactions (e.g. which ball to interact with, the interaction between

balls themselves) on its own. We have successfully accomplished the task with 2 balls where the

controller runs around 40 Hz. For the 3-ball setup, C3 ran at 20 Hz, which was empirically too

slow to stably complete the task. By adjusting the simulation speed, we can artificially increase the

control rate to 40 Hz, where it was successful. This demonstrates the current limits of real-time

performance, and also illustrates what might be possible with increased compute and further code

optimization. A full video of both experiments are provided in the supplementary material.
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Figure 4.13: Camera setup for hardware experiments. The 3 PointGrey cameras are circled in red.

4.5.3. Hardware experiment: State-based trajectory

In addition to providing numerical examples, we also performed the experiment from Section 4.5.1

on hardware. As before, our goal is to roll the rigid ball in Figure 4.8 along a circular path of radius

0.1 m, centered at (xc, yc) in Franka’s base frame. We use the same low-level impedance controller

presented in (B.5) and C3 as a high-level controller. The next desired state for the ball is computed

using the same state-based method described in equation (4.13).

In order to complete this experiment on hardware, we need a vision pipeline to estimate the trans-

lational state of the ball, xbx,y,z. We accomplish this by positioning 3 PointGrey cameras around

the robot as shown in Figure 4.13. Each camera locates the ball using the Circle Hough Transform

algorithm (Bradski, 2000),(Duda and Hart, 1972b), and computes an estimate of xbx,y,z according to

its extrinsic and intrinsic calibration. Next, the position estimates from all 3 cameras are compared,

outliers are rejected, and the remaining estimates are averaged. The averaged measurements pass

through a low-pass filter to produce the final estimate of the ball’s translational state, x̂bx,y,z. The

ball’s translational velocity, orientation, and angular velocity are estimated from x̂bx,y,z using the

same procedure described in Section 4.5.1. The full vision pipeline operates at roughly 80-90 Hz
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and the position estimates typically vary between a range of ±1 mm.

The desired end-effector positions (xed) that C3 generates as the high-level controller and the tracking

error of the low-level impedance controller are shown in Figure 4.14. Note that the magnitude of

the end-effector’s translational error is consistently lower than 0.003 m. These plots suggests that

C3 produces effective trajectories that a low-level controller, such as our impedance controller, can

realistically track.

The trajectory of the ball is shown in Figure 4.16, where the black line represents the ball path

and the red line represents the desired trajectory. Each full rotation around the circle takes 35 s on

average to complete. We allow the robot to complete multiple loops to demonstrate the consistency

of our approach. A full video of this experiment is provided in the supplementary material.

In this experiment, we use the same time-based heuristic for end-effector biasing shown in Figure

4.10. Although Phase II of this heuristic encourages the robot to roll the ball from the back, C3

can roll from the front instead (adapting to errors) during the actual experiments (see Figure 4.15).

This re-emphasizes the fact that we do not specify when or how the robot should interact with the

ball, or predefine any trajectory for the end-effector to follow. It also demonstrates that C3 does not

Figure 4.14: End-effector position tracking error (
√

(
xex

)2
+
(
xey

)2
+
(
xez

)2
) and desired end-effector

locations given by C3 (xd) .
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Figure 4.15: An example of a left to right roll using C3 as a high-level planner. Despite the provided
heuristic, C3 positions the end-effector directly above the ball at the start of the motion (left image)
and rolls from the front.

require perfectly tailored a priori heuristics to perform well. This provides two major advantages.

Firstly, it enables C3 to recover, even when its plans deviate from the provided heuristic. Secondly,

it eliminates the need for heavily-engineered heuristics, which may be difficult or time-consuming

to develop in practise.

Since C3 plans in real-time (70−80 Hz), it also exhibits some robustness to model error. Recall that

C3 plans using the simplified model, Ms. This model assumes that the rolling surface is perfectly

Figure 4.16: Hardware experiment: Tracking a circular path, pink region is the desired path and
black demonstrates the actual trajectory.
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Figure 4.17: Hardware experiment: Tracking time-based trajectories of different shapes. Pink region
is the 2 cm error band and black lines represent the states of the ball during the motion.

horizontal; however, the table in the hardware setup is slightly tilted.

This tilt is observable in the supplementary video: note that the ball tends to roll towards the right

side of the camera frame whenever it is not in contact with the robot. As a result, the overall shape

of the ball’s trajectory in Figure 4.16 is circular, but it is shifted in the positive y direction. Another

potential source of model error in Ms is the friction coefficient between the ball and end-effector,

which was simply set to µ = 1. Despite these model errors, C3 was still able to generate plans

through contact to successfully and consistently complete the task.

Furthermore, the real-time planning capabilities of C3 enable it to continually correct any errors in

the ball’s trajectory. This may occur if the high-level controller generates an ineffective plan or if

the low-level controller momentarily fails to track the end-effector trajectory. For instance, on one

of the loops in Figure 4.16, the robot erroneously rolls the ball to (xbx, x
b
y) ≈ (0.5,−0.02), nearly 5

cm away from the desired path. Nonetheless, C3 is able to correct this mistake on the subsequent

rolls and return the ball to its nominal trajectory. This demonstrates C3’s self-correction abilities.
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Lastly, we also demonstrate that C3 can account for external disturbances where we manually

disturb the ball during the experiment. C3 accomplishes the task remarkably well even with such

disturbances (shown in supplementary video).

4.5.4. Hardware experiment: Time-based trajectory

In this section, we conduct hardware experiments where the desired ball trajectory is parameterized

as a function of time rather than the ball’s current state. All other aspects of the experimental setup

(the system models, high-level control algorithm, low-level controller, and vision pipeline) remain

unchanged from Section 4.5.3.

We experimented with the 3 different time-based trajectories, xbd = xbd(t) shown in Figure 4.17. For

all 3 time-based trajectories, C3 successfully and consistently discovers strategies to roll the ball

within the 2 cm error band. Additionally, the shape of the ball’s trajectory closely matches the

desired trajectory. These experiments demonstrate that C3 can also track time-based trajectories.

Note that the same model errors (e.g. table slant, friction coefficient estimates, etc) from Section

4.5.3 are present in these experiments as well; however, since the high-level control algorithm has

not changed, C3 remains sufficiently robust to successfully execute the tasks. The full videos of

these experiments are available in the supplementary material.

4.6. Adaptive MPC for Manipulation

In the previous sections of Chapter 4, we assumed that we have reasonable estimates of model

parameters (e.g. gap function, ϕ). But this assumption does not always hold and the modeling

error can be relatively large. It is also important to note that we have empirically observed that

if there is a modeling error for the gap function (e.g. ≈ 0.5 cm), C3 can fail to accomplish the

task (trajectory tracking with a single ball) in Section 4.5.1. As an example, if the gap function

estimates are smaller than the real gap function values, the planner will assume that the robotic arm

is/will be in contact with the object whereas in reality no contact interaction will happen (because

the planner predicts that the arm is closer to the object than it actually is). On the other hand,

such modeling errors can easily occur (e.g. imprecise geometry information) and it is important to

overcome such issues.
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Figure 4.18: Key elements of the controller diagram with residual learning.

To alleviate this problem, we further improve our method so that we can handle relatively large

modeling errors. We extend our framework (C3) and combine it with model learning (Jin et al.,

2022). The proposed framework is demonstrated in Figure 4.18 and we highlight that this is a

modification of our previous approach (shown in Figure 4.9) where the difference is the residual

learning module. Unlike our previous work (Jin et al., 2022), this approach focuses on adaptive

updates (i.e. collect few data points, calculate gradients and update parameters at real-time rates)

and is closer to adaptive control rather than offline system identification.

Towards this direction, instead of assuming that the LCS model C3 uses (L∆t) only consists of only

the known dynamics, we modify L∆t to include a residual part as:

xk+1 = (A(xk) +Ar)xk + (B(xk) +Brr)uk + (D(xk) +Dr)λk + (d(xk) + dr),

0 ≤ λk ⊥ (E(xk) + Er)xk + (F (xk) + Fr)λk + (H(xk) +Hr)uk + (c(xk) + cr) ≥ 0,

(4.14)

and we denote the residual parameters as RLCS = {Ar, Br, Dr, dr, Er, Fr, Hr, cr}. Sim-

ilarly, we compactly represent the known part of the dynamics as GLCS
∆t (xk) =

{A(xk), B(xk), D(xk), d(xk), E(xk), F (xk), H(xk), c(xk)} which are directly derived from M (In-

stead of Stewart and Trinkle formulation (3.4.2), we use the Anitescu formulation (3.4.2) because

the latter returns a positive semi-definite matrix F (xk) for any xk). Unlike the previous sections, we
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Algorithm 4

Require: M,RLCS, θ, ∆t, û
1: Estimate state as x̂
2: Obtain parameters GLCS

∆t around (x̂, û) using M (known dynamics)
3: Obtain parameters RLCS from the residual learning module
4: Obtain LCS model L∆t combining GLCS

∆t and RLCS

5: Run Algorithm 1 with L∆t, θ, x̂ and obtain uC3

6: Compute ∆tc: Time spent during steps 1,2,3
7: Obtain parameters GLCS

∆tc
around (x̂, û) using M

8: Obtain RLCS
scaled from RLCS by scaling the terms with ∆t

∆tc

9: Obtain LCS model L∆tc combining GLCS
∆tc

and RLCS
scaled

10: return (xd, λd) = L∆tc(x̂, uC3)

assume that the LCS model C3 uses to plan with, L∆t, consists of both the known dynamics GLCS
∆t

and residual dynamics RLCS, which is provided via the residual learning module. We provide the

complete algorithm (Algorithm 4) that demonstrates how C3 block in Figure 4.18 functions with

the residual learning module involved (for details about update rates and connection of modules,

please check Figure 4.18). We underline that it is similar to Algorithm 3 but here C3 also uses the

information provided by residual learner, RLCS, in addition to the known dynamics.

So far, we have detailed our new LCS model that includes the residual parameters RLCS and also

described how C3 block functions with the residual learning module, but we have not explained

the details about the residual learning block. Next, we explain the residual learner further. Once

an experiment starts, we start collecting data of the form B = {x∗k+1, x
∗
k, u

∗
k}

nct+nb
k=nct

in real-time

into our buffer where nct represents the current time-step and nb is the number of data points

stored. For each data point, we also calculate the corresponding matrices, GLCS
∆t (xk), and define the

buffer appended with those matrices as BA = {x∗k+1, x
∗
k, u

∗
k,GLCS

∆t (x∗k)}
nct+nb
k=nct

. Next, we introduce

the implicit loss function that was defined in (Jin et al., 2022):

Lϵ(RLCS,BA) =
nct+nb∑

k=nct

lϵ(RLCS,GLCS
∆t (x∗k), x

∗
k+1, x

∗
k, u

∗
k), (4.15)
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Algorithm 5

Require: B,RLCS, ϵ, γ, ξ
1: Compute GLCS

∆t (x∗k) for each data point and construct BA
2: Compute gradient of parameters with respect to Lϵ(RLCS,BA) (e.g. ∇ArLϵ(·))
3: Update the residual parameters via gradient step (e.g. Ar = Ar − ξ∇ArLϵ)
4: return RLCS (updated residual parameters)

where the function lϵ(RLCS,GLCS
∆t (x∗k), x

∗
k+1, x

∗
k, u

∗
k) is defined as:

lϵ(·) = min
λk≥0,ηk≥0

1

2

∣
∣
∣
∣(A(x∗k) +Ar)x

∗
k + (B(x∗k) +Br)u

∗
k + (D(x∗k) +Dr)λk + (d(x∗k) + dr)− x∗k+1

∣
∣
∣
∣2

(4.16)

+
1

ϵ

(

λT
k ηk +

1

2γ

∣
∣
∣
∣(E(x∗k) + Er)x

∗
k + (F (x∗k) + Fr)λk + (H(x∗k) +Hr)u

∗
k + (c(x∗k) + cr)− ηk

∣
∣
∣
∣2
)

.

(4.17)

Here, γ is a constant such that 0 < γ < σmin

(

(F (x∗k) + Fr)
T + F (x∗k) + Fr

)

where σmin(·) denotes

the smallest singular value. It is important to note that we parameterize Fr such that Fr = ϵrI+ F̃r

where ϵr > 0. As the chosen contact model (Anitescu, 2006) returns F (xk) ⪰ 0 for all xk, we can

always find a γ that satisfies the given equality. Similarly, ϵ is a constant such that ϵ > 0. Under

these conditions, we can calculate the gradient of the loss function with respect to the residual

parameters (e.g. ∇ArLϵ, ∇BrLϵ, ∇DrLϵ, . . .) following our previous work (Jin et al., 2022) and the

approach requires solving a single QP per data point in the batch (hence is relatively fast). After

gradient calculations, one can straightforwardly update the residual parameters taking a simple

gradient step (via learning rate ξ > 0). Following this discussion, Algorithm 5 summarizes how the

residual learning block in Figure 4.18 functions. For the following results, we will focus on learning

a residual that is of the form cr ∈ R
nλ as we have observed high performance in our experiments

with this choice, but our framework is easily adaptable to the more general setting (using other

terms in RLCS).
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Figure 4.19: A “contact event" refers to a situation where actual physical contact is occurring,
while “contact prediction" pertains to instances where the model anticipates contact, potentially
inaccurately. Our method can produce meaningful gradients, even when there is no actual contact
event (yellow region). The only scenario in which a zero gradient is produced is when the model
and data both agree that there is no contact (white region).

4.6.1. Simulation example: Cart-pole with Soft Walls

We consider a classical cart-pole underactuated system which has been augmented with two soft

walls (Figure 4.19). The pole can contact these walls, requiring contact-aware control to stabilize

the system:

xk+1 = Axk +Buk +Dλk + d,

0 ≤ λk ⊥ Exk + Fλk + c ≥ 0,

where we have perfect knowledge of the parameters except for c. We write c = ĉ + ∆ϕ, where

ĉ is our initial guess of the parameter. For the purposes of illustration, we begin with an initial

error of ∆ϕ = [−.15, .15]. Notice that the model error that is related to each contact (λk) has a

different sign. Our deliberate choice of this setup was made to create a range of scenarios, allowing

the contact model to predict both situations: contact and no contact, as well as the presence or

absence of actual contact events during those situations. In Figure 4.19, it can be seen that our

method successfully returns useful gradient information in all of those scenarios. We highlight that

our approach is capable of adapting even when there is no actual contact events (Figure 4.19). We

also show that our framework successfully stabilizes the system as well as learning the true residual

values (Figure 4.20).
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Figure 4.20: Stabilization of the cart-pole system and convergence of residual.

Figure 4.21: Given an initial guess that the object is a rigid sphere, the controller adapts its model
of the governing contact dynamics to roll and push real fruits (orange, lime) with a Franka Emika
Panda arm, tracking a desired motion.

4.6.2. Hardware Experiment: Adaptive Trajectory Tracking

Here, we show that our real-time adaptive MPC framework can reliably be used for multi-contact

manipulation tasks that require high-speed reasoning about contact events. Our goal is to roll a

rigid ball along a circular trajectory using a Franka Emika Panda Arm (Figure 4.21). We perform

vision-based estimation for the ball using Hough transform (Duda and Hart, 1972a) and utilize an

impedance controller (Hogan, 1985; Khatib, 1987) to track high-level commands that our adaptive

MPC produces (Figure 4.18). For adaptive MPC, we simplify the arm as a point contact.
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Figure 4.22: Rolling a rigid ball and fruits (left: ball, middle: orange, right: lime) starting with an
inaccurate model.

In previous sections, careful manual identification of model parameters was required to achieve

success. Here, via our adaptive MPC approach, we do not need to assume access to an accurate

model. For this experiment, the actual radius of the ball is 5 mm smaller than our parameter

estimation. The state estimation for the ball is noisy (vision-based, 80 Hz) and we do not have

accurate estimation of many model parameters such as coefficient of friction. As a result, MPC

with this incorrect model fails to interact with the ball, and therefore fails to accomplish the task.

Due to the stiff, hybrid nature of contact dynamics, we have found MPC to be highly sensitive to

modeling errors that effect the contact/no-contact transition.

Even though the purely model-based approach fails, our adaptive MPC framework successfully

accomplishes the task. The residual learning module (Algorithm 5, 20 Hz), in combination with the

C3 module (80 Hz), identifies the discrepancy at real-time rates. During the experiments, it can be

observed that at the beginning the end-effector misses the ball due to inaccurate radius estimation.

