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Abstract—We introduce Vysics, a vision-and-physics frame-
work for a robot to build an expressive geometry and dynamics
model of a single rigid body, using a seconds-long RGBD video
and the robot’s proprioception. While the computer vision com-
munity has built powerful visual 3D perception algorithms, clut-
tered environments with heavy occlusions can limit the visibility
of objects of interest. However, observed motion of partially oc-
cluded objects can imply physical interactions took place, such as
contact with a robot or the environment. These inferred contacts
can supplement the visible geometry with “physible geometry,”
which best explains the observed object motion through physics.
Vysics uses a vision-based tracking and reconstruction method,
BundleSDF, to estimate the trajectory and the visible geometry
from an RGBD video, and an odometry-based model learning
method, Physics Learning Library (PLL), to infer the “physible”
geometry from the trajectory through implicit contact dynamics
optimization. The visible and “physible” geometries jointly factor
into optimizing a signed distance function (SDF) to represent the
object shape. Vysics does not require pretraining, nor tactile
or force sensors. Compared with vision-only methods, Vysics
yields object models with higher geometric accuracy and better
dynamics prediction in experiments where the object interacts
with the robot and the environment under heavy occlusion.
Project page: https://vysics-vision-and-physics.github.io/

I. INTRODUCTION

In-the-wild manipulation will require robots to encounter a
vast array of different objects. While some might be recog-
nized from an existing database, others will require physical
interaction to be newly understood on the spot. Dexterous
manipulation of these objects will benefit from the ability
to rapidly learn or identify object properties: geometry is
most critical, but inertial properties are also valuable for
predicting motion, particularly under forceful manipulation.
Use of such models boasts the benefits of interpretability and
expected generalizability, at the cost of requiring the model.
This paper presents Vysics, which builds dynamics models of
novel objects from vision and physical interaction, even in the
face of substantial visual occlusions (Figure 1).

Rapid modeling requires combining all available infor-
mation in a unified fashion. This work leverages recent
results from visual tracking and object reconstruction [66]
in combination with contact-implicit model learning [9, 53]
via the shared connection of object geometry Depth camera
measurements on an object’s surface are direct observations of

(a) BundleSDF [66] (b) Vysics (ours)

Fig. 1: Vision-based shape reconstruction (projection shown in
green) can be limited by occlusion. Fusing vision and contact-
rich physics, our method recovers the occluded geometry
through object interactions with the robot and environment.
The robot end effector in yellow shows the robot-object
interaction.

portions of its geometry, and observations of the object’s state
evolution can inject more geometric information when contact
is inferred. Visual information is limited by occlusions, but
contact, which typically occurs on visually-occluded faces of
objects, provides a secondary source of information: “physi-
ble” geometry.

Consider the example depicted in Figure 1 of a robot arm
interacting with an object, which is significantly obscured by
a stack of books in the foreground. A vision-only approach
would only reconstruct the portions of the geometry that is
visible but is also able to detect object motions. By reasoning
about physics, we can infer more about the geometry by
assuming object trajectories are explainable by its physical
interactions with the environment and robot. In the Figure 1
example, the robot end effector is occluded as it pushes the
object from its occluded end. While not explained by visible
geometry, this guides estimation of the “physible” geometry,
namely that the geometry should extend to the right to make
contact with the robot.

Estimating geometry through contact-rich interactions is not
a trivial problem. Object trajectories result from the sum of
all forces on the object, including continuous and contact
forces, whose interplay relies on more object properties than
just geometry [9]. Additionally, making and breaking contact
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introduces multi-modality into the dynamics, further compli-
cating system identification [5, 52]. We take an approach that
embraces the multi-modal nature of the dynamics [8, 53], start-
ing by feeding it visually-estimated trajectories, then fusing
visually-observed with physically-inferred geometry.

Our aim is to leverage vision and contact-rich physics to
perform dynamics model building directly from RGBD data in
extreme low data regimes – learning a dynamics model whose
geometry matches or outperforms vision-based approaches
while learning other critical simulation parameters like inertia,
with only seconds of data.

A. Contributions and Outline

We make the following contributions in this work:
• Introduce Vysics, a novel method that builds expressive

dynamics models of objects from RGBD videos featuring
contact-rich trajectories. With seconds of data, Vysics can
identify an object’s geometry with no fundamental priors
as well as its inertial properties, automatically generating
an accompanying Unified Robotics Description Format
(URDF) file and mesh.