The C3 module then tries, and fails, to initiate contact. As motivated earlier, this discrepancy

creates a non-zero gradient and therefore the residual values that correspond to end-effector ball

contact pair gradually increase (shown in Figure 4.23).

In the end, with the learned residual compensating for the inaccurate model, our approach success-

fully rolls the ball for 4 successive circles. Figure 4.23 shows the loss, Lϵ, as well as the residual,

cr, for this experiment. The residual for the end-effector and ball contact shows convergence as

the rolling proceeds and the loss curve shows a decreasing trend, proving the effectiveness of our
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Figure 4.23: Hardware Experiment: Residual evolution of end-effector and ball contact pair, and
loss curve of the learning process. The full experiment lasts for 315 s. We highlight the adaptation
process until loss and residual converge.

method. We note that in this experiment, the LCP violation rate is ϵ = 10−7, the terms in Qd

related to balls translational velocity are set to 105 (others are set to zero), learning rate is ξ = 10−3,

stiffness parameter is γ = 10−2 and we have a batch data size of nb = 10. We demonstrate the

trajectories of the ball with respect to the desired path in Figure 4.22.

4.6.3. Hardware Experiment: Objects of Non-smooth Surface

We repeat the previous hardware experiment (Section 4.6.2) with slightly deformable objects that

have non-smooth surface geometries (Figure 4.21). We do not have accurate initial estimates of the

geometry as our estimate of a fruit’s geometry is simply a sphere. For each experiment experiments,

we assign an approximate radius for the given fruit and set the sphere radius in our prior model

accordingly.

Due to the bulges and dents on the fruit’s surface, initiating rolling can be hard since the fruit

can roll back even after a push in the correct direction. MPC without adaptation gets stuck in

the beginning and fails to even initiate rolling. In contrast, our method quickly adapts and starts

making stronger pushes to initiate rolling (as shown in the supplementary video). In 90% of the 20

experiments, our method successfully initiated rolling and started tracking the circular path, while

MPC without adaptation was never successful (0%).

Fruits tend to produce unpredictable motions at times due to its non-smooth surface geometry, but

our method can adapt and accomplish the task. Our approach has managed to track at least one
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circle for 70% of the trials with orange and 50% of trials with lime (20 experiments for each case).

In Figure 4.22, we report the long-term tracking (4 successive circles) performance of our method

with multiple different fruits.

4.7. Conclusion and Discussion

In this work, we present an algorithm, C3, for model predictive control of multi-contact systems.

The algorithm relies on solving QP’s accompanied by projections, both of which can be solved

efficiently for multi-contact systems. The effectiveness of our approach is verified on six numerical

examples and our results are validated on two different experimental setups. We demonstrate that

C3 can be reliably used both as a high-level and a low-level controller. For fairly complex examples

with frictional contact, our method has a fast run-time. We also demonstrate through experiments

that our heuristic can find close-to-optimal strategies. For cases where reasonable estimates of model

parameters are not available, we combine C3 with a residual learner to learn such parameters at

real-time rates and accomplish the given tasks.

The framework tackles the hybrid MPC problem by shifting the complexity to the projection sub-

problems. These projections can be difficult to solve, especially as we rely on the MIQP-based pro-

jection method for problems with frictional contact. Exploring alternate heuristics for the projection

step is of future interest. Similarly, it would be interested to leverage learning-based approaches

(Cauligi et al., 2020) to speed up the process.

As discussed in Section 4.5, C3 generates desired contact forces but these have been used in a

feedforward manner. It would be interesting to utilize tactile sensors and tactile feedback controllers

(Aydinoglu et al., 2021b; Kim et al., 2023) that track these desired contact forces. We believe that

this can improve the robustness of our approach and is one of the crucial steps moving forward.

The choice of parameters (such as C3 parameters θ) greatly affects the performance of the algorithm

and exploring different approaches for deciding on parameters is of future interest too.
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CHAPTER 5

STABILIZATION OF COMPLEMENTARITY SYSTEMS VIA CONTACT-AWARE

CONTROLLERS

Parts of this chapter were previously published as parts of Alp Aydinoglu, Victor M Preciado,

and Michael Posa. Contact-Aware Controller Design for Complementarity Systems. In 2020 IEEE

International Conference on Robotics and Automation (ICRA), pages 1525–1531, ©2020 IEEE. And

also as parts of Alp Aydinoglu, Philip Sieg, Victor M Preciado, and Michael Posa. Stabilization of

Complementarity Systems via Contact-Aware Controllers. IEEE Transactions on Robotics, 38(3),

©2022 IEEE.

5.1. Introduction

In Chapter 4, we focused on discrete-time models and now we shift our focus to LCS approximations

of continuous-time modelsM (Section 3.5). Focusing on LCS approximations, we propose a control

framework which can utilize tactile information by exploiting the complementarity structure of

contact dynamics. Since many robotic tasks, like manipulation and locomotion, are fundamentally

based in making and breaking contact with the environment, state-of-the-art control policies struggle

to deal with the hybrid nature of multi-contact motion. Such controllers often rely heavily upon

heuristics or, due to the combinatorial structure in the dynamics, are unsuitable for real-time

control. Principled deployment of tactile sensors offers a promising mechanism for stable and robust

control, but modern approaches often use this data in an ad hoc manner, for instance to guide

guarded moves. This framework can close the loop on tactile sensors and it is non-combinatorial,

enabling optimization algorithms to automatically synthesize provably stable control policies. We

demonstrate this approach on multiple numerical examples, including quasi-static friction problems

and a high dimensional problem with ten contacts. We also validate our results on an experimental

setup and show the effectiveness of the proposed method on an underactuated multi-contact system.
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5.2. Linear Complementarity Systems with Tactile Feedback

We present a tactile feedback controller where the input is dependent both on the state and the

contact force
(
u = u(x, λ)

)
, unlike the common approach of designing controllers only using the

state feedback,
(
u = u(x)

)
. The section concludes with a description of complementarity models

with such tactile feedback controllers.

5.2.1. Tactile Feedback and Related Complementarity Models

We introduce the tactile feedback controller:

u(x̄, λ) = Kx̄+ Lλ, (5.1)

where K ∈ R
nk×nx and L ∈ R

nk×m. Using this control law, (3.3) can be transformed into the

following LCS:

ẋ = Ax+Dλ+ a,

0 ≤ λ ⊥ Ex+ Fλ+ c ≥ 0,

(5.2)

where A ∈ R
n×n, D ∈ R

n×m, a ∈ R
n, E ∈ R

m×n, F ∈ R
m×m, c ∈ R

m.

If the contact force does not depend on the input (H = 0), then application of the control law (5.1)

trivially produces (5.2) with A = Ā+ BK, D = D̄ + BL, E = Ē, and F = F̄ . In this case, note

that x = x̄ and n = nx.

Next, consider the case where the contact force depends on the input (H ̸= 0). Since the input

u = u(x̄, λ) similarly depends on the contact force, this introduces an algebraic loop. One might

attempt to resolve this loop by simultaneously solving for both u and λ, leading to the closed-loop

LCS:

ẋ = (Ā+BK)x+ (D̄ +BL)λ+ a,

0 ≤ λ ⊥ Ex+ Fλ+ c ≥ 0,

where x = x̄, E = Ē + HK and F = F̄ + HL. Observe that the matrix F depends on the

choice of the contact gain matrix L. Due to this dependency, the cardinality of the solution set
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SOL(Ex+ c, F ) for a given x might change depending on the value of L. This is illustrated via an

example.

Example 6. Consider the complementarity constraint:

0 ≤ λ ⊥ x+ u+ λ ≥ 0,

where x, u, λ ∈ R. If u is independent of λ, observe that SOL(x + u, F ) is a singleton for all pairs

(x, u) since F = [1] is a P-matrix. In this case, the contact force λo(x, u) is equal to

λo(x, u) = max{0,−x− u}.

However, for some choices of force-dependent inputs, this is no longer the case. From u = Lλ, it

follows that F = [1 + L]. For the case L = −1, the LCP for the closed-loop system is

0 ≤ λ ⊥ x ≥ 0.

The solution set is then:

SOL(x, F = 0) =







{0} if x > 0,

[0,∞) if x = 0,

∅ if x < 0.

There are infinitely many solutions for x = 0 and no solutions for x < 0.

Furthermore, resolving the algebraic loop by solving simultaneously for the contact force and the

input is not physically realistic since control policies can not instantaneously respond to tactile

measurements. As illustrated in Example 6, it is also mathematically problematic. Therefore, we

will use the standard approach of modeling delay. Specifically, the following low-pass filter model

captures the input delay:

τ̇ = κ(u− τ), (5.3)
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where κ ∈ R
+ is the rate parameter. Using the low-pass filter model, we obtain the linear comple-

mentarity system:

˙̄x = Āx̄+Bτ + D̄λ+ a,

τ̇ = κ(u− τ),

0 ≤ λ ⊥ Ēx̄+ Fλ+Hτ + c ≥ 0.

(5.4)

Observe that the LCS model in (5.4) has the same form with (5.2) with the input (5.1):

ẋ =






Ā B

κK −κI




x+,






D̄

κL




λ+






a

0




 ,

0 ≤ λ ⊥
[

Ē H

]

x+ Fλ+ c ≥ 0,

where x =

[

x̄T τT
]T

. Also, we highlight that the delay decouples u and λ so the matrix F does

not depend on the contact gain matrix L. Notice that the state is augmented (n > nx) to obtain

(5.2). Alternatively, one could add delay to the sensor dynamics:

τ̇s = κs(λ− τs).

While this approach would similarly resolve the algebraic loop, in this work we found out that mod-

eling input delay produced better numerical results when combined with the algorithmic approach

in Section 5.4.

Using the control format in (5.1), for notational compactness, we will now exclusively consider

closed-loop LCS in the form of (5.2). As a result of filtering, the matrix F will be independent of

the tactile feedback gain L.

5.2.2. Solution Concept

We introduce a solution concept for complementarity systems (3.4) and (5.2) similar to

((Çamlibel et al., 2002), Definition 3.6).
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Definition 7. A pair of functions (x(t), λ(t)) is a solution of the complementarity system,

ẋ = f(x, λ),

0 ≤ λ ⊥ Φ(x, λ) ≥ 0,

where f : Rn × R
m → R

n and Φ : Rn × R
m → R

m with the initial condition x(0) = x0 if:

x(t) ∈ AC([0, T ]), ∀ T ≥ 0,

ẋ(t) = f(x(t), λ(t)) for almost all t ∈ R
+,

0 ≤ λ(t) ⊥ Φ(x(t), λ(t)) ≥ 0 for almost all t ∈ R
+,

λ(t) is almost everywhere differentiable.

It is important to note that we restrict ourselves to complementarity systems where the state,

x(t), is absolutely continuous which is well-studied in the literature (Shen and Pang, 2007;

Brogliato and Thibault, 2010; Çamlıbel et al., 2002). The models considered in this work have

no jumps (e.g. impact). Observe that λ(t) can be discontinuous and it is assumed that λ(t) is

almost everywhere differentiable moving forward. Consider the following proposition by Camlibel

et al. (Camlibel et al., 2006):

Proposition 8. For every x0, the LCS (5.2) has a unique C1 (hence absolutely continuous) tra-

jectory x(t) defined for all t ≥ 0 if and only if the set DSOL(Ex + c, F ) is a singleton for every

x ∈ R
n.

Throughout this chapter, focus is on LCS models where D̄SOL(Ex+ c, F ) is a singleton. Note that

unlike x(t), the trajectory λ(t) is not necessarily unique which is observed in friction models (Section

5.5). Recent results indicate that it may, ultimately, be possible to eliminate this assumption

on D̄SOL(Ex + c, F ) (Brogliato and Thibault, 2010; Brogliato and Tanwani, 2020), though such

exploration is outside the scope of this chapter.

In Sections 5.3 and 5.4, this structure is leveraged to similarly ensure that LSOL(Ex + c, F ) is
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a singleton for all x. Since we consider models such that D̄SOL(Ex + c, F ) is a singleton and F

is independent of the controller (Section 5.2), the condition that LSOL(Ex + c, F ) is a singleton

suffices to ensure that DSOL(Ex + c, F ) is also a singleton. The trajectories of the closed-loop

system (5.2) remain absolutely continuous as long as LSOL(Ex + c, F ) is a singleton for all x

(following Proposition 6).

Moving forward, denote S(t0, x0) as the set of all trajectories x(t), with t ≥ t0, such that x(0) = x0.

The dependency on the LCS parameters is suppressed for ease of notation. Observe that S(t0, x0)

is also a singleton following Proposition 8 if DSOL(Ex+ c, F ) is a singleton for every x.

5.3. Stabilization of the Linear Complementarity System

In this section, conditions for stabilization using non-smooth monontonic Lyapunov functions and

contact-aware controllers are constructed.

Notions of stability from (Smirnov, 2002) are adopted. If F is a P-matrix, these are equivalent to

the notions of stability for differential equations where the right-hand side is Lipschitz continuous,

though possibly non-smooth (Camlibel et al., 2006), (Khalil, 2002).

Definition 9. The equilibrium xe of LCS (5.2) is

1. stable in the sense of Lyapunov if, given any ϵ > 0, there exists δ > 0 such that

||xe − x0|| < δ =⇒ ||x(t)− xe|| < ϵ ∀t ≥ 0

for any x0 and x(t) ∈ S(0, x0).

2. asymptotically stable if it is stable and δ > 0 exists s.t.

||xe − x0|| < δ =⇒ lim
t→∞

x(t) = xe

for any x0 and x(t) ∈ S(0, x0).
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5.3.1. Non-Smooth Lyapunov Function

In Lyapunov based analysis and synthesis methods, one desires to search over a wide class of

functions. Here, piecewise quadratic Lyapunov functions are considered. They are more expressive

than a Lyapunov function common to all modes (as was used in (Posa et al., 2015)), which makes it

a more powerful choice than a single quadratic Lyapunov function (Johansson and Rantzer, 1997).

Towards this direction, consider a variant of the Lyapunov function introduced in (Camlibel et al.,

2006):

V (x, λ) = xTPx+ 2xTQλ+ λTRλ+ pTx+ rTλ+ z, (5.5)

where P ∈ R
n×n, Q ∈ R

n×m, R ∈ R
m×m, p ∈ R

n, r ∈ R
m, and z ∈ R. The Lyapunov function

(5.5) is quadratic in terms of the pair (x, λ). If F is a P-matrix, it is piecewise quadratic in x since

λ = λ(x) is a piecewise affine function. For example, if all contact forces are inactive, λ = 0, then

V (x, λ(x)) = xTPx+pTx+z. Even though V is non-smooth, it is locally Lipschitz continuous with

respect to x if F is a P-matrix (Camlibel et al., 2006).

If SOL(Ex+c, F ) is not a singleton then λ(t) can be discontinuous in t due to the multi-valued nature

of SOL(Ex(t)+c, F ). Similarly, V (x(t), λ(t)) can be discontinuous due to the terms QSOL(Ex(t)+

c, F ), SOL(Ex(t) + c, F )TRSOL(Ex(t) + c, F ) and rTSOL(Ex(t) + c, F ). Next, it is shown that

without appropriate restrictions, these discontinuities imply that such functions V cannot be valid

monotonic Lyapunov functions.

Example 10. Consider the LCS:

ẋ = −x+ λ1 + λ2,

0 ≤ λ1 ⊥ x+ λ1 + λ2 ≥ 0,

0 ≤ λ2 ⊥ x+ λ1 + λ2 ≥ 0,

where x, λ1, λ2 ∈ R. As seen in Figure 5.1, the Lyapunov function jumps at t = t∗ for a solution

(x(t), λdec(t)) and the Lyapunov function decreases (V (t∗+) > V (t∗−)). Then, consider λinc(t) that

jumps at t = t∗ where λinc
− = λdec

+ and λinc
+ = λdec

− . The Lyapunov functions value increases after
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Figure 5.1: Two different solutions for the Lyapunov function. For the solution λdec, λdec
1 and λdec

2

represent the first and second elements of the solution vector respectively (similarly for λinc).

the jump at t = t∗ for the solution (x(t), λinc(t)) by construction as seen in Figure 5.1.

If the function V jumps at a time t∗ for one solution and its value decreases, then another solution

exists where V jumps at t∗ and the function’s value increases as illustrated in Example 10. Hence,

the Lyapunov function cannot decrease monotonically along all solutions due to the multi-valued

nature of SOL(Ex+ c, F ). For this reason, we focus on mappings W such that WSOL(Ex+ c, F ) is

single-valued. Using such mappings, one can parameterize Q, R and r such that QSOL(Ex(t)+c, F ),

SOL(Ex(t) + c, F )TRSOL(Ex(t) + c, F ) and rTSOL(Ex(t) + c, F ) are single-valued for all t even

when F is not a P-matrix.

Proposition 11. ((Camlibel et al., 2006), Proposition 3.9) Assume that WSOL(q, F ) is a singleton

for all q where W ∈ R
nw×m. Then, the map q 7→ WSOL(q, F ) is a continuous piecewise linear

function of q.

One can construct a Lyapunov function using a matrix W as in Proposition 11 where QSOL(Ex+c),
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RSOL(Ex+ c), and rTSOL(Ex+ c) are singletons for all x ∈ R
n as follows:

V (x, λ) = xTPx+ 2xT Q̃Wλ+ λTW T R̃Wλ (5.6)

+ pTx+ r̃TWλ+ z,

where W ∈ R
nw×m, Q̃ ∈ R

n×nw , R̃ ∈ R
nw×nw , r̃ ∈ R

nw and WSOL(Ex+ c, F ) is a singleton. Next,

it is shown that V is a non-smooth, continuous piecewise quadratic function in x and is locally

Lipschitz continuous which are helpful properties in establishing stability results.

Lemma 12. The Lyapunov function4 V (x, λ(x)) as in (5.6) is locally Lispchitz continuous in x.

Furthermore, V̄ (t) = V (x(t), λ(t)) ∈ AC([0, T ]) for all T ≥ 0 for the solutions as in Definition 7.

Proof. Since Wλ(x) is Lipschitz continuous in x, V (x, λ(x)) is locally Lispchitz continuous in x.

Because x(t) is absolutely continuous and V (x, λ(x)) is locally Lipschitz continuous, V is absolutely

continuous in time.

From this point onward, without loss of generality, the Lyapunov function as defined in (5.6) is used.

Observe that if F is a P-matrix, one can trivially choose W = I. For many practical examples, it

is possible to find such a matrix W . However, such a W is not guaranteed to exist when F is not a

P-matrix. In Section 5.4-C, it is shown how to generate W algorithmically.

Remark 13. Similar to the Lyapunov function, the input (5.1) is not necessarily continuous in

time. If one desires a controller that is continuous in time, then the parameterization

u(x̄, λ) = Kx̄+ L̃Wλ, (5.7)

leads to a controller u that is continuous in time. As discussed in Section 5.5-B, it is required that

DSOL(Ex + c, F ) be a singleton for all x. Therefore, we restrict the controller to be of the form

(5.7). For all of the examples in Section 5.5, the parameterization L = L̃W is used.

4λ(x) is the set-valued function λ(x) = SOL(Ex+c,F).
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5.3.2. Conditions for Stabilization

Now, conditions for stability in the sense of Lyapunov are constructed with the controller gains K

and L as in (5.1), and the piecewise quadratic Lyapunov function V . These conditions will be the

building blocks for the controller design method proposed in Section 5.4.

Theorem 14. Consider the linear complementarity system (5.2), and the Lyapunov function (5.6)

with W such that WSOL(Ex + c, F ) is a singleton for all x. Assume there exists a solution for

every x0 and xe = 0 is an equilibrium. If for all solutions (x(t), λ(t))5, there exist strictly positive

constants γ1, γ2, matrices K,L6 and a function V such that

γ1||x(t)||22 ≤ V (x(t), λ(t)) ≤ γ2||x(t)||22,

and dV̄ (t)
dt ≤ 0 for almost all t, then xe = 0 is Lyapunov stable. Furthermore, if there exists a strictly

positive constant γ3 such that dV̄ (t)
dt ≤ −γ3||x(t)||22 for almost all t, then xe = 0 is exponentially

stable.

Proof. Let the solution (x(t), λ(t)) be arbitrary. Following Lemma 12, V̄ (t) is absolutely continuous

and almost everywhere differentiable on [0, T ] for all T . Then we have

V̄ (t) = V̄ (0) +

∫ t

0

˙̄V (s)ds ≤ V̄ (0),

since ˙̄V ≤ 0 for almost all t ∈ R
+. Since V is bounded and non-increasing, the rest follows from

standard arguments for Lyapunov stability.

In order to prove exponential stability, observe that ˙̄V (t) ≤ −γ3||x(t)||22. Hence, it follows that

||x(t)||22 ≤
1

γ1
V̄ (0)− γ3

γ1

∫ t

0
||x(s)||22ds.

5Dependence on x0 and LCS parameters is suppressed.
6 dV̄ (t)

dt
depends on K and L since ẋ is a function of K and L.

62



Using Grönwall’s inequality, it follows that

||x(t)||22 ≤
1

γ1
V̄ (0)e

−
γ3
γ1

t ≤ γ2
γ1
||x0||22e

−
γ3
γ1

t
.

Hence we conclude that the equilibrium is exponentially stable.

Theorem 14 establishes sufficient conditions to stabilize the LCS in (5.2). In Section 5.4, it is shown

how Theorem 14 can be used to algorithmically synthesize a controller. Next, observe that an

upper-bound always exists under certain assumptions.

Remark 15. If c ≥ 0 and p = r = z = 0, there exists a γ2 such that V (x, λ) ≤ γ2||x||22 since

Wλ(x) ≤ ρ||x||2 for all x for some ρ.

For this special case, an upper-bound always exists and one does not need to verify that V is

upper-bounded when algorithmically synthesizing a controller (Section 5.4).

5.4. Controller Design as a Bilinear Matrix Inequality Feasibility Problem

Controller design for complementarity systems in the form of BMI’s have been explored before for

the case where F in (5.2) is zero and without tactile feedback (L = 0) (Brogliato et al., 2007). In this

section, these results are extended and it is shown how Theorem 14 can be used to algorithmically

synthesize a controller when there is tactile feedback and the matrix F is non-zero. Then, the

controller design problem is converted into a bilinear matrix inequality (BMI) feasibility problem.

A convex optimization program is proposed to find a matrix W such that WSOL(Ex + c, F ) is a

singleton for all x.

5.4.1. Sufficient Conditions for Stabilization

The sufficient conditions in Theorem 14 need to be satisfied for all solutions of the LCS (5.2). Now,

we will transform them into matrix inequalities over two basic semialgebraic sets ΓSOL(E,F, c) and

Γ′
SOL(E,F, c). Define the set:

ΓSOL(E,F, c) = {(x,λ) : 0 ≤ λ ⊥ Ex+ c+ Fλ ≥ 0},
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where (x,λ) ∈ ΓSOL(E,F, c) are represented as quadratic inequalities. Similarly, define the following

set:

Γ′
SOL(E,F, c) = {(x,λ, λ̇)

∣
∣∃ρ,µ : λ ∈ SOL(Ex+ c, F ),

Eẋ+ F λ̇+ ρ = 0, λiρi = 0, λ̇i + µi = 0, (5.8)

(ET
i x+ F T

i λ+ ci)µi = 0,µiρi = 0},

where ẋ = Ax +Dλ + a and µ,ρ are slack variables. Here λ̇ expresses the time derivative of the

force. Next, we express the matrix inequalities over semialgebraic sets where a method similar to

construction of contact LCP’s in ((Brogliato, 2016), Section 5.1.2.1) is used.

Proposition 16. If the inequalities

γ1||x||22 ≤ V (x,λ) ≤ γ2||x||22, ∀(x,λ) ∈ ΓSOL, (5.9)

∇xV (x,λ)T ẋ+∇λV (x,λ)T λ̇ ≤ 0, ∀(x,λ, λ̇) ∈ Γ′
SOL, (5.10)

hold for the LCS (5.2) where ẋ = Ax+Dλ+a, then the following inequalities hold for all solutions

(x(t), λ(t)) of the LCS

γ1||x(t)||22 ≤ V (x(t), λ(t)) ≤ γ2||x(t)||22, (5.11)

d

dt
V (x(t), λ(t)) ≤ 0, (5.12)

for almost all t ≥ 0.

Proof. Consider an arbitrary solution, (x(t), λ(t)) of (5.2). First we will show that (5.9) implies

(5.11). From Definition 7, it follows that λ(t) ∈ SOL(Ex+ c, F ) and (x(t), λ(t)) ∈ ΓSOL(E,F, c) for

almost all t ≥ 0. The result follows from (5.9).
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Next, we show that (5.10) implies (5.12). We show that

λ(t) ∈ SOL(Ex(t) + c, F ), (5.13)

λi(t) > 0 =⇒ ET
i ẋ(t) + F T

i λ̇(t) = 0, (5.14)

ET
i x(t) + F T

i λ(t) + ci > 0 =⇒ λ̇i(t) = 0, (5.15)

λi = 0

ET
i x+ F T

i λ+ c = 0







=⇒
λ̇i = 0 or

ET
i ẋ+ F T

i λ̇ = 0,
(5.16)

hold for almost all t ≥ 0 where dependency on t in (5.16) is suppressed for space limitations,

λ̇(t) = dλ
dt , and (5.13) directly follows from the definition of solution.

We define ni(t) = ET
i x(t) + F T

i λ(t) + c for notational simplicity. To prove (5.14)-(5.16), observe

that for almost all t ≥ 0, there exists an ϵ > 0 such that both λi(t) and ni(t) are continuous in the

interval [t − ϵ, t + ϵ]. For almost all t ≥ 0 if λi(t) > 0, then ni(t) = 0 for a neighborhood around t

hence ET
i ẋ(t) + F T

i λ̇(t) = 0 and (5.14) follows. Similarly observe that if ni(t) > 0, then λ(t) = 0

and λ̇(t) = 0 as in (5.15). (5.16) follows from the the fact that both λi(t) and ni(t) cannot be

positive at the same time.

Suppose (5.13)-(5.16) hold at some time t∗ and consider x∗ = x(t∗), λ∗ = λ(t∗), λ̇∗ = λ(t∗) and

ẋ∗ = ẋ(t∗). We will show that (x∗, λ∗, λ̇∗) ∈ Γ′
SOL(E,F, c).

There are 3 cases. First consider the case where λi,∗ > 0 and therefore (ET
i x∗ + F T

i λ∗ + ci) = 0.

Observe that all equalities in (5.8) are satisfied with ρi,∗ = 0 and µi,∗ = −λ̇i,∗.

For the case where λi,∗ = 0 and (ET
i x∗ + F T

i λ∗ + ci) > 0, all equalities are satisfied with ρi,∗ =

−ET
i ẋ∗ − Fλ̇i,∗ and µi,∗ = 0.

For the last case where both (ET
i x∗ + F T

i λ∗ + ci) = λi,∗ = 0, the equalities are satisfied with either

ρi,∗ = 0, µi,∗ = −λ̇i,∗ or ρi,∗ = −ET
i ẋ∗ − Fλ̇i,∗, µi,∗ = 0.

Since the implications hold for almost all t, we conclude that (x(t), λ(t), λ̇(t)) ∈ Γ′
SOL for almost all
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t ≥ 0. The result follows from (5.10).

Following Proposition 16 and Theorem 14, if the matrix inequalities (see Appendix for the full

derivation) over basic semialgebraic sets (5.9), (5.10) are satisfied, one can conclude that the equi-

librium xe is Lyapunov stable. Similarly, one can show that the equilibrium is exponentially stable

if the left side of (5.10) is upper-bounded by −γ3||x||22 as in Theorem 14.

5.4.2. Control Design

Now, the sets ΓSOL(E,F, c), Γ′
SOL(E,F, c) are defined and it is assumed that there is access to a

matrix W . The BMI feasibility problem with strictly positive constants γ1, γ2 and non-negative γ3

can be formulated as:

find V (x,λ),K, L (5.17)

s.t. γ1||x||22 ≤ V (x,λ) ≤ γ2||x||22, (x,λ) ∈ ΓSOL(E,F, c),

dV

dt
≤ −γ3||x||22, (x,λ, λ̇) ∈ Γ′

SOL(E,F, c),

with the function V (x,λ) as in (5.6) and

dV

dt
= 2xTP (Ax+Dλ+ a) + 2(Ax+Dλ+ a)T Q̃Wλ

+ 2xT Q̃Wλ̇+ 2λTW T R̃W λ̇+ pT ẋ+ r̃W T
i λ̇,

with the controller as in (5.7). Here, V encodes the non-smoothness of the problem structure,

mirroring the structure of the LCS, and allow tactile feedback design without exponential enu-

meration. This is an appealing middle ground between the common Lyapunov function of our

prior work (Posa et al., 2015), and purely hybrid approaches (Papachristodoulou and Prajna, 2009;

Marcucci and Tedrake, 2019). Whereas methods like our prior work are more conservative than

the proposed method (Example 3.3., (Camlibel et al., 2006)), purely hybrid methods are less con-

servative at the cost of additional computation. Here, it is possible to assign a different Lyapunov

function and a control policy for each mode while avoiding mode enumeration so the approach can
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scale to large number of contacts m unlike purely hybrid approaches.

Notice that the inequality with dV
dt in (5.17) is a bilinear matrix inequality because of the bilinear

terms such as PA where A as in (5.2) depends on the gain matrix K as discussed in Section 5.2.

In (5.17), the problem of designing a control policy is formulated as finding a feasible solution for

a set of bilinear matrix inequalities. The sets ΓSOL(E,F, c) and Γ′
SOL(E,F, c) are incorporated via

the S-procedure.

5.4.3. Computing W via Polynomial Optimization

Until this point, it is assumed that there is access to a W such that WSOL(Ex+c, F ) is a singleton

for all x ∈ R
n. If F is a P-matrix, one can always pick W = I since SOL(Ex+ c, F ) is a singleton

for any x as discussed earlier. For the non-P case, one can always trivially pick W = 0 which turns

the Lyapunov function (5.6) into a common Lyapunov function, and controller (5.1) into a non-

switching state feedback controller. On the other hand, it is clearly better to search over a wider

range of Lyapunov functions and controllers (Johansson and Rantzer, 1997), (Camlibel et al., 2006).

Hence it is desired to maximize the rank of W . More precisely, consider the following optimization

problem:

max
W

rank(W )

subject to WSOL(q, F ) is a singleton for all q.

To solve this problem, an algorithm based in a sequence of convex optimization problems is proposed.

First, consider the following sub-problem:

find
w

s.t. wTSOL(q, F ) is a singleton for all q, (5.18)

where w ∈ R
m. Using this sub-problem, we will construct an algorithm to find matrices W . Notice

that a w such that |wT (λ1,q−λ2,q)| = 0 holds for all q, and all λ1,q, λ2,q ∈ SOL(q, F ) satisfies (5.18).

Next, we demonstrate that it is sufficient to satisfy |wT (λ1,q − λ2,q)| ≤ η for any η > 0 to satisfy

(5.18).
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Proposition 17. Suppose that for some w, the following inequalities hold for all q, all λ1,q, λ2,q ∈

SOL(q, F ):

(η + wT (λ1,q − λ2,q))(λ
T
1,qλ1,q + λT

2,qλ2,q) ≥ 0,

(η − wT (λ1,q − λ2,q))(λ
T
1,qλ1,q + λT

2,qλ2,q) ≥ 0,

(5.19)

where η > 0 is a constant slack parameter. Then, wTSOL(q, F ) is a singleton for all q.

Proof. Observe that

λ ∈ SOL(q, F ) =⇒ αλ ∈ SOL(αq, F ),

for all α ≥ 0. We will show that the positive homogeneity property leads to:

|wT (λ1,q − λ2,q)| ≤ η ∀q =⇒ |wT (λ1,q − λ2,q)| = 0 ∀q. (5.20)

Assume that there exists η∗ > 0 such that |wT (λ1,q∗ − λ2,q∗)| = η∗ for some q∗. Pick α∗ > 0

such that α∗η∗ > η and |wT (α∗λ1,q∗ − α∗λ2,q∗)| = α∗η∗ > η. Due to the positive homogeneity

property, there exists λ1,αq∗ and λ2,αq∗ such that |wT (λ1,αq∗ − λ2,αq∗)| = α∗η∗ > η. This leads to a

contradiction.