• Present and make available a new RGBD video dataset
of a Franka Panda robot arm interacting with objects on
a table in the face of significant visual occlusions (code
and data can be found on our project page).

• Demonstrate our method’s efficacy on shape reconstruc-
tion and learning dynamics models. We compare against
vision-only shape reconstruction and show the benefits
of the additional contact physics information source with
small amounts of data.

In §II, we review related work from computer vision and
dynamics model learning. We discuss preliminaries for our
work in §III before outlining Vysics in §IV. §V describes
experiment details before §VI presents results, followed by a
discussion of limitations in §VII and conclusion in §VIII.

II. RELATED WORK

A. Vision-Based Geometry Reconstruction and Completion

Contact is at the heart of robotic manipulation, and contact
is driven by geometry. Computer vision has made strides in ge-
ometry reconstruction from image inputs. Dense visual SLAM
systems [10, 61, 41] recover dense geometry from multi-view
RGB or depth streams, yet leave occluded regions unresolved.
Neural implicit methods represent shapes as continuous fields:
foundational works like [50, 43] encode object-level geometry,
while [6, 47] extend these representations to full scenes.

When portions of the object remain unseen, learned com-
pletion methods infer missing geometry from partial data.
Synthetic shape datasets [13] enable learning shape priors of
common object categories, facilitating various tasks including
shape completion [72, 19], point cloud completion [73, 16],
and single-image shape reconstruction [45, 18]. However,
most operate in an object-centered canonical frame, limiting
their applicability to raw sensor data, with a few exceptions
[62, 55] leveraging 2.5D representations to guide camera-
frame shape learning. Robotics and VR applications have

prompted camera-frame shape completion from partial point
clouds [63, 46] or RGBD observations [69, 37], with recent
extensions to multi-object scenes [68, 30]. Moreover, advances
in image generation models [54], 3D scene representations
[44, 32], and large-scale 3D object datasets [22, 21] have
spurred 3D generative pipelines [39, 42, 27, 38, 71, 76],
though these typically require unobstructed RGB inputs and do
not integrate depth. Unlike these vision-only and data-driven
alternatives, Vysics requires no pretraining or canonical pose
assumptions: it relies solely on vision-based measurements and
physics-based hypotheses extracted from a short RGBD video
to regress a class-agnostic shape.

B. Vision-Based Object Pose Estimation

While there are many works that perform robotic manip-
ulation without explicitly estimating object poses (e.g. [14]),
access to object pose estimates remains a commonplace as-
sumption in robotics. Classical vision-based pose estimators
require the 3D shape model of the target object to facilitate
the pose estimate [34, 33, 51], often impractical in realistic
applications. Other new approaches do not require geometry
models beforehand [67], but this has its own challenges.
Model-free methods without this assumption rely on sparse
keypoints, dense optical flow, or deep features with reference
frames with known pose [12, 59], without building a coherent
object model. Such approaches are susceptible to long-term
drift, though even weak geometry-based supervision can help
[28]. Limiting a pose estimator’s scope to tracking in-category
objects can boost pose accuracy [36, 23, 15], but limits
generalization.

C. Simultaneous Tracking and Shape Reconstruction

Recent computer vision works combine the pose and shape
estimation problems [75, 31, 66, 58]. Solving both problems
simultaneously has its benefits, including that maintaining a
geometry estimate can improve novel-object pose estimation
and vice versa [57, 64]. Other applications include multiple
sparse-view alignment [40, 59, 33] and single-view pose
estimation [48, 74].

D. Trajectory-Based Dynamics Model Learning

System identification is an important robotics subfield that
aims to build accurate system models, which can then be
leveraged via model-based control techniques. Differentiable
simulators [35, 29, 20] have pushed recent advancements,
though they can struggle to find good solutions when applied
in contact-rich settings [5, 8]. While high-stiffness contact dy-
namics generally are a challenge for system identification [52],
more creative strategies can make finding inertial parameters
[24], contact parameters [53], or both [9] possible and efficient.
Many of these methods rely on access to state information,
limiting their use to lab-based settings where fiducials are
available, or necessitating integration with a generalizable
vision-based solution.
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E. Physics as a Prior for Shape Reconstruction

Some prior works have used physics as a prior for shape
reconstruction. Unlike Vysics, these other works either assume
objects of interest are statically stable [49, 3] or avoid learning
other non-geometric dynamic properties like inertia [1, 56].
The most similar in spirit to Vysics is [56], as they recon-
struct geometries with occlusions through physical robot and
environment interactions. While [56] avoids the problematic
gradients in contact-rich scenarios by using a gradient-free
search over a discrete set of hypothesized geometries, Vysics
leverages smooth, implicit-based losses and thus can directly
regress the object geometry based on visual measurements.
This enables Vysics to avoid the need for a high-dimensional
graph search that limits geometries to a relatively small set of
possibilities.