Next, we consider q such that (λT
1,qλ1,q+λT

2,qλ2,q) > 0. It follows from (5.19) that |wT (λ1,q−λ2,q)| ≤ η

hence |wT (λ1,q − λ2,q)| = 0. If (λT
1,qλ1,q + λT

2,qλ2,q) = 0, then λ1,q = λ2,q = 0 and it trivially holds

that wTλ1,q = wTλ2,q. Therefore, for any w such that (5.19) holds, wTλ1,q = wTλ2,q also holds for

all q. Hence, wTSOL(q, F ) is a singleton for all q.

Finding a w such that (5.19) holds can be reduced to a polynomial optimization program (see

Appendix, (A.1)) and any vector w that satisfies (5.19) also satisfies (5.18). Experimentally, we

found that use of the slack variable η was helpful to avoid numerical difficulties in the solvers.

The solvers (Mosek (Mosek, 2010), SeDuMi (Sturm, 1999)) had trouble verifying the status of the

problem (feasible or infeasible) when η = 0. The (λT
1,qλ1,q +λT

2,qλ2,q) terms in (5.19) are introduced

because there are degree two S-procedure terms (as shown in (A.1)) and the inequalities must be

at least degree two to use such S-procedure terms.
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Algorithm 6 Find W

Require: F
Initialization : N ← I, W = [ ], r = 1, w = 1

1: while min rTNTw ̸= 0 do
2: r ∼ U(0, 1)
3: Solve (5.21) and obtain w
4: if min rTNTw < 0 then

5: W ←
[
W
wT

]

6: Calculate N based on N (W )
7: end if
8: end while
9: return W

Given a matrix Wd ∈ R
s×m, one can utilize Proposition 17 in order to find a vector w such that

wTSOL(q, F ) is a singleton (for all q) and wT is linearly independent with the rows of Wd. Consider

the optimization problem:

min
w,η

rTNTw (5.21)

subject to (η + wT (λ1 − λ2))(λ
T
1 λ1 + λT

2 λ2) ≥ 0,

(η − wT (λ1 − λ2))(λ
T
1 λ1 + λT

2 λ2) ≥ 0,

for λ1,λ2 ∈ SOL(q, F ),

|wi| ≤ 1, ∀i, η ≥ 0,

where r is a random vector with entries sampled from uniform distribution (ri ∼ U(0, 1)), N is

a basis for the nullspace of Wd (N (Wd)), λ1,λ2, q are indeterminates, and the set inclusion is

incorporated via the S-procedure for the first two inequalities (Appendix B, (A.2)). Randomness is

introduced in (5.21) in order to ensure that the objective function is almost surely strictly negative.

More precisely, a linear objective that is strictly negative if any N such that Nw ̸= 0 exists is needed

and projection onto a random vector r ensures this with probability one.

Proposition 18. Consider Wd and the optimization (5.21). If there exists a w such that the

constraints hold, and wT is linearly independent with the rows of Wd, then min rTNTw < 0 almost
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Figure 5.2: Benchmark problem: Regulation of the cart-pole system to the origin with soft walls.

surely.

Proof. Assume there exists a w that is feasible for optimization problem (5.21) and wT is linearly

independent with the rows of Wd. Then, ||NTw|| > 0 and rTNTw ̸= 0 with probability 1. By

homogeneity, an optimal w∗ can be found such that rTNTw∗ < 0.

We now introduce Algorithm 6 based on Proposition 18. The algorithm almost surely finds a new

linearly independent vector that satisfies the constraints in (5.21) if it exists and terminates when

there are not any left. Notice that the randomization process affects the outcome (W ) but we are

only interested in finding a W such that WSOL(q, F ) is a singleton for all q hence this effect can

be neglected.

5.5. Numerical Examples

In this paper, the YALMIP (Löfberg, 2004) toolbox and PENBMI (Kočvara and Stingl, 2003) are

used to formulate and solve bilinear matrix inequalities. SeDuMi (Sturm, 1999) and Mosek (Mosek,

2010) are used for solving the semidefinite programs (SDPs). PATH (Dirkse and Ferris, 1995) has

been used to solve the linear complementarity problems when performing simulations. MATLAB’s

stiff solver ’ode15s’ is used while performing simulations of the LCS models and Euler’s method

with stepsize 10−4 is used for the nonlinear models. The code for all examples is available7 and

7https://github.com/AlpAydinoglu/cdesign
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Figure 5.3: Performance of LQR and contact-aware policy starting from the same initial condition
for the cart-pole with soft walls example. LQR is unstable whereas contact-aware policy is successful.

examples are provided with a video depiction8. The experiments are done on a desktop computer

with the processor Intel i7-9700 and 16GB RAM. We have reported the offline computation times

for all of the examples and emphasize that our controller only requires only a few addition and

multiplication operations when running online and is applicable in real time context after the offline

computations are done.

5.5.1. Cart-Pole with Soft Walls

Consider the cart-pole system where the goal is to balance the pole and regulate the cart to

the center, where there are frictionless walls, modeled via spring contacts, on both sides. This

problem, or a slight variation of it, has been used as a benchmark in control through contact

(Marcucci and Tedrake, 2019), (Deits et al., 2019), (Marcucci et al., 2017) and the model is shown

in Figure 5.2.

First, the model where there is no damping is analyzed. In this model, the x1 is the position of the

cart, x2 is the angle of the pole, and x3, x4 are their respective time derivatives. The input u1 is a

force applied to the cart, and the contact forces of the walls are represented with λ1 and λ2, leading

8https://www.youtube.com/watch?v=CpYZcinYuQM
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to the LCS

ẋ1 = x3, (5.22)

ẋ2 = x4, (5.23)

ẋ3 =
gmp

mc
x2 +

1

mc
u1, (5.24)

ẋ4 =
g(mc +mp)

lmc
x2 +

1

lmc
u1 +

1

lmp
λ1 −

1

lmp
λ2, (5.25)

0 ≤ λ1 ⊥ lx2 − x1 +
1

k1
λ1 + d ≥ 0,

0 ≤ λ2 ⊥ x1 − lx2 +
1

k2
λ2 + d ≥ 0,

where k1 = k2 = 10 are stiffness parameters of the soft walls, g = 9.81 is the gravitational accel-

eration, mp = 0.1 is the mass of the pole, mc = 1 is the mass of the cart, l = 0.5 is the length

of the pole, and d = 0.1 represents where the walls are. Observe that the model has absolutely

continuous solutions following Proposition 8. For this model, we solve the feasibility problem (5.17)

and find a controller of the form u(x, λ) = Kx + Lλ that regulates the model to the origin with

K =

[

3.69 −46.7 3.39 −5.71
]

and L =

[

−13.98 13.98

]

. The algorithm succeeded in find-

ing a feasible controller in 0.72 seconds. Additionally, we have tried to find a pure state feedback

controller (L = 0) and, as formulated, failed to find such a controller for 1000 trials starting from

different initial conditions. Due to the non-convexity of the BMI, this does not guarantee that such

a controller-Lyapunov function pair does not exist, but demonstrates that the optimization problem

is harder to solve in more conservative settings.

As a comparison, consider an LQR controller with penalty on the state Q = 100I and penalty on

the input R = 1 which is given as KLQR =

[

10 −91.77 16.28 −22.69
]

. Both contact-aware

and LQR controllers are tested on the nonlinear plant for 100 initial conditions where x2(0) = 0,

and x1(0), x3(0), x4(0) are uniformly distributed (10x1(0), 14x3(0), x4(0) ∼ U [−1, 1]). The LQR

controller was successful only 31% of the time, whereas our contact-aware policy was successful

87% of the time. In Figure 5.3, an example is presented where both LQR and contact-aware policy

start from the same initial conditions and LQR fails whereas our policy is successful. Our method
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Figure 5.4: Comparison of the LQR controller and contact-aware policy for k1 = k2 = 100. The
LQR controller fails to stabilize the system whereas contact-aware policy is successful.

Figure 5.5: Comparison of the LQR controller and contact-aware policy for k1 = k2 = 1000. The
LQR controller fails to stabilize the system whereas contact-aware policy is successful.

is compared with LQR, which uses linearization and thus ignores potential contact events. Our

controller is a contact-aware analogue to non-switching state-feedback controllers such as LQR. In

our comparison, the LQR controller acts as a stand-in for these methods which do not explicitly

consider the non-smooth structure of the system.

Then, two different cases with higher stiffness values are explored. First, a controller is designed for
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Figure 5.6: Performance of tactile feedback controller with damping. Contact-aware policy success-
fully stabilizes the nonlinear plant.

the case where k1 = k2 = 100 with the controller gains:

K100 =

[

3.69 −48.78 2.36 −9.96
]

,

L100 =

[

−14.14 14.14

]

.

The performance of the contact-aware controller is demonstrated against the previously designed

LQR on the nonlinear plant in Figure 5.4.

One more set of experiments is presented where k1 = k2 = 1000 and a controller is designed with

the gains:

K1000 =

[

0.45 −40.23 0.86 −25.50
]

,

L1000 =

[

−14.14 14.14

]

.

The performance of the contact-aware controller is demonstrated against the previously designed

LQR on the nonlinear plant in Figure 5.5. Notice that it is possible to design controllers for stiffer

contacts, but stiff, near-impulsive contact events resolve very quickly and that measurement and

rapid response may not be practical.
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Figure 5.7: Regulation of carts to their respective origins without observation of the middle cart.

Next, inspired by (Brogliato, 2003), consider the case where damping term, b, is nonzero. The

system dynamics are modeled as in (5.22)-(5.25) with the following complementarity constraints:

0 ≤ λ1 ⊥ −kx1 + klx2 − bx3 + blx4 + kd+ λ1 + γ1 ≥ 0,

0 ≤ γ1 ⊥Mx1 −Mlx2 −Md+ γ1 ≥ 0,

0 ≤ λ2 ⊥ kx1 − lkx2 + bx3 − blx4 + kd+ λ2 + γ2 ≥ 0,

0 ≤ γ2 ⊥ −Mx1 +Mlx2 −Md+ γ2,

where a large positive constant M = 1000 is introduced and the slack variables γ1 and γ2 to

capture the affect of damper. As M increases the model approximates the spring-damper model

(Brogliato, 2003) better. In this model, consider b = 1, k = 10, mp = mc = 1, g = 9.81, l = 0.5,

d = 0.1. For this model, we solve the feasibility problem (5.17) and find a controller of the form

u(x, λ) = Kx+Lλ that regulates the model to the origin with K =

[

8.47 −64.54 10.36 −9.69
]

and L =

[

−4.8 0 4.76 0

]

in 384 seconds. The performance of the controller is demonstrated on

the nonlinear plant in Figure 5.6.

5.5.2. Partial State Feedback

Consider a model that consists of three carts on a frictionless surface as in Figure 5.7. The cart

on the left is attached to a pole and the cart in the middle makes contact via soft springs. In this
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Figure 5.8: Simulation with contact-aware policy for partial state-feedback example. The plots on
the top row show the input and the state variables (u(t), x(t)) for the time interval t = [0 60].
Second row demonstrates the time interval t = [0 10] for the same initial condition.

model, a spring only becomes active if the distance between the outer block and the block in the

middle is less than some threshold. Here, x1, x2, x3 represent the positions of the carts and x4 is

the angle of the pole. The corresponding LCS is

ẍ1 =
gmp

m1
x4 +

1

m1
u1 −

1

m1
λ1,

ẍ2 =
λ1

m2
− λ2

m2
,

ẍ3 =
λ2

m3
+

u2
m3

,

ẍ4 =
g(m1 +mp)

m1l
x4 +

u1
m1l
− 1

m1l
λ1,

0 ≤ λ1 ⊥ x2 − x1 +
1

k1
λ1 ≥ 0,

0 ≤ λ2 ⊥ x3 − x2 +
1

k2
λ2 ≥ 0,

where the masses of the carts are m1 = m2 = m3 = 1, g = 9.81 is the gravitational acceleration,

mp = 1.5 is the mass of the pole, l = 0.5 is the length of the pole, and k1 = k2 = 20 are stiffness
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parameters of the springs. Observe that we have control over the outer blocks, but do not have

any control over the block in the middle. Additionally, it is assumed that the middle block is not

observed, and one can only observe the outer blocks and the contact forces. Notice that the model

has absolutely continuous solutions following Proposition 8.

For this example, the feasibility problem (5.17) takes 9.3 seconds to solve with a controller of the

form u(x, λ) = Kx+ Lλ where

K =






−2.8 0 6.6 −263.1 6.4 0 −2.1 −30.2

11.5 0 −12.1 12.1 2.6 0 −4.7 6.6




 ,

L =






−3.7 −0.6

−0.6 7.2




 .

Notice that we enforce sparsity on the controller K and do not use any feedback from the state

x2 or its derivative ẋ2. This example demonstrates that tactile feedback can be used in scenarios

where full state information is lacking and also impact events can be used in order to stabilize the

system. In Figure 5.8, the performance of the controller is demonstrated.

5.5.3. Acrobot with Soft Joint Limits

As a third example, consider the classical underactuated acrobot, a double pendulum with a single

actuator at the elbow (see (Murray and Hauser, 1991) for the details of the acrobot dynamics).

Additionally, soft joint limits are added to the model. Hence we consider the model in Figure 5.9:

ẋ = Ax+Bu+Dλ,

where x = (θ1, θ2, θ̇1, θ̇2), λ = (λ1, λ2), and D =






02×2

M−1JT




 with JT =






−1 1

0 0




. For this model,

the masses of the rods are m1 = 0.5, m2 = 1, the lengths of the rods are l1 = 0.5, l2 = 1, and

the gravitational acceleration is g = 9.81. The soft joint limits are modeled using the following
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Figure 5.9: Acrobot with soft joint limits.

complementarity constraints:

0 ≤ d− θ1 +
1

k
λ1 ⊥ λ1 ≥ 0,

0 ≤ θ1 + d+
1

k
λ2 ⊥ λ2 ≥ 0,

where k = 1 is the stiffness parameter and d = 0.2 is the angle that represents the joint limits in

terms of the angle θ1. Observe that the model has absolutely continuous solutions, x(t), following

Proposition 8 since F is a P-matrix.

For this example, we solve the feasibility problem (5.17) and obtain a controller of the form

u(x, λ) = Kx+Lλ in 1.18 seconds with K =

[

73.07 38.11 30.41 18.95

]

and L =

[

−4.13 4.13

]

.

For comparison, we also designed an LQR controller for the linear system where the penalty

on the state is Q = 100I and the penalty on the input is R = 1 which is given as

KLQR =

[

1476.3 851.68 548.81 334.43

]

. 100 trials were made on the nonlinear plant where

initial conditions were sampled according to x1(0) = x2(0) = 0 and x3(0), x4(0) ∼ U [−0.05, 0.05].
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Figure 5.10: Simulation of LQR and contact-aware policy starting from the same initial condition
for the acrobot with soft joint limits example. LQR is unstable whereas contact-aware policy is
successful.

Out of these 100 trials, LQR was successful only 49% of the time whereas our design was successful

87% of the time. In Figure 5.10, a case where LQR fails and contact-aware policy is successful is

presented.

5.5.4. Box with Friction

Consider a quasi-static model of a box on a surface, as in Figure 5.11, where µ is the coefficient of

friction between the box and the ground. Newtons’s second law is approximated with a force balance

equation with Coulomb friction and damping. The goal is to regulate the box to the center. This

simple model serves as an example where F is not a P-matrix and the complementarity constraints

have a dependency on the input u (H ̸= 0). Here, x is the position of the box, u is the input, λ+ is

the positive component of the friction force, λ− is the negative component of the friction force and

γ is the slack variable:

αẋ = u+ λ+ − λ−,

0 ≤ γ ⊥ µmg − λ+ − λ− ≥ 0,

0 ≤ λ+ ⊥ γ + u+ λ+ − λ− ≥ 0,

0 ≤ λ− ⊥ γ − u− λ+ + λ− ≥ 0,
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Figure 5.11: Regulation task of a box standing on a surface with Coulomb friction.

Figure 5.12: Simulation of box with friction example. The equilibrium is Lyapunov stable and the
state trajectory, x(t) does not reach origin because of stiction.

where m = 1 is the mass of the box, g = 9.81 is the gravitational acceleration µ = 0.1 is the friction

coefficient, and α = 4 is the damping coefficient. Input delay is modeled with the low-pass filter:

αẋ = τ + λ+ − λ−,

τ̇ = κ(u− τ),

0 ≤ γ ⊥ µmg − λ+ − λ− ≥ 0,

0 ≤ λ+
t ⊥ γ + τ + λ+ − λ− ≥ 0,

0 ≤ λ−
t ⊥ γ − τ − λ+ + λ− ≥ 0,
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Figure 5.13: Regulation task of a 3 legged table.

where κ = 100. Since F is not a P-matrix, we use Algorithm 6 and find W = [0 1 − 1] such

that WSOL(q, F ) is a singleton for all q in 8.09 seconds. For this example, W shows that the

net friction force, λ+ − λ− is always unique. Notice that the x-trajectory, x(t) is unique, but the

λ-trajectory, λ(t) is not. Note that the closed-loop system has absolutely continuous solutions

following Proposition 8 since it is enforced that LSOL(Ex+ c, F ) is a singleton.

We can solve the feasibility problem in (5.17) in 22 seconds and find a controller of the form u(x, λ) =

Kx + Lλ such that the system is Lyapunov stable with K =

[

−10.58
]

and L =

[

0 0.7 −0.7
]

.

In Figure 5.12, the performance of the controller is demonstrated.

5.5.5. Three Legged Table

We consider a three legged table on a surface with Coulomb friction as in Figure 5.13. In this model,

the coefficient of friction values (µ1, µ2, µ3) are different for each leg of the table. The normal forces

at the legs of the table are denoted by (N1, N2, N3) and sum of the normal forces are equal to

the mass times gravitational acceleration, mg. The net friction force is unique in static situations

but it is non-unique during sliding since individual normal forces, Ni, are non-unique. The task is

regulating the three legged table to the center. Newton’s second law is approximated with a force

balance equation with Coulomb friction and damping as in the previous example. In this model x

is the position of the box, τ is the output of the low-pass filter, λ+ is the positive component of the

friction force, λ− is the negative component of the friction force, γ is the slack variable, u is the

force applied to the table:
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αẋ = τ + λ+ − λ−, (5.26)

τ̇ = κ(u− τ), (5.27)

0 ≤ γ ⊥ µ1N1 + µ2N2 + µ3N3 − λ+ − λ− ≥ 0, (5.28)

0 ≤ λ+ ⊥ γ + τ + λ+ − λ− ≥ 0, (5.29)

0 ≤ λ− ⊥ γ − τ − λ+ + λ− ≥ 0, (5.30)

N1 +N2 +N3 = mg, (5.31)

N1, N2, N3 ≥ 0, (5.32)

where (µ1, µ2, µ3) = (0.1, 0.5, 1) are the coefficient of friction parameters for the legs of the table,

m = 1 is the mass of the box, g = 9.81 is the gravitational acceleration, α = 4 is the damping

coefficient, and κ = 100 is the filter coefficient. The constraints (5.31) and (5.32) are exchanged

with:

0 ≤ N1 ⊥ −mg +N1 +N2 +N3 ≥ 0,

0 ≤ N2 ⊥ −mg +N1 +N2 +N3 ≥ 0,

0 ≤ N3 ⊥ −mg +N1 +N2 +N3 ≥ 0,

to be consistent with the framework. Note that extending the framework to LCS models with

additional equality and inequality constraints as in (5.26)-(5.32) is straightforward but it is omitted

for brevity.

After using Algorithm 1, we find that W = [0 0 0 1 1 1] in 242.8 minutes. Observe that one can

solve a smaller sized polynomial optimization that only includes N1, N2, N3 in 3.08 seconds as the

variables are decoupled from γ, λ+, λ− and reach the same result. W shows that N1 + N2 + N3

is unique, as expected since N1 + N2 + N3 = mg. Note that Wλ = mg is a constant and the

Lyapunov function (5.6) reduces to a common Lyapunov function. Based on the structure of W ,

unlike the previous example, the net force λ+ − λ− is not unique which is also expected due to the

non-unique nature of normal forces. Notice that both the x-trajectory, x(t) and λ-trajectory, λ(t)
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Figure 5.14: Simulation of three legged table example for the normal forces given as N(t) =
[4.0910, 4.1195, 1.5995] for t ∈ [0, 0.2992), N(t) = [5.4033, 3.1206, 1.2861] for t ∈ [0.2992, 0.5455)
and N(t) = [9.4866, 0.1770, 0.1464] for t ∈ [0.5455,∞).

are non-unique. The model has absolutely continuous solutions, x(t) and τ(t), for fixed N1, N2, N3

following Proposition 8. For this example, we only consider the case where N1(t), N2(t), N3(t) are

bounded piecewise constant functions with finitely many pieces hence x(t) and τ(t) are absolutely

continuous.

The feasibility problem (5.17) is solved in 19 seconds and a controller of the form u(x, λ) =

Kx + Lλ is found such that the origin is Lyapunov stable with K =

[

−20.75
]

and L =
[

0 0.36 −0.36 0 0 0

]

. The trajectories of the closed loop system are always absolutely con-

tinuous since we enforce that LSOL(Ex + c, F ) is a singleton for fixed, arbitrary N1, N2 and N3.

In Figure 5.14, observe that the force applied to the system (τ) is continuous even though u is not,

due to the low-pass filter. The origin is Lyapunov stable and the trajectory does not reach origin

because of stiction.

5.5.6. 2D Simple Manipulation

Consider a quasi-static model of a box on a surface with friction parameter µ and two robotic

arms that can interact with the box as in Figure 5.15. Similar to the previous example, the force

balance equation is used with Coulomb friction and damping to model the dynamics of the box.

The velocity of the manipulators can be controlled directly with delayed inputs τ1 and τ2. In this
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Figure 5.15: 2D manipulation task where the goal is to regulate the position of the box on a surface
with friction.

Figure 5.16: Simulation results for 2D simple manipulation example. The forces applied to the box
(τ) are smooth even though u is not, due to the low-pass filter model.

model x1, x2, x3 represent the positions of the box, the left manipulator and the right manipulator

respectively. The contact forces λ1 and λ2 are non-zero if and only if the distance between the

manipulators and the box is less than some threshold. The friction force consists of a positive

component λ+ and a negative component λ−. We assume that we can not observe anything related

to the box except the contact force between the manipulators and the box. The task is to regulate

the box to the origin using the model:
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αẋ1 = λ1 − λ2 + λ+ − λ−,

ẋ2 = τ1,

ẋ3 = τ2,

τ̇1 = κ(u1 − τ1),

τ̇2 = κ(u2 − τ2),

0 ≤ λ1 ⊥ x1 − x2 +
1

k
λ1 ≥ 0,

0 ≤ λ2 ⊥ x3 − x1 +
1

k
λ2 ≥ 0,

0 ≤ γ ⊥ µmg − λ+ − λ− ≥ 0,

0 ≤ λ+ ⊥ γ + λ1 − λ2 + λ+ − λ− ≥ 0,

0 ≤ λ− ⊥ γ − λ1 + λ2 − λ+ + λ− ≥ 0,

where κ = 100, µ = 0.1, m = 1, g = 9.81, α = 1, and k = 100. Since, F is not a P-matrix, we can

construct the W matrix using the result in Example 5.5.4 and obtain

W =









1 0 0 0 0

0 1 0 0 0

0 0 0 1 −1









.

Observing W , the net friction force, λ+−λ−, is unique. The contact forces between the manipulators

and the box, λ1, λ2 are also unique. Note that the closed-loop system has absolutely continuous

solutions following Proposition 8 since it is enforced that LSOL(Ex+ c, F ) is a singleton.

Then we solve the optimization problem to find a controller that asymptotically stabilizes the system

to a small ball around the origin B = {x : xTx ≤ 0.1}. The optimization problem finds a result in

7.06 minutes and a controller of the form u(x, λ) = Kx+ Lλ that stabilizes the system is obtained
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Figure 5.17: Four carts example. The inputs that are applied to carts are represented by the red
arrows.

with

K =






0 −2.33 −0.82

0 −0.89 −2.44




 , L =






−0.26 0.06 0 0 0

−0.06 0.27 0 0 0




 .

This example shows that the contact-aware policy can be used for systems with non-unique contact

forces, e.g., quasi-static friction, where we do not have full state information. In Figure 5.16, we

demonstrate the performance of the controller.

5.5.7. Four Carts

As our last example, consider the system in Figure 5.17. Here, (xi, yi) gives the position of the cart

i. We approximate Newton’s second law with a force balance equation for each cart. The contact

forces λ1, λ2, λ7, λ8, λ9 and λ10 are soft contacts that are represented by the springs and are non-

zero if the objects are closer than a threshold. The forces λ3, λ4, λ5 and λ6 approximate attractive

magnetic forces between the carts and the walls and similarly are non-zero if the distance between

the carts and the walls is less than a threshold. The red arrows represent the input forces that can be

applied to carts. We model this system with n = 8 states, and m = 10 contacts where our goal is to

show the performance of the proposed method on a high dimensional under-actuated example that
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is unstable without any control action. The model parameters are A = 08×8, c = 010×1, F = I10×10,

B =


























1 0

0 0

0 1

0 0












04×3

03×4 I3×3















,

D =


























0 0 0 0 −1 0 0 0 0 −1

−1 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 1

0 −1 0 0 0 0 0 1 0 0

0 0 0 0 0 −1 0 0 −1 0

0 0 0 0 0 0 −1 0 0 0

0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 −1 0 0


























,

E =
































0 −1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 −1 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 −1 0 0

0 0 0 1 0 0 0 −1

0 0 0 0 −1 0 1 0

−1 0 1 0 0 0 0 0
































.

Observe that the model has absolutely continuous solutions following Proposition 8. A controller
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Figure 5.18: Simulation of four carts example. The state trajectory, x(t), asymptotically converges
to the origin.

of the form u(x, λ) = Kx + Lλ that stabilizes the system can be found. For this example, and

higher dimensional examples in general, the initialization of the K and L matrices have a significant

affect on the success of the algorithm. We initialized elements of K with sampling from uniform

distribution (Kij ∼ U [−100, 0]). For one successful case, the algorithm terminates in 6 minutes and

58 seconds, but we also needed to run the algorithm approximately 20 hours with random seeds to

obtain a successful result. In Figure 5.18, we present the performance of the controller.

5.6. Experimental Validation

We demonstrate our contact-aware feedback controller on an experimental cart-pole system with

soft walls shown in Figure 5.19, replicating the system from Section 5.5.1. To generate linear motion

of the cart, a DC motor is used with a belt drive. Linear motion of the cart was driven by torque-

controlled DC motor and incremental encoders measured the positions of the cart and pole. We

added soft walls and tactile sensing capabilities; open-cell polyurethane foam was used for the walls,

and a ’Flintec PC42 Single Point Load Cell ’ was used to measure the force exerted on the walls by

the pole. Alternatively, sensors could have been placed on the pole itself.

5.6.1. System Model

We take the gravitational acceleration as g = 9.81, mass of the pole as mp = 0.35, mass of the cart
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Figure 5.19: Experimental setup for cart-pole with soft walls.

as mc = 0.978, length of the center of mass location as lCoM = 0.4267, the distance to the walls as

d = 0.35 and and length of the pole as lp = 0.6. After experimental trials, we identified the spring

constant k = 700 and neglect the damping term (b = 0). The parameters of the LCS model are:

A =












0 0 1 0

0 0 0 1

0 3.51 0 0

0 22.2 0 0












, B =












0

0

1.02

1.7,












D =












0 0

0 0

0 0

4.7619 −4.7619












, E =






−1 0.6 0 0

1 −0.6 0 0,




 ,

F =






0.0014 0

0 0.0014




 , c =






0.35

0.35




 .
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Figure 5.20: Experiment 1 - Trajectories around the impact event for all 6 trials. Blue represents
contact-aware policy, red represents LQR, solid lines represent the respective means and shaded
regions represent standard deviation. State distribution before the impact events are similar (≈ 2
cm difference in cart position and ≈ 1 degree difference in pole angle). The velocity of the cart (x3)
is significantly higher for contact-aware policy after the impact.

5.6.2. Experiments

Three sets of experiments are performed. For the first two, our method is compared against an

LQR controller where KLQR =

[

3.16 −40.78 4.3 −7.67
]

. The contact-aware policy is designed

such that K = KLQR is enforced and a contact gain matrix L =

[

−10.02 10.02

]

is found. It may

be impossible to find a contact gain L with a fixed K in general, but K = KLQR was enforced

for a more fair comparison with LQR. If we let the BMI design search for both K and L, we can

potentially get a better solution, though BMI enforces stability versus optimality. Then, we perform

between 6 and 10 trial experiments depending on the setup, after which we observed deterioration

of the experimental setup due to the violence of the impact events that occurred when the LQR

controller failed to stabilize the system. While performing these experiments, sensor readings below

1 N are considered as 0 N to neglect the effect of oscillations that occur after the impact events.

For the third experiment, we repeat Experiment 1 without thresholds on the sensor readings.
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Figure 5.21: Experiment 1 - Blue represents the contact-aware policy and red represents LQR.
Contact-aware policy (u) starts pushing the cart in the positive direction aggressively as soon as
impact starts (λ2) in order to catch the falling pole causing a big increase in the cart velocity (x3).
As a result of contact-aware policy, the angular speed of pole is closer to zero (x4). The contact-
aware policy also mitigates the impact (λ2).

Experiment 1 We execute balancing controllers which attempt to stabilize the system to the

origin and evaluate their performance by introducing large perturbations that lead to contact events.

First, the system is started in the upright position at the right wall, xT0 =

[

0.35 0 0 0

]

. Then,

a control input9 is applied such that the pole impacts the left wall with high speed and close to

upright position.

We repeated this experiment 6 times for both policies. In Figure 5.20, we demonstrate that the

initial conditions for all trials (at t = 5.7) are similar. The mean difference is 0.05, 0.01, 0.01, 0.04

respectively for x1, x2, x3, x4. The LQR policy failed in all (0/6) of the trials whereas contact-aware

policy was always successful (6/6). Since the policies are identical when not in contact, we focus

our analysis and plots on the brief time windows (t = [5.7, 6.2] as in Figure 5.20) which contain

impact events. The contact-aware policy results in a significant increase in cart velocity (during the

9We apply the control input u = K(x− xs) where xT
s =

[

0 0.35 0 0
]

; hence, the cart moves towards the left

wall; then, we switch back to xT
s =

[

0 0 0 0
]

.
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Figure 5.22: Experiment 2 - Distribution of initial conditions where blue represents contact-aware
policy trials and red represents LQR trials.

impact event) in order to catch the falling pole (the mean cart velocity for contact-aware policy is

2.76 m/s higher than LQR at t = 6.2). Similarly, the mean angular velocity of the pole with LQR

controller is −4.84 rad/s compared to −1.48 rad/s of contact-aware policy which also demonstrates

that contact-aware policy is reacting better to the falling pole as expected.

We examine a specific trial (Figure 5.21) where the differences between the pre-impact states are

0.01, 0.02, 0.2 and 0.01 for x1, x2, x3, x4 respectively. Over the 50 ms impact period, change in the

cart velocity with contact-aware controller is 2.2 m/s higher than LQR. Similarly, the change in

angular velocity of the pole is 3.01 rad/s more than LQR. As shown in Figure 5.21, as soon as the

impact event with the left wall starts the contact-aware policy tries to push the cart in the positive

direction in order to catch the falling pole and stabilizes the system unlike LQR.

Experiment 2 In the first experiment, we created a consistent initial condition across all trials.

Here, we introduce random perturbations to cover a broader range of initial conditions. As with the

first experiment, the goal of the initialization process is to create conditions which initiate contact.

First, the system is balanced at the origin. Then, we apply a control input10 briefly to ensure that

pole is close to impacting the left wall with a relatively high speed. Next, we apply a random input

disturbance with uniform distribution ud ∼ U [5, 10] for 100 ms. We repeat this experiment 10 times

10We apply the control input u = K(x − xs) where xT
s =

[

0 0.5 0 0
]

for 0.5 seconds and switch back to

xT
s =

[

0 0 0 0
]

.
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Figure 5.23: Experiment 2 - LQR cost-to-go for all trials during the impact event (impact events
are aligned for all trials). Blue represents contact-aware policy, red represents LQR, solid lines
represent the respective means and shaded regions represent standard deviation. Contact-aware
cost-to-go surpasses LQR cost-to-go as the impact starts due to the aggressive tactile feedback but
contact-aware policy ends up with a lower cost-to-go after the impact event.

for each LQR and contact-aware policy (with same seeds). After the random input disturbance is

applied, the states are distributed as shown in Figure 5.22.