III. BACKGROUND

Vysics leverages a vision-based pose and shape estimation
tool, BundleSDF [66], and a physics-inspired dynamics learn-
ing tool, Physics Learning Library (PLL) [9, 53], which are
described in §III-A and §III-B, respectively. Neither of these
tools requires pretraining on an extensive dataset. BundleSDF
and PLL both train on and generate results from only the
measurements provided or inferred by their per-instance input
data, making them suitable for immediate application when a
robot encounters and needs to model an object.

A. Vision-Based Pose and Shape Estimation

BundleSDF [66] takes masked RGBD videos as input, and
outputs both estimated poses of the object over time as well
as a geometry estimate. It is built on top of the generalizable,
model-free 6D pose tracker, BundleTrack [65]. Alongside the
pose estimator, BundleSDF introduces a parallel Neural Object
Field that simultaneously maintains an estimate of the object’s
geometry, which is used to further refine the estimated poses
to encourage long-term consistency.

To represent geometry, BundleSDF uses a signed distance
function (SDF), an expressive implicit shape representation
with no imposed restrictions such as an inherent resolution
limit or convexity prior. Due to their expressivity, SDFs have
seen great success in representing shapes of objects and
environments, even with generalization to unseen objects [50].
An SDF is a function of the form,

SDF(p) = d, (1)

where any 3D point p relative to a geometry’s reference frame
can be queried, and the scalar signed distance d away to the
nearest surface point is returned. See Figure 2 for illustration.

From RGBD data, not only do depth returns imply points at
which d = 0, but samples along the camera rays of valid object
depth returns can additionally yield supervision for points with
d > 0. The result is that BundleSDF trains its neural network
SDF with supervision from sets of points and signed distances
{(p, d)i}. BundleSDF implements a hybrid SDF model on this
set of points, by only regressing points whose target signed
distance is within a truncation distance, as in [60, 50]. We refer

Fig. 2: A 2D depiction of the physical meaning of a DSF (3)
and its implication on the SDF (1). Shades of green points
have exact SDF values and are subject to (8), and the orange
example point q’s signed distance can be lower-bounded by
the supporting hyperplane as in (11).

interested readers to [66] for more details on BundleSDF loss
components. Upon termination, the marching cubes algorithm
extracts a mesh from the underlying SDF.

B. Physics-Inspired Dynamics Learning

PLL [9, 53] is an odometry-based method that jointly
learns continuous and contact dynamics of objects undergoing
contact-rich trajectories. Given only a state trajectory (no
direct observation of contact events), PLL is able to iden-
tify the geometry, frictional properties, and inertia, all from
hypothesizing contact forces that best explain observed state
transitions. Its key insight is in its implicit loss formulation,
which has provably better generalization than alternatives
that require differentiable simulation [8]. The loss applies a
cost to the current model belief’s incompatibility with the
hypothesized contact forces; see [9, 53] for more details.

The geometry of the object directly determines when it
makes and breaks contact with the robot and environment, thus
playing a critical role in its dynamics. PLL solves the inverse
problem: estimate the contact geometry from observed dynam-
ics. The estimated geometry is represented using PLL’s deep
support function (DSF) [25], an input-convex, homogeneous
deep neural network [4]. Like an SDF, a DSF has no inherent
resolution limits, however it can only represent the convex
hull of any given shape. In our application where our robot
interacts with convex and nonconvex objects, this assumption
is satisfied as long as collisions occur only on the object’s
convex hull. A DSF has all the expressivity required for those
scenarios while also being concise and fast to compute.