Out of the 10 trials, the LQR controller failed in 5/10 of the trials whereas the contact-aware policy

was always successful. In Figure 5.23, we demonstrate that the contact-aware policy ends up with

a lower cost-to-go than LQR after the impact event. Note that LQR cost-to-go is a useful metric,

more so than the 2-norm, since it represents an approximate cost to complete the stabilization task.

Figure 5.24: Experiment 3 - The oscillations in sensor readings (λ2) that are caused by the impact
event and the corresponding control action without heuristic-based thresholds.
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Figure 5.25: Experiment 3- Trajectory with contact-aware controller without any heuristic-based
thresholds.

Experiment 3 After the impact event, the walls oscillate back and forth which causes oscillations

in sensor readings as shown in Figure 5.24. In this experiment, we do not apply a threshold to the

sensor readings. This enables pure feedback on sensor measurements, rather than heuristic-based

thresholds or slow/inaccurate mode detection (where the state-of-the-art takes 4-5 ms (Bledt et al.,

2018)) that purely hybrid approaches utilize. Hence, we repeat the procedure in Experiment 1

and observe that the controller is successful in stabilizing the system (Figure 5.25) even without

heuristic-based thresholds. In Figure 5.26, model is simulated (as in Section 5.5.1) starting from the

an initial condition obtained from the experiment and contact-aware policy stabilizes the system

whereas LQR fails. This demonstrates that simulations capture the system qualitatively.

5.7. Conclusion and Discussion

In this work, we have introduced a controller that can utilize both state and force feedback. We have

demonstrated that combining linear complementarity systems with such tactile feedback controllers

might result in an algebraic loop, and discussed how one can break such algebraic loops.

We have proposed an algorithm for synthesizing contact-aware control policies for linear comple-

mentarity systems with possibly non-unique solutions. For soft contact models, we have shown

that pure local, linear analysis was entirely insufficient and utilizing contact in the control design
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is critical to achieve high performance. For systems with non-unique solutions, we have proposed a

polynomial optimization program that can find matrices that map non-unique contact forces into

a unique value, and used such mappings in our controller design algorithm. We have shown the

effectiveness of our method on quasi-static friction models.

Furthermore, the proposed algorithm exploits the complementarity structure of the system and

avoids enumerating the exponential number of potential modes, enabling efficient design of multi-

contact control policies. Towards this direction, we have presented an example with eight states

and ten contacts. In addition to incorporating tactile sensing into dynamic feedback, we provide

stability guarantees for our design method and we have verified our method on an experimental

setup.

The algorithm requires solving feasibility problems that include bilinear matrix inequalities and

we have used PENBMI (Kočvara and Stingl, 2003). For the examples presented here, except the

last one, the run time of the algorithm was short and we found solutions to the problems rela-

tively quickly. On the other hand, it is important to note that for some parameter choices and

initializations, the solver was unable to produce feasible solutions.

Interesting future work in this area will be using the controller presented here in physical exper-

Figure 5.26: Experiment 3- Simulation results (as in Section 5.5.1) where we simulate forward from
a state obtained from the experiment. Simulation captures the system response qualitatively as
LQR is unstable and contact-aware policy is successful.
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iments. In addition, we intend to extend these algorithms to more complex tasks. For example,

quasi-static models (Halm and Posa, 2019) where the matrix F depends on the generalized coordi-

nates q. Another direction is designing controllers for systems where there are bilinear terms (xiλj)

in the dynamics, since we believe that bilinear terms are important when locally approximating

a certain class of non-smooth systems. Also, works such as (Brogliato, 2016) draw connections

between compliant and rigid contact models. Such approaches can help analyzing the controllers

designed in this work for a range wider range of models. Lastly, it may be possible to increase the

application of our method by utilizing non-monotonic and almost-decreasing Lyapunov functions

(Morǎrescu and Brogliato, 2010).
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CHAPTER 6

STABILITY ANALYSIS OF COMPLEMENTARITY SYSTEMS WITH NEURAL

NETWORK CONTROLLERS

Parts of this chapter were previously published as parts of Alp Aydinoglu, Mahyar Fazlyab, Manfred

Morari, and Michael Posa. Stability Analysis of Complementarity Systems with Neural Network

Controllers. In Proceedings of the 24th International Conference on Hybrid Systems: Computation

and Control, pages 1–10, 2021a. DOI: https://dl.acm.org/doi/10.1145/3447928.3456651.

6.1. Introduction

In this chapter, we propose a method to analyze the stability of complementarity systems with

neural network controllers. First, we introduce a method to represent neural networks with rectified

linear unit (ReLU) activations as the solution to a linear complementarity problem. Then, we show

that systems with ReLU network controllers have an equivalent linear complementarity system

description. Using the LCS representation, we turn the stability verification problem into a linear

matrix inequality (LMI) feasibility problem. We demonstrate the approach on several examples,

including multi-contact problems and friction models with non-unique solutions.

6.2. Linear Complementarity Systems with Neural Network Controllers

In this section, we demonstrate that neural networks with rectified linear units (ReLU) have an

equivalent LCP representation. Then, we show that an LCS combined with a neural network

controller has an alternative complementarity system description.

Definition 19. A ReLU neural network ϕ : Rnx 7→ R
nφ with L hidden layers is the composite

function

ϕ(x) = (hL ◦ λReLU ◦ hL−1 ◦ . . . ◦ λReLU ◦ h0)(x), (6.1)

where λReLU(x) = max{0, x} is the ReLU activation layer, and hi(x) = θix + ci are the affine

layers with θi ∈ R
ni+1×ni , ci ∈ R

ni+1 . Here, ni, 1 ≤ i ≤ L denotes the number of hidden neurons in

the i-th layer, n0 = nx, and nL+1 = nϕ. We denote by nt =
∑L

i=1 ni the total number of neurons.
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6.2.1. Representing ReLU Neural Networks as Linear Complementarity Problems

ReLU neural networks are piece-wise affine functions. Similarly, the linear complementarity problem

describes a piece-wise affine function as shown in (3.1) as long as F is a P-matrix. In this section,

we will explore the connection between two piece-wise affine representations.

It has been shown that ReLU neural networks can be represented with quadratic constraints

(Raghunathan et al., 2018), (Fazlyab et al., 2019b). Now, our goal is to show the connection be-

tween these results and linear complementarity problems. We will describe a method to represent

a multi-layered ReLU neural network as a linear complementarity problem exploring the cascade

connections of complementarity problems (Brogliato, 2003).

First we consider a single ReLU unit λReLU(x) = max(0, x) and its equivalent LCP representation.

Lemma 20. (Heemels et al., 2000) Consider the following LCP for a given x ∈ R
d:

find λLCP ∈ R
d

subject to ȳ = −x+ λLCP,

0 ≤ λLCP ⊥ ȳ ≥ 0,

Then λLCP is unique and is given by λLCP = max{0, x}.

Proof. If xi < 0, then λLCP
i = 0 and if xi ≥ 0, then λLCP

i = xi.

Next, we consider a two layered neural network and transform it into an LCP using Lemma 20.

Example 21. Consider a two layered network shown in Figure 6.1 where ϕ2-layer(x) = λReLU ◦h1 ◦

λReLU ◦ h0(x) with h0(x) = x and h1(x) = θ2x + c̄2. An alternative representation is ϕ2-layer(x) =
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Figure 6.1: Two-layered neural network with ReLU activation functions.

[

λ3(x)
⊤ λ4(x)

⊤

]⊤

where

λ1(x) = max{0, x1}, (6.2)

λ2(x) = max{0, x2}, (6.3)

λ3(x) = max{0, θ1,12 λ1(x) + θ1,22 λ2(x) + c̄12}, (6.4)

λ4(x) = max{0, θ2,22 λ2(x) + c̄22}. (6.5)

Here λi represents the output of the ith ReLU activation function, θj,ki and c̄ji represent the coeffi-

cients of the affine function. Observe that the two-layered NN is equivalent to






λ3

λ4




 where λ is the

unique solution of the following LCP:

find λ ∈ R
4

subject to ȳ1 = −x1 + λ1,

ȳ2 = −x2 + λ2,

ȳ3 = −θ1,12 λ1 − θ1,22 λ2 − c̄12 + λ3,

ȳ4 = −θ2,22 λ2 − c̄22 + λ4,

0 ≤ λ1 ⊥ ȳ1 ≥ 0, 0 ≤ λ2 ⊥ ȳ2 ≥ 0,

0 ≤ λ3 ⊥ ȳ3 ≥ 0, 0 ≤ λ4 ⊥ ȳ4 ≥ 0.
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Here, {λi}2i=1 can be represented as λi = max{0, xi} and {λi}4i=3 are as in (6.4), (6.5) after direct

application of Lemma 20. Then, we conclude that






λ3

λ4




 = ϕ2-layer.

Now, we show that all neural networks of the form (6.1) have an equivalent LCP representation.

Lemma 22. For any x, the ReLU neural network in (6.1) can be expressed as ϕ(x) = D̄λ(x) + z̄,

where λ(x) is the unique solution of the following linear complementarity problem:

find λ

subject to ȳ = Ēx+ F̄ λ+ c̄,

0 ≤ λ ⊥ ȳ ≥ 0,

where c̄ =












−c0
−c1
...

−cL−1












, Ē =












−θ0
0

...

0












, F̄ =



















I

−θ1 I

0 −θ2 I

0 0 −θ3 I

...
...

...
...

...
...

0 . . . . . . . . . −θL−1 I



















and z̄ = c̄L, D̄ =

[

0 0 . . . 0 θL

]

where F̄ is a P-matrix.

Proof. First, we write λ⊤ =

[

λ⊤
0 λ⊤

1 · · · λ⊤
L−1

]

∈ R
1×nt where each sub vector λi has the same

dimension as c̄i. Next, we show that λ0(x) = λReLU ◦ h0(x). Observe that λ0 is independent of

λ1, . . . , λL−1 since F is lower-triangular. Hence λ0 is the unique element of the following LCP:

find λ0

subject to ȳ0 = −θ0x− c̄0 + λ0,

0 ≤ λ0 ⊥ ȳ0 ≥ 0.
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Following Lemma 20, λ0(x) = max{0, h0(x)} = λReLU ◦ h0(x). Similarly, notice that for i > 0, λi

only depends on λi−1(x) and is the unique element of:

find λi

subject to ȳi = −θiλi−1(x)− c̄i + λi,

0 ≤ λi ⊥ ȳ ≥ 0,

and is equivalent to λi(x) = λReLU ◦ hi ◦ λi−1(x) as a direct application of Lemma 20. Using this

equivalency recursively,

D̄λ(x) + z̄ = hL ◦ λReLU ◦ hL−1 ◦ . . . ◦ λReLU ◦ h0(x).

Notice that F̄αα is lower triangular with ones on the diagonal for any α such that card(α) ≥ 2 hence

F̄ is a P-matrix.

Each neuron in the NN is represented with a complementarity variable, therefore the dimension

of the complementarity vector (λ) is equal to the number of neurons in the network. As seen in

Lemma 22, transforming a ReLU neural network into an LCP only requires concatenating vectors

and matrices. Furthermore, this transormation allows us to consider the ReLU neural network as

an LCP based controller (Tanwani et al., 2018).

6.2.2. Linear Complementarity Systems with Neural Network Controllers

We will use the LCP representation of the neural network (6.1) and describe an LCS with a NN

controller as an A-LCS. Consider a linear complementarity system with a ReLU neural network

controller uk = ϕ(xk):

xk+1 = Axk +Bϕ(xk) + D̃λ̃k + z̃,

ỹk = Ẽxk + F̃ λ̃k +Hϕ(xk) + c̃,

0 ≤ λ̃k ⊥ ỹk ≥ 0,

(6.6)
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where xk ∈ R
nx is the state, λ̃k ∈ R

nλ̃ is the complementarity variable, ϕ(x) ∈ R
nφ is a ReLU neural

network as in (6.1) with nt neurons. Notice that (6.6) is not in the A-LCS form. Using Lemma 22,

we can transform (6.6) into an A-LCS in a higher dimensional space. To see this, observe that (6.6)

is equivalent to

xk+1 = Axk +B(D̄λ̄k + z̄) + D̃λ̃k + z̃,

ỹk = Ẽxk + F̃ λ̃k +H(D̄λ̄k + z̄) + c̃,

ȳk = Ēxk + F̄ λ̄k + c̄,

0 ≤ λ̃k ⊥ ỹk ≥ 0,

0 ≤ λ̄k ⊥ ȳk ≥ 0,

after direct application of Lemma 22 where λ̄ ∈ R
nt . We can write it succinctly as

xk+1 = Axk +Dλk + z,

yk = Exk + Fλk + c,

0 ≤ λk ⊥ yk ≥ 0,

(6.7)

where λk =






λ̃k

λ̄k




, yk =






ỹk

ȳk




, D =

[

D̃ BD̄

]

, E =






Ẽ

Ē




, F =






F̃ HD̄

0 F̄




, c =






c̃+Hz̄

c̄




,

and z = Bz̄ + z̃. Here, the size of xk ∈ R
nx does not change, but notice that now λk ∈ R

nλ

where nλ = nt + nλ̃. Using controllers of the form (6.1), we will exclusively consider the linear

complementarity system model (6.7) for notational compactness.

Similarly, one can consider the scenario where both the system dynamics and the controller are

represented by ReLU neural networks as in xk+1 = ϕ1(xk) + Bϕ2(xk), where ϕ1 represents the

autonomous part of the dynamics (obtained by, for example, system identification) and ϕ2 is the

controller. Using Lemma 22, this system has an equivalent A-LCS representation similar to (6.7),

but the details are omitted for brevity.

After obtaining an A-LCS representation of the closed-loop system, one can directly use the existing

tools for stability analysis of complementarity systems, such as Lyapunov functions (Camlibel et al.,
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2007) and semidefinite programming (Aydinoglu et al., 2020). We will elaborate on this in the next

section.

6.3. Stability Analysis of the Closed-Loop System

In this section, we provide sufficient conditions for stability in the sense of Lyapunov for an A-LCS.

Then, we show that the stability verification problem is equivalent to finding a feasible solution

to a set of linear matrix inequalities (LMI’s). To begin, consider the following Lyapunov function

candidate that was introduced in (Camlibel et al., 2007):

V (xk, λk) =









xk

λk

1









⊤ 







P Q h1

Q⊤ R h2

hT1 hT2 h3









︸ ︷︷ ︸

:=M









xk

λk

1









,
(6.8)

where P ∈ S
nx , Q ∈ R

nx×nλ , R ∈ S
nλ , h1 ∈ R

nx , h2 ∈ R
nλ , and h3 ∈ R are to be chosen. Note that

if F in (6.7) is a P-matrix, then λk is a piecewise affine function of xk, implying that the Lyapunov

function (6.8) is quadratic in the pair (xk, λk) but it is piecewise quadratic (PWQ) in the state xk.

If F is not a P-matrix, then V can be set valued since there can be multiple λk’s corresponding to

each xk. In either case, V reduces to a common quadratic Lyapunov function in the special case

Q = R = 0. Therefore, (6.8) is more expressive than a common quadratic Lyapunov function.

In the following theorem, we construct sufficient conditions for the stability of (6.7), using the

Lyapunov function (6.8). This is the discrete time version of the results in (Camlibel et al., 2007).

Theorem 23. Consider the A-LCS in (6.7) with the equilibrium xe = 0, the Lyapunov function

(6.8) and a domain X ⊆ R
n. If there exist M ∈ S

nx+nλ+1, α1 > 0, and α2 > α3 ≥ 0 such that

α1||xk||22 ≤ V (xk, λk) ≤ α2||xk||22, ∀(xk, λk) ∈ Γ1,

V (xk+1, λk+1)− V (xk, λk) ≤ −α3||xk||22, ∀(xk, λk, λk+1) ∈ Γ2,
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where xk+1 = Axk +Dλk + z and

Γ1 = {(xk, λk) : 0 ≤ λk ⊥ Exk + Fλk + c ≥ 0, xk ∈ X},

Γ2 = {(xk, λk, λk+1) : 0 ≤ λk ⊥ Exk + Fλk + c ≥ 0,

0 ≤ λk+1 ⊥ Exk+1 + Fλk+1 + c ≥ 0, xk ∈ X}.