A DSF’s input can be any 3D point, but for physically
meaningful outputs, PLL only queries the DSF with unit
vectors. A DSF takes as input a unit vector in the object’s body
frame and outputs the scalar distance the geometry extends
in that direction [7]. The gradient of a DSF with respect to
its input is (almost always [25]) the 3D point on the object
geometry that extends furthest in the queried input direction.
Mathematically, for an object whose surface (or volume) is
represented by the set S, a DSF yields the following output



Fig. 3: Detailed Vysics diagram. Blue arrows denote the vision-based information flow through BundleSDF [66], and green
arrows for PLL [9, 53]. Purple arrows indicate the unifying connections Vysics makes to factor both vision and contact-rich
physics into the geometry learning problem.

and gradient,

DSF(n̂) = max
si∈S

si · n̂, (2)

∇n̂DSF (n̂) = argmax
si∈S

si · n̂ =: s. (3)

The queried normal direction n̂ and its associated support
point s fully define a supporting hyperplane of the object
geometry [11]. See Figure 2 for an example of a queried
normal direction n̂, its corresponding support point s, and the
constraints they impose on the SDF (explained in detail in
section IV-B). A mesh may be exported by PLL with vertices
{si} as outputs of ∇n̂DSF on a uniformly sampled set of unit
vectors {n̂i}.

IV. APPROACH

Figure 3 illustrates Vysics from input RGBD videos and
robot states (left) to URDF output (right). Its core components
are BundleSDF [66] for vision-based tracking and shape
reconstruction, and PLL [9, 53] for physics-inspired dynamics
learning. Beyond the insights that led to this systems integra-
tion, our main contribution lies in how Vysics incorporates
these two powerful tools together such that they supervise
each other and output an object dynamics model, featuring
geometry informed by both vision and contact.

Referring to the labeled arrows in Figure 3, we obtain
the object trajectory (b) and the initial shape estimates (c)
from masked input RGBD images (a) via BundleSDF. The
object trajectories are converted to an inertial reference frame,
where the table surface (d) identified in the depth images is
on a known plane. From this plane (d) and the processed
poses (e), PLL detects “physible” portions of the geometry
by inferring contact events in the observed dynamics. PLL is
also subject to supervision from BundleSDF (f) to encourage
consistency with the visible geometry. BundleSDF runs again,
fusing both the visible (a) and “physible” data (i) into a
geometric model consistent with both information streams.
The final output of Vysics inherits the physics-supervised
inertial parameters (g) and jointly-supervised geometry (j).

This is exported as a URDF which can be simulated to produce
dynamics predictions.

The basis of our contribution is in how we unify the visible
and “physible” geometry measurements together. §IV-A dis-
cusses how vision helps in the contact learning problem (f),
and §IV-B describes how we inject the geometric information
estimated from the contact dynamics back into the vision-
based shape estimation (i).

A. Supervising Contact-Based Geometry with Vision

Contact-based geometry reconstruction has the ability to
learn the full convex hull of any shape as long as every point
on its convex hull makes contact with the known environment
plane or robot over its recorded trajectory. In extreme low-
data regimes where many sides of the geometry never contact
the robot or ground, the complete geometry is unobservable,
and the solutions of the geometry that can accurately explain
the trajectories are non-unique. Since PLL’s violation-based
implicit loss function has terms that scale with the magnitude
of inferred contact forces [53], it is encouraged to find the DSF
that minimizes the inferred contact force magnitudes while
explaining the trajectory data. In finding a geometry-force
combination that explains a net observed torque, PLL can be
biased to learn large geometries to increase lever arms and thus
reduce force magnitudes. Without intervention, this scenario is
common and problematic in low-data, where many sides of the
object may never contact the robot or ground. However, vision
can provide an additional source of information (denoted by
superscript v) to disambiguate the possible geometries that
may explain the trajectory.

Given an RGBD video, BundleSDF yields an object mesh
corresponding to the zero SDF level set. We first calculate the
convex hull of the mesh since DSF in PLL can only represent
convex shapes. Then, we apply a visibility check to preserve
only the vertices visible in the RGBD video, and we call this
set of points V , the visible geometry.

The visible geometry V can supervise the surface predicted
by PLL’s DSF. For each sv ∈ V , we wish to penalize the



(a) Supervising contact-
based DSF network with
visible geometry sv ∈ V .

(b) Supervising vision-based SDF
network with “physible” geometry
(n̂p, sp) ∈ P .

Fig. 4: Visualization of the loss functions as the incorporation
of vision and contact dynamics. Blue represents the geometry
learned from vision, and green represents the geometry learned
from contact dynamics.

distance from the nearest surface point sp predicted by the
DSF,

1

|V|
∑
sv∈V

∥sp − sv∥ . (4)

However, it is not straightforward to locate the sp surface point
on the DSF closest to a given point, since the DSF is an
implicit shape representation. To approximate, we sample the
DSF to create a mesh and find the point sp

′
on its surface that

is closest to sv . The vector

n̂p′
=

sv − sp
′

∥sv − sp′∥
(5)

is an approximation of the querying vector n̂p such that
∇DSF(n̂p) = sp. The approximation is up to the angular
resolution of the unit vector samples when converting the DSF
to a mesh. The direction of the vector n̂p′

is chosen to always
point outwards from the shape. In the end, we use

Lbsdf =
1

|V|
∑
sv∈V

∥∥∥∇DSF(n̂p′
)− sv

∥∥∥ (6)

as the vision-based supervision of the PLL training. See Fig-
ure 4a for an illustration. See Appendix A for hyperparameters,
including the relative loss term weights in PLL.

B. Supervising Vision-Based Geometry with Contact

As mentioned in section IV-A, the SDF estimated by
BundleSDF may only capture the visible geometry, while
PLL estimates a convex shape, in the form of DSF, that
best explains the trajectory through contact dynamics. We
combine the two streams of information into a single geometry
estimation. We use SDF as the final geometry representation,
given its capability to model non-convex shapes. The SDF
training in the BundleSDF is run on the RGBD video for
the second time but with new contact-induced losses from the
DSF, as introduced below.

1) From PLL to the “Physible” Geometry: The DSF from
PLL can be represented as a set of ∇DSF input/output pairs,
{(n̂p, sp)}. However, only the local area where contacts hap-
pened may be effectively supervised through contact dynamics
optimization, while the geometry of other areas is ambiguous
with unreliable DSF value. Therefore, we filter the set and only
preserve an (n̂p, sp) pair if it is associated with contact force,
estimated by PLL, above a certain threshold. The filtered set,
P , is the “physible” geometry output from PLL.

2) Support Point Loss: Given a “physible” geometry data
point (n̂p, sp), not only is sp on the object boundary and
should have SDF(sp) = 0, but we can use n̂p to infer
constraints on the local geometric region. Consider the ray
r⃗ from sp pointing in direction n̂p. Any point on this ray,
lying a distance l ∈ [0,∞) on the ray from s, has a signed
distance of exactly l,

SDF (sp + ln̂p) = l. (7)

See Figure 2 for illustration. For sv = sp + ln̂p, we denote
SDF(sv) := l to represent the signed distance induced from
DSF. If we extend the possible range for l values to go
negative, i.e. l ∈ [−ϵ,∞), then we can encourage zero-
crossings in the SDF network, but the negative signed distance
values may not be strictly correct for certain geometries and
choices of ϵ. In practice, this can be accurate enough during
supervision with small ϵ and enables more meaningful change
at the geometry surface. Thus, we introduce a support point
loss for sv ∈ Psp(n̂

p, sp),

Lsp =
(
SDF(sv)− SDF(sv)

)2
, (8)

where

Psp(n̂
p, sp) = {sv|sv = sp + ln̂p, l ∈ [−ϵ,∞)} (9)

is the set of support points induced by the “physible” point
(n̂p, sp). Lsp encourages signed distance consistency at and
around observed “physible” points. Figure 4b depicts four such
sampled points sv and their supervised signed distance values
l induced from a single support point sp.

3) Hyperplane-Constrained Loss: On this ray, (8) imposes
strong supervision on the SDF network, though only local
to areas near PLL-inferred contacts. However, as depicted in
Figure 2, any point q can have its signed distance minimum-
bounded based on a support direction/point pair (n̂, s). Con-
sider a pair (n̂p, sp) ∈ P , its supporting hyperplane implies
that the signed distance at sv

′
can be lower bounded by the

distance from sv to the supporting hyperplane,

SDF(sv
′
) ≥

(
sv

′
− sp

)
· n̂p. (10)

Thus, we introduce a hyperplane-constrained loss valid for
any sv

′ ∈ R3,

Lhc = min
(
0, SDF(sv

′
)− (sv

′
− sp) · n̂p

)2

. (11)

Figure 4b gives one example of a point sv
′

whose signed
distance is lower bounded with respect to a support direc-
tion/point (8). While sv

′
may be sampled arbitrarily, we



sample them around a cylindrical neighborhood of the support
points in practice.