Then the equilibrium is Lyapunov stable if α3 = 0 and geometrically stable if α2 > α3 > 0.

Proof. Observe that for all (xk, λk):

α1||xk||22 ≤ V (xk, λk) ≤ V (x0, λ0) ≤ α2||x0||22,

and Lyapunov stability follows. For geometric stability, notice that Lyapunov decrease condition is

equivalent to V (xk+1, λk+1)− γV (xk, λk) ≤ 0, for some γ ∈ (0, 1). Then

α1||xk||22 ≤ V (xk, λk) ≤ γkV (x0, λ0) ≤ α2γ
k||x0||22.

The result follows.

Note that we do not require M in (6.8) to be positive definite to satisfy the requirements of Theorem

23. In light of this theorem, we must solve the following feasibility problem to verify that if the

equilibrium of the closed-loop system (6.7) is stable on X :

find P,Q,R, h1, h2, h3, α1, α2, α3 (6.9)

s.t. α1||xk||22 ≤ V (xk, λk) ≤ α2||xk||22, for (xk, λk) ∈ Γ1,

∆V ≤ −α3||xk||22, for (xk, λk, λk+1) ∈ Γ2,

where ∆V = V (xk+1, λk+1) − V (xk, λk). In the following proposition, we turn (6.9) with X = R
n

into an LMI feasibility problem using the S-procedure (Boyd et al., 1994).
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Proposition 24. The following LMI’s solve (6.9) with X = R
n:

T1 − ST
1 W1S1 −

1

2
(S3,1 + S⊤

3,1) ⪰ 0, (6.10a)

T2 + S⊤
1 W2S1 +

1

2
(S3,2 + S⊤

3,2) ⪯ 0, (6.10b)

T3 + ST
2 W3S2 + ST

5 W4S5 +
1

2
[(S4 + S⊤

4 ) + (S6 + S⊤
6 )] ⪰ 0, (6.10c)

where G1 = DTPz + DTh1 − h2, G2 = zTPD + hT1 D − h2, G3 = zTQ + hT2 , S1 =









E F c

0 I 0

0 0 1









,

S2 =









E F 0 c

0 I 0 0

0 0 0 1









, S3,i =









0 0 0

JiE JiF Jic

0 0 0









, S4 =









0 0 0 0

J3E J3F 0 J3c

0 0 0 0









, S5 =









EA ED Fc Ecz + c

0 0 I 0

0 0 0 1









, S6 =









0 0 0 0

J4EA J4ED J4F J4Ez + c

0 0 0 0









, T1 =









P − α1I Q h1

Q⊤ R h2

hT1 hT2 h3









,

T2 =









P − α2I Q h1

Q⊤ R h2

hT1 hT2 h3









, T3 = −












ATPA− P + α3I ATPD −Q ATQ ATPz − h1

DTPA−QT DTPD −R DTQ G1

QTA QTD R QT z + h2

zTPA− hT1 G2 G3 zTPz − hT1 z












.

Here, Wi are decision variables with non-negative entries, and Ji = diag(τi) where τi ∈ R
m are free

decision variables.

Proof. First define e⊤k =

[

x⊤k λ⊤
k 1

]

. By left and right multiplying both sides of (6.10a) by e⊤k
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and ek, respectively, we obtain

V (xk, λk)− α1∥xk∥22 ≥









yk

λk

1









⊤

W1









yk

λk

1









+2λ⊤
k diag(τ1)yk

The right hand side is non-negative due to the complementarity constraint 0 ≤ λk ⊥ yk ≥ 0.

Similarly, by left and right multiplying both sides of (6.10b) by e⊤k and ek, respectively, we obtain

α2∥xk∥22 − V (xk, λk) ≥









yk

λk

1









⊤

W2









yk

λk

1









+2λ⊤
k diag(τ2)yk

Again, the right hand side is non-negative due to the complementarity constraint 0 ≤ λk ⊥ yk ≥ 0.

Now, we define p⊤k =

[

x⊤k λ⊤
k λ⊤

k+1 1

]

. Notice that if we left and right multiply both sides of

(6.10c) by p⊤k and pk, we obtain

−∆V − α3||xk||22 ≥









yk

λk

1









⊤

W3









yk

λk

1









+









yk+1

λk+1

1









⊤

W4









yk

λk

1









+2λ⊤
k diag(τ3)yk +2λ⊤

k+1 diag(τ4)yk+1

Similarly, all the terms on the right hand side are non-negative since 0 ≤ λk ⊥ yk ≥ 0 for all k.

This concludes the proof.

Notice that (6.9) captures the non-smooth structure of the LCS combined with the ReLU neu-

ral network controller. In addition to that, we can assign a different quadratic function to each

polyhedral partition that is created by the neural network without enumerating those partitions by

exploiting the complementarity structure of the neural network. Observe that (6.10a), (6.10b) are

LMI’s of size (nx + nλ + 1), and (6.10c) is an LMI of size (nx + 2nλ + 1).
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Note that Theorem 6.10 is a global result for X = R
n. We can adapt the theorem to bounded

regions X containing the origin.

Remark 25. For the equilibrium xe = 0, the region of attraction is defined as

R = {x0 : lim
k→∞

||xk|| = 0}.

If one adds (to the left side) +ηL to (6.10c) where

L =












−P −Q 0 h1

−QT R 0 −h2
0 0 0 0

−hT1 −hT2 0 ξ − h3












,

and η is a non-negative scalar variable, then the closed-loop system is geometrically stable and the

sub-level set

Vξ = {x : V (x, λ) ≤ ξ ∀(x, λ) ∈ Γ1},

is an approximation of the ROA, i.e., Vξ ⊆ R. To see this, note that the resulting matrix inequality

would imply

α1∥xk∥22 ≤ V (xk, λk) ≤ α2∥xk∥22,

V (xk+1, λk+1)− V (xk, λk) + α3∥xk∥22 + η(ξ − V (xk, λk)) ≤ 0.

From the second inequality, if V (xk, λk) ≤ ξ, then for some γ ∈ (0, 1) we have V (xk+1, λk+1) ≤

γV (xk, λk) ≤ ξ. By induction, if V (x0, γ0) ≤ ξ, then α1∥xk∥22 ≤ V (xk, γk) ≤ γkV (x0, γ0) ≤

γkα2∥x0∥22.

Remark 26. In order to prove the Lyapunov conditions over the ellipsoid X = {x : xTNx ≤ ξ},
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Figure 6.2: Block diagram of the closed-loop system.

one can add (to the left side) −β1N1 to (6.10a), +β2N1 to (6.10b) and +β3N2 to (6.10c) where

N1 =









−N 0 0

0 0 0

0 0 ξ









, N2 =









−N 0 0 0

0 0 0 0

0 0 0 ξ









,

and βi are non-negative scalar variables.

6.4. Examples

We use YALMIP (Lofberg, 2004) toolbox with MOSEK (Mosek, 2010) to formulate and solve

the linear matrix inequality feasibility problems. PATH (Dirkse and Ferris, 1995) has been used

to solve the linear complementarity problems when simulating the system. PyTorch is used for

training neural network controllers (Paszke et al., 2017). The experiments are done on a desktop

computer with the processor Intel i7-9700 and 16GB RAM unless stated otherwise. For all of the

experiments, we consider the closed-loop system in Figure 6.2 and the linear-quadratic regulator

controller is designed with state penalty matrix QLQR = 10I and input penalty matrix RLQR = I

unless stated otherwise. Now, we introduce the mixed-integer problem for (3.2) that connects the

complementarity constraints into equivalent big-M mixed integer constraints:
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Figure 6.3: Neural network (ϕ) policy for the double-integrator example.

min
xk,λk,uk

N−1∑

k=0

xTkQ
OPTxk + uTkR

OPTuk + xTkQ
OPT
N xk

s.t. xk+1 = Axk +Buk +Dλk + z,

M1sk ≥ Exk + Fλk +Huk + c ≥ 0,

M2(1− sk) ≥ λk ≥ 0,

sk ∈ {0, 1}m, x0 = x(0),

(6.11)

where 1 is a vector of ones, and M1, M2 are scalars that are used for the big M method. Moving

forward, we will consider function πOPT(x(0)) that returns the first element of the optimal input

sequence, u∗0, for a given x(0) and learn this function using a neural network ϕ(x). The code for all

examples is available11.

6.4.1. Double Integrator

In this example, we consider a double integrator model:

xk+1 = Axk +Buk,

11https://github.com/AlpAydinoglu/sverification
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Figure 6.4: Sublevel sets of the piece-wise quadratic Lyapunov function V (xk, λk) with four different
trajectories for the double integrator example. A sublevel set that lies in the constraint set is shown
in blue.

where Ã =






1 1

0 1




, B =






0.5

1




, and A = Ã + BKLQR, where LQR gains are QLQR = 0.1I and

RLQR = 1. This simple model serves as an example where we approximate an explicit model

predictive controller (explicit MPC) (Bemporad et al., 2002) using a neural network and verify the

stability of the resulting system. We consider the state and input constraints:

X = {x :






−4

−4




 ≤ x ≤






4

4




}, U = {u : −3 ≤ u ≤ 3},

and obtain 2000 samples of the form (x, πMPC(x)) with N = 10, QMPC = 10I, and RMPC = 1 where

QMPC is the penalty on the state, RMPC is the penalty on the input and πMPC(x) is the first element

of the optimal input sequence for a given state x (Borrelli et al., 2017). Next we approximate the

explicit MPC controller using a ReLU network ϕ(x) with two layers and 10 neurons in each layer

as in Figure 6.3. Now, consider the closed-loop system:

xk+1 = Axk +Bϕ(xk). (6.12)
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Figure 6.5: Envelopes for 1000 trajectories and their corresponding Lyapunov functions (in gray)
with a sample trajectory (in black) for the double integrator example.

First, we find the equivalent LCP representation of ϕ(x) using Lemma 22. Then, we write the

equivalent LCS representation of (6.12) as described in Section 6.2.2. We computed the piece-wise

quadratic Lyapunov function of the form (6.8) and verified exponential stability in 0.81 seconds.

The sublevel sets of the Lyapunov functions are plotted in Figure 6.4 and the envelopes of 1000

trajectories with their corresponding Lyapunov functions in Figure 6.5.

6.4.2. Cart-pole with Soft Walls

We consider the regulation problem of a cart-pole with soft-walls as in Figure 5.2. This problem

has been studied in (Marcucci and Tedrake, 2020; Deits et al., 2019; Aydinoglu et al., 2021b) and

is a benchmark in contact-based control algorithms. In this model, x1 represents the position of the

cart, x2 represents the angle of the pole and x3, x4 are their time derivatives respectively. Here,

λ1 and λ2 represent the contact force applied by the soft walls to the pole from the right and left
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Figure 6.6: Envelopes for 1000 trajectories and the corresponding Lyapunov functions (in gray)
with a sample trajectory (in black) for the cart-pole example.

walls, respectively. We consider the linearized model around x2 = 0:

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = g
mp

mc
x2 +

1

mc
u1,

ẋ4 =
g(mc +mp)

lmc
x2 +

1

lmc
u1 +

1

lmp
λ1 −

1

lmp
λ2,

0 ≤ λ1 ⊥ lx2 − x1 +
1

k1
λ1 + d ≥ 0,

0 ≤ λ2 ⊥ x1 − lx2 +
1

k2
λ2 + d ≥ 0,

where mc = 1 is the mass of the cart, mp = 1 is the mass of the pole, l = 1 is the length of the

pole, k1 = k2 = 1 are the stiffness parameter of the walls, d = 1 is the distance between the origin

and the soft walls. Then, we discretize the dynamics using the explicit Euler method with time step

Ts = 0.1 to obtain the system matrices: Ã =












1 0 0.1 0

0 1 0 0.1

0 0.981 1 0

0 1.962 0 1












, B =












0

0

0.1

0.1












, D̃ =












0 0

0 0

0 0

0.1 −0.1












,
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Figure 6.7: Sublevel sets of the piece-wise quadratic Lyapunov function V (xk, λk) with four different
trajectories for the box with friction example.

Ẽ =






−1 1 0 0

1 −1 0 0




, F̃ =






1 0

0 1




, c̃ =






1

1




, A = Ã + BKLQR and, KLQR is the gain of the

linear-quadratic regulator that stabilizes the linear system (Ã, B). However, the equilibrium xe = 0

is not globally stable due to the soft walls.

We solve the optimal control problem (6.11) with N = 10, QOPT = 10I, ROPT = 1, and QOPT
N as

the solution of the discrete algebraic Riccati equation to generate samples of the form (x, πOPT(x)).

For this particular problem, we generate 4000 samples and we train a neural network ϕ(x) with two

layers, each with 10 neurons, to approximate the optimal controller πOPT and we used the ADAM

optimizer to do the training. Then, we analyze the linear complementarity system with the neural

network controller uk = ϕ(xk). Following the procedure in Section 6.2, we first express the neural

network as a linear complementarity problem using Lemma 22 and then transform the LCS with

the NN controller into the form (6.7). We compute a Lyapunov function of the form (6.8) in 1.61

seconds that verifies that the closed-loop system with the neural network controller ϕ(x) is globally

exponentially stable. For this example, a common Lyapunov function is enough to verify stability.

In Figure 6.6, we present the envelopes for 1000 trajectories.

113



Figure 6.8: Envelopes for 1000 trajectories and the corresponding Lyapunov functions (in gray)
with a sample trajectory (in black) for the box with friction example.

6.4.3. Box with Friction

In this example, we consider the regulation task of a box on a surface as in Figure 5.11. This simple

model serves as an example where the contact forces λk are not unique due to Coulomb friction

between the surface and the box. Here, x1 is the position of the cart, x2 is the velocity of the cart,

u is the input applied to the cart, g = 9.81 is the gravitational acceleration, m = 1 is the mass of

the cart, and µ = 0.1 is the coefficient of friction between the cart and the surface. The system can

be modeled by:

xk+1 = Axk +Buk + D̃λ̃k,

0 ≤ λ̃k ⊥ Ẽxk + F̃ λ̃k +Huk + c̃ ≥ 0,

(6.13)

where Ã =






1 0.1

0 1




, B =






0

0.1




, D̃ =






0 0 0

0.1 −0.1 0




, Ē =









0 1

0 −1

0 0









, F̃ =









1 −1 1

−1 1 1

−1 −1 0









,

c̃ =









0

0

0.981









, H =









1

−1

0









, Ẽ = Ē + HKLQR, A = Ã + BKLQR and, KLQR is the gain that

(the linear-quadratic regulator controller) stabilizes the linear system (Ã, B). Observe that the

matrix F̃ is not a P-matrix, hence for a given xk, the contact forces λk are not unique. Similar to
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Figure 6.9: Regulation task of five carts to their respective origins.

the previous example, we generate 2000 samples (x, πOPT(x)) for the LCS in (6.13) with N = 5,

QOPT = QOPT
N = 0.1, ROPT = 1 and train a neural network ϕ(x) that approximates the optimal

controller. Then we convert the system in (6.13) with the neural network controller ϕ(x) into the

form (6.7). Next, we compute the piece-wise quadratic Lyapunov function (with sublevel sets shown

in Figure 6.7) of the form (6.8) in 1.05 seconds such that the exponential stability condition is verified

outside a ball around the origin, D = {x : ||x||22 > 0.6}. More precisely, we prove convergence to a

set (smallest sublevel set of V that contains D) which contains the equilibrium. This is expected

because the trajectories do not reach the origin due to stiction. We demonstrate the envelopes for

1000 trajectories and their respective Lyapunov functions in Figure 6.8.

6.4.4. Five Carts

We consider the regulation task of five carts as in Figure 6.9. Here xi describes the state of the

i-th cart, the interaction between the carts is modeled by soft springs represented by λi, and all

carts can be controlled via the applied force ui. We approximate Newtons’s second law with a force

balance equation and obtain the following quasi-static model:

x
(1)
k+1 = x

(1)
k + u

(1)
k − λ

(1)
k ,

x
(i)
k+1 = x

(i)
k + u

(i)
k − λ

(i−1)
k − λ

(i)
k , for i = 2, 3, 4,

x
(5)
k+1 = x

(5)
k + u

(5)
k + λ

(4)
k ,

0 ≤ λ
(i)
k ⊥ x

(i+1)
k − x

(i)
k + λ

(i)
k ≥ 0.