4) Convexity Loss: In comparison to the dense visible
points, “physible” points are sparser and can be located far
away from the set of visible points. With the assumption
that the robot is interacting with a single object at a time,
we add a bias loss term to encourage the estimated shape to
be convex when no observed RGBD data signals otherwise.
This helps the sparse contact points attach to the visible
shape in the SDF regression. We randomly sample pairs of
points from the near-surface points estimated by the SDF
network, Sv0 = {sv ∈ R3 | |SDF(sv)| ≤ ϵ}, and the
collection of support points (9) induced by all “physible”
points Sp0 = {sv|sv ∈ Ssp(n̂

p, sp), (n̂p, sp) ∈ P}. Points
in Sv0 have SDF supervision from the RGBD video, while
points in Sp0 have induced SDF supervision from the contact
dynamics. Then we sample an interpolated point between each
pair of points. The interpolated SDF serves as the upper bound
of the SDF prediction at the interpolation point if we assume
the shape is convex,

SDF(sv) ≤ l SDF(s1) + (1− l) SDF(s2), (12)

for sv = ls1 + (1− l)s2, 0 ≤ l ≤ 1, where s1 ∈ Sv0 , s2 ∈ Sp0

are samples from the near-surface points and support points.
Correspondingly, the convexity loss for point q is,

Lcvx = max
(
0,SDF(sv)−

(
l SDF(s1) + (1− l) SDF(s2)

))
.

(13)
See Appendix A for hyperparameters used in our experiments,
including the relative loss term weights in BundleSDF.

V. EXPERIMENTAL SETUP

A. Dataset

We consider a new dataset of RGBD videos of a Franka
Emika Panda arm with a spherical end effector interacting
with an object repeatedly on a flat table surface. These robot
interactions were teleoperated via commanded end effector
poses tracked with impedance control. The dataset includes
the RGBD videos of the objects in interactions with object
mask annotations, as well as the robot joint states. In PLL, the
object can collide with the tip of the end effector (modeled as
a sphere) and the table surface (modeled as a plane). The end-
effector sphere location is known from the robot joint states
in combination with the transform between the camera and
the robot base, and the height of the table surface is detected
automatically based on the depth readings from the camera.
The ground truth shapes of the objects are provided in the form
of meshes for evaluation. The end-effector pose commands by
the teleoperator are also included for the dynamics prediction
evaluation (see section V-B). There are substantial visual
occlusions preventing the camera from directly seeing much
of the object geometry.

The objects in our dataset are a mixture of everyday items
depicted in Figure 5. We used a RealSense D455 collecting
640x480 pixel RGBD images at 30Hz. The object masks for a
video were semi-automatically generated from manual masks

Fig. 5: The 7 objects and their names in our dataset.

on the first frame using XMem [17]. For every object, we
collected multiple sessions of the robot arm interacting with
the object with its the spherical end effector. Each session
is around 10 seconds long. The dataset varies in starting
configurations, foreground occlusions, and robot interactions,
e.g. sliding vs. pivoting vs. toppling and in what directions. In
the evaluation, we excluded the sessions in which BundleSDF
lost track of the object and failed to yield the object trajectory.
Therefore, the number of sessions for each object vary.

While PLL is capable of identifying friction coefficients
essentially by observing acceleration during periods of sliding,
sliding motions in our dataset largely occur during sustained
object-robot contact, making it difficult to uniquely identify
frictional ground contact forces from contact forces with
the robot. Thus, we use PLL to learn only geometry and
inertia. We set the pair-wise friction coefficients to reasonable
values of 0.26 (object-table) and 0.15 (object-robot) for all
experiments, higher for object-table because of a high-friction
silicone mat on the table.

B. Metrics

We evaluate the performance of the identified geometry
and dynamics in two ways. First, we evaluate the geometric
error between the estimated shape and the ground truth shape.
Specifically, we report the chamfer distance and the volumetric
intersection-over-union (IoU) between the learned geometry
and the ground truth geometry, which we align with manual
annotation and ICP for refinement. This alignment step is only
for geometric evaluation, not for training or deployment of the
learned model. Second, we perform dynamics predictions to
evaluate the geometry through the resulting trajectories. We
implemented our impedance controller in simulation and ran
it on the recorded end effector pose commands to reproduce
the robot’s actions. Using the estimated object geometry and
its tracked pose at the first frame as the initial condition, we
generate simulated trajectories of the object. The predicted
trajectories are compared with the real-world trajectory tracked
by BundleSDF to show how well the estimated geometry
explains the dynamics.