We designed an LQR controller with with state penalty matrix QLQR = I and input penalty matrix

RLQR = I. Then, we solve the optimal control problem (6.11) with N = 10, QOPT = QOPT
N = 10I,
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Figure 6.10: Sublevel sets of the piece-wise quadratic Lyapunov function for the five carts example
on the planes P1 = {x : x1 = x3 = x5 = 0} and P2 = {x : x1 = x2 = x4 = 0} respectively.

and ROPT = 1 to generate 2000 samples of the form (x, πOPT(x)). Using these samples, we train

ϕ(x) with two layers of size 10 and express the neural network as a linear complementarity problem

using Lemma 22.

We compute a piece-wise quadratic Lyapunov function of the form (6.8) in 1.63 seconds (sub-level

sets as in Figure 6.10) that verifies that the closed-loop system with the neural network controller

ϕ(x) is globally exponentially stable outside a ball D = {x : ||x||22 > 0.1}. We also verified that

there is not a common Lyapunov function that satisfies the LMI’s in (6.10). We note that a common

Lyapunov function that satisfies Theorem 23 might exist, but no such function satisfies our relaxation

in (6.10). On the other hand, this demonstrates the importance of searching over a wider class of

functions. In Figure 6.11, we present the envelopes for 1000 trajectories and the corresponding

Lyapunov functions. We note that memory is the limiting factor in terms of scalability of our

method and present scalability tests in Table 6.1.

6.5. Conclusion and Discussion

In this work, we have shown that neural networks with ReLU activation functions have an equiv-

alent linear complementarity problem representation. Furthermore, we have shown that a linear

complementarity system with a ReLU neural network controller can be transformed into an LCS

with a higher dimensional complementarity variable. This allows one to use the existing literature
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Figure 6.11: Envelopes for 1000 trajectories and the corresponding Lyapunov functions (in gray)
with a sample trajectory (in black) for the five carts example.

RAM Number of neurons Solve time

8GB RAM 20 2.1 seconds
8GB RAM 60 194.72 seconds
8GB RAM 100 OOM
16GB RAM 100 1364.78 seconds
16GB RAM 140 OOM

Table 6.1: Scalability tests.

on linear complementarity systems when analyzing an LCS with NN controller.

Towards this direction, we have derived the discrete-time version of the stability results in

(Camlibel et al., 2007) and shown that searching for a Lyapunov function for an LCS with ReLU

NN controller is equivalent to finding a feasible solution to a set of linear matrix inequalities. The

proposed method exploits the complementarity structure of both the system and the NN controller

and avoids enumerating the exponential number of potential modes. We have also demonstrated

the effectiveness of our method on numerical examples, including a difference inclusion model.

As future work, we are planning to explore tools from algebraic geometry that use samples instead

of the S-procedure terms which result in a stronger relaxation (Cifuentes and Parrilo, 2017). Also,

we consider using passivity results (Miranda-Villatoro et al., 2018) in order to develop algorithms

that can verify the stability for larger neural networks. At last, it is of interest to learn stabilizing

neural network controllers utilizing the complementarity viewpoint.
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CHAPTER 7

CONCLUSION

In this thesis, we focused on local hybrid models called linear complementarity systems as simple

but powerful approximations of multi-contact systems. Employing these local hybrid models, this

thesis presents scalable and fast algorithmic solutions for challenging multi-contact problems.

In Section 4, we presented an algorithm, C3, for model predictive control of multi-contact systems.

The framework tackles the hybrid MPC problem by shifting the complexity to the projection sub-

problems via a consensus formulation. This enables parallelization of the contact scheduling problem

and results in a fast MPC approach for robots that make and break contact with their environment.

Additionally, we have integrated C3 with an online residual learner and proposed an adaptive MPC

framework.

In Section 5, we have introduced a controller that can utilize both state and force feedback and also

proposed an algorithm for synthesizing contact-aware control policies for linear complementarity

systems with possibly non-unique solutions. It was shown that pure local, linear analysis was

entirely insufficient and utilizing contact in the control design is critical to achieve high performance.

Furthermore, the proposed algorithm exploits the complementarity structure of the system and

avoids enumerating the exponential number of potential modes, enabling efficient design of multi-

contact control policies.

In Section 6, we have shown that neural networks with ReLU activation functions have an equivalent

linear complementarity problem representation. Furthermore, we have demonstrated that a linear

complementarity system with a ReLU neural network controller can be transformed into an LCS

with a higher dimensional complementarity variable. This allows one to use the existing literature

on linear complementarity systems when analyzing an LCS with NN controller. We then proposed

a method for stability analysis that exploits the complementarity structure of both the system and

the NN controller and avoids enumerating the exponential number of potential modes.
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7.1. Challenges and Open Questions

Computational Challenges. As the thesis proposes numerical algorithms, computational scaling

is critical. While the approaches presented in this thesis scale well compared to state-of-the art

approaches, there is a room for improving memory usage (Chapter 5, 6) or runtime (Chapter

4). The algorithm in Chapter 5 requires solving feasibility problems that include bilinear matrix

inequalities. For the examples presented in this chapter (except Section 5.5.7), the runtime of the

algorithm was short and we found solutions to the problems relatively quickly. On the other hand,

it is important to note that for some parameter choices and initializations, the solver was unable to

produce feasible solutions. For the approach in Section 6, memory is the limiting factor in terms of

scalability (as shown in Table 6.1). To improve scalability at the algorithmic level, it is possible to

use first-order method solvers to solve the LMI’s. For example, the SCS solver (O’donoghue et al.,

2016) has lower memory limitations at the expense of slower solve time. For the algorithm proposed

in Chapter 4, projections can be difficult to solve, especially as we rely on the MIQP-based projection

method for problems with frictional contact. Exploring alternate heuristics for the projection step

could be of future interest. Similarly, it would be interested to leverage learning-based approaches

(Cauligi et al., 2020) to speed up the process.

Dependence on Models. Except Section 4.6, all the methods presented in this thesis are model-

based and rely on accurate models. It is an interesting future research direction to extend our

methods (as in Section 4.6) to work well even with relatively large modeling errors.

Role of Locality. The models considered in this thesis are hybrid models that enable decisions

such as making and breaking contact. Regardless, such models are still local (as we linearize the

smooth components hence the geometry) and are limited (e.g. if the end-effector is close to one side

of a cube, it cannot reason about interacting with other sides of the cube and will only make local

decisions about that particular side). It is an interesting future direction to use local hybrid planners

(e.g. C3) to make global decisions, perhaps using techniques such as sampling (e.g. running local

planners from different initial conditions (one per each side of a cube) in parallel to find the best

location (which side of the cube is the best to interact with for a given task)).
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APPENDIX A

CHAPTER 5

A.1. Matrix Inequalities

We present the matrix inequalities in (5.9) and (5.10) explicitly. We can represent (5.9) as:

T1 − ST
1 W1S1 −

1

2
(S2,1 + ST

2,1) ⪰ 0,

T2 + ST
1 W2S1 +

1

2
(S2,2 + ST

2,2) ⪯ 0,

where Wi are decision variables with non-negative entries, Ji = diag(τi) where τi are free decision

variables, and

T1 =









P − γ1I Q p/2

∗ R r/2

∗ ∗ z









, T2 =









P − γ2I Q p/2

∗ R r/2

∗ ∗ z









,

S1 =









E F c

0 I 0

0 0 1









, S2,i =









0 0 0

JiE JiF Jic

0 0 0









.

We can represent (5.9) as:

T3 + ST
3 W3S3 +

1

2
(S4 + ST

4 ) +
m∑

i=1

1

2
(S5,i + ST

5,i) ⪯ 0,

where Wi are decision variables with non-negative entries, Ji = diag(τi) where τi are free decision

variables and ζ5,i = diag(θi) where θi are zero everywhere expect the ith entry which is a free
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variable and (T3 is symmetric)

T3 =



















PA+ATP PD +ATQ Q AT p/2 + Pa 0 0

∗ DTQ+QTD R QTa+DT p/2 0 0

∗ ∗ 0 r/2 0 0

∗ ∗ ∗ pTa 0 0

0 0 0 0 0 0

0 0 0 0 0 0



















,

S3 =









E F 0 c 0 0

0 I 0 0 0 0

0 0 0 1 0 0,









,

S4 =



















0 0 0 0 0 0

J3E J3F 0 J3c 0 0

0 0 0 0 0 0

J4EA J4ED J4F + J5 J4Ea J4 J5

0 0 0 0 0 0

0 0 0 0 0 0



















,

S5,i =



















0 0 0 0 0 0

0 0 0 0 ζ7,i 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 ζ8,i

ζ9,iE ζ9,iF 0 ζ9,ic 0 0



















.
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A.2. Polynomial Optimization

Next, we present the two polynomial optimization problems. The first one is regarding Proposition

17:

find w, η, pki , p
k
i,j , s

k
i (A.1)

subject to ϕ1(λ1,λ2, q) ≥ 0,

ϕ2(λ1,λ2, q) ≥ 0,

and the second one considers the optimization problem in (5.21):

min
w,η,pki ,p

k
i,j ,s

k
i

rTNTw (A.2)

subject to ϕ1(λ1,λ2, q) ≥ 0,

ϕ2(λ1,λ2, q) ≥ 0,

|wi| ≤ 1, ∀i, η ≥ 0,

where the functions ϕ1 and ϕ2 are defined as

ϕ1(λ1,λ2, q) = (η + wT (λ1 − λ2))(λ
T
1 λ1 + λT

2 λ2)

+
∑

i

p1iλ1,i +
∑

i

p2iλ2,i +
∑

i

∑

j

p3i,jλ1,iλ1,j

+
∑

i

p4i (qi + F T
i λ1) +

∑

i

p5i (qi + F T
i λ2)

+
∑

i

∑

j

p6i,j(qi + F T
i λ1)(qj + F T

j λ2)

+
∑

i

∑

j

p7i,j(qi + F T
i λ2)λ1,j

+
∑

i

∑

j

p8i,j(qi + F T
i λ1)λ2,j

+
∑

i

s1iλ1,i(qi + F T
i λ1)
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+
∑

i

s2iλ2,i(qi + F T
i λ2),

where pki , p
k
i,j are non-negative variables (sum-of-squares polynomials), ski are free variables (poly-

nomials with no restriction) and

ϕ2(λ1,λ2, q) = (η − wT (λ1 − λ2))(λ
T
1 λ1 + λT

2 λ2)

+
∑

i

p9iλ1,i +
∑

i

p10i λ2,i +
∑

i

∑

j

p11i,jλ1,iλ1,j

+
∑

i

p12i (qi + F T
i λ1) +

∑

i

p13i (qi + F T
i λ2)

+
∑

i

∑

j

p14i,j(qi + F T
i λ1)(qj + F T

j λ2)

+
∑

i

∑

j

p15i,j(qi + F T
i λ2)λ1,j

+
∑

i

∑

j

p16i,j(qi + F T
i λ1)λ2,j

+
∑

i

s3iλ1,i(qi + F T
i λ1)

+
∑

i

s4iλ2,i(qi + F T
i λ2),

where pki , p
k
i,j are non-negative variables (sum-of-squares polynomials), ski are free variables (poly-

nomials with no restriction).
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APPENDIX B

CHAPTER 4

B.1. ADMM

We will clarify the derivation of general augmented Lagrangian (4.6) and ADMM iterations (4.7),

(4.8), (4.9). Consider the equivalent optimization problem to (4.5):

min
z

c(z) + ID(z) + IC(z) +
N−1∑

k=0

IHk
(δk)

s.t. T (z − δ) = 0

(B.1)

where T = blkdiag(T0, . . . , TN−1) and T T
k Tk = Gk. The augmented Lagrangian is:

Ly(z, δ, y) = c(z) + ID(z) + IC(z)

+
N−1∑

k=0

(
IHk

(δk) + yTk Tk(zk − δk) + ρ||Tk(zk − δk)||22
)
,

where yT = [yT0 , y
T
1 , . . . , y

T
N−1], yk are the dual variables. In order to solve (B.1), ADMM iterations

are:

zi+1 = argminzLy(z, δi, yi), (B.2)

δi+1 = argminδLy(zi+1, δ, yi), (B.3)

yi+1 = yi + 2ρT (zi+1 − δi+1). (B.4)

Notice that individual vectors δi+1
k in (B.3) can be computed as

δi+1
k = argminδk

Lky(zi+1
k , δk, y

i
k)
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due to separability of Ly, where Lky(zk, δk, yk) =
(
IHk

(δk)+ yTk Tk(zk− δk)+ ρ||Tk(zk− δk)||22
)
. Also

note that δi+1
k only depends on zi+1

k and yik. Similarly (B.4) can be written as

yi+1
k = yik + 2ρTk(z

i+1
k − δi+1

k ).

After that, define the scaled dual variables wk such that yk = 2ρTkwk. With wk, the augmented

Lagrangian is of the following form:

Lρ(z, δ, w) = c(z) + ID(z) + IC(z)

+

N−1∑

k=0

(
IHk

(δk) + 2ρwT
k Gk(zk − δk)

+ ρ(zk − δk)
TGk(zk − δk)

)

following the fact that Gk = T T
k Tk. It is equivalent to:

Lρ(z, δ, w) = c(z) + ID(z) + IC(z)

+
N−1∑

k=0

(
IHk

(δk) + ρ(rTk Gkrk − wT
k Gkwk)

)
.

The corresponding ADMM iterations are:

zi+1 = argminzLρ(z, δi, wi),

δi+1
k = argminδk

Lkρ(zi+1
k , δk, w

i
k), ∀k,

wi+1
k = wi

k + zi+1
k − δi+1

k , ∀k

as yk = 2ρTkwk and Tk is a positive definite matrix with Lkρ(zk, δk, wk) = IHk
(δk) + ρ(rTk Gkrk −

wT
k Gkwk).

B.2. Algorithm 3 and Simplified Model

The algorithm requires a model M (Section 3.4) C3 parameters θ (Section 4.3.2), discretization

step length ∆t, and a nominal input û. First, an LCS approxmation (L∆t) of model M around
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the state estimate x̂ and nominal input û is obtained. Then, (following Algorithm 1) one can use

this LCS model along with the state estimate and pre-specified C3 parameters (θ) and this process

returns uC3. Next, we compute the time spent (∆tc) during the previous steps and calculate an

LCS model L∆tc using ∆tc as the discretization time-step. Lastly, we compute the desired state xd

and the desired contact force λd using L∆tc , x̂ and uC3.

Often times, C3 generates the desired end-effector trajectories and contact forces using a simplified

model of the robot. Using such models for planning (Chen and Posa, 2020) is extremely common

and improves the solve time of the planning algorithms, e.g. C3. This specific simple model, Ms,

assumes one can control the translational accelerations of the spherical end-effector (Figure 4.8) in

all directions (ẍex, ẍ
e
y, ẍ

e
z) and that the end-effector does not rotate.

B.3. Impedance Control

We use impedance control (Hogan, 1985) to track the end-effector trajectories and contact forces

that C3 produces which relies on model of Franka Emika Panda Arm,Mf . Concretely, the controller

we implemented is:

u =JT
f Λ






K 0

0 B




 x̃e + Cf + τff

+Nf

(
Kn(q

f
d − qf ) +Bn(q̇

f
d − q̇f )

)
,

(B.5)

where xe is the current state of the end-effector, xed is the desired end-effector state given by C3

and x̃e = xed − xe represents the error. The K and B are gain matrices for position error and

velocity error respectively. Given Mf , Jf is the manipulator Jacobian for the end-effector and

Λ =
(
JfM

−1
f JT

f

)−1
is the end-effector inertia matrix, where Mf is the manipulator’s mass matrix.

The nullspace projection matrix Nf directly follows from (Hermus et al., 2021), qfd and q̇fd are the

desired null-space position and velocity for the manipulator, and Kn, Bn are the corresponding gain

matrices. The feedforward torque term is computed as τff = JT
c λd where λd is the desired contact

force obtained from C3 and Jc is the contact Jacobian computed using the full-order model.
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