To quantify the dynamics prediction error, we use three



Method bakingbox bottle egg milk oatly styrofoam toblerone all

3DSGrasp [46] 3.83 2.80 3.78 3.15 2.51 2.66 2.77 3.06
IPoD [70] 3.25 1.80 2.16 2.37 2.73 1.93 1.97 2.47
V-PRISM [68] 3.52 2.47 2.31 3.33 2.30 2.54 2.48 2.80
OctMAE [30] 3.11 2.22 1.52 2.93 2.13 2.00 2.36 2.45

BundleSDF [66] 3.84 2.65 3.70 3.17 2.45 2.55 2.44 2.98
Vysics (ours) 1.83 1.36 1.05 1.53 1.25 1.45 1.02 1.45

TABLE I: Average chamfer distance (unit: cm) of shape com-
pletion baselines compared with BundleSDF and our method.

(a) RGB input (b) OpenLRM [27, 26]

(c) One-2-3-45++ [38] (d) TriplaneGaussian [76]

Fig. 6: A qualitative example of generative single-view recon-
struction on an occluded RGB image of the egg object.

metrics. The first is average pose error (split into position
and rotation terms), which measures the difference between
the tracked pose and the simulated pose throughout the open-
loop simulation. As contact dynamics are naturally chaotic,
any open-loop simulation is subject to substantial uncertainty.
To provide an alternative assessment of the accuracy of the
learned model, our second metric is time-before-divergence,
which measures the time from the start of the simulation
to the point when the simulated pose error is higher than a
given threshold. We use a positional threshold of 10 cm and
a rotational threshold of 45 degrees. The third is the temporal
IoU of contact activation, which measures the overlap of when
the robot-object contact happens in the simulated rollout and
in the real experiment. The real contact duration is manually
annotated by inspecting the RGBD videos. This metric high-
lights the compatibility between the physical contact and the
estimated geometry. Both average pose error and time before
divergence are with respect to the BundleSDF estimated poses.

C. Baselines

Using quantitative geometry reconstruction metrics, we
compare against vision-only methods, including BundleSDF
and a variety of shape completion methods: 3DSGrasp [46] for
point cloud completion (we use points from visible mesh faces
reconstructed by BundleSDF as input); IPoD [70] for single-
object completion from an RGBD image; and V-PRISM [68]
and OctMAE [30] for multi-object scene completion from an
RGBD image. All of these methods, like Vysics, are category-
agnostic. For shape completion methods based on an RGBD
image, we use the last frame of each video clip, which, in our
data, is typically less occluded. We provide object masks for
IPoD and foreground masks for V-PRISM and OctMAE, then

(a) An example reconstruction of bottle in a pushing interaction.

(b) An example reconstruction of oatly in a pivoting interaction.

Fig. 7: A qualitative comparison of the geometry reconstruc-
tion under heavy occlusion between our method and the
vision-only baseline. In the image view, the mesh projection is
shown in green, and the robot end effector is shown in yellow
to illustrate the robot-object interaction.

segment the object from their scene completion outputs. We
use published pretrained models for evaluation. We addition-
ally provide a qualitative comparison against methods of 3D
reconstruction from a single RGB image: OpenLRM [26, 27],
One-2-3-45++ [38], and Triplane Gaussian [76], to see if these
models trained with large-scale 2D and 3D data can recover
the complete shape from a partial view.

For dynamics predictions, we compare against fair vari-
ations of BundleSDF and PLL. The BundleSDF variation
features the geometry from BundleSDF and inertia centered on
its geometric centroid. We explored instead using the inertia
learned by PLL in combination with the BundleSDF geome-
try, but this often results in unrealistic dynamics predictions
due to the PLL-learned center of mass landing outside the
BundleSDF geometry’s convex hull. The PLL variation is the
result of running PLL on the BundleSDF pose estimates plus
vision supervision via (6); this is the same as Vysics without
the second round of BundleSDF.



Fig. 8: The quantitative comparison of the geometric recon-
struction accuracy. Each dot is one session. The results of the
same session from different methods are connected by a gray
line. ↑ means higher is better. ↓ means lower is better.

VI. RESULTS

A. Geometry Reconstruction

We first compare the geometry reconstruction of our method
with that of shape completion models and single-view 3D
generation models. Table I presents the quantitative results of
shape completion models in chamfer distance, averaged per
object and over all objects, compared with BundleSDF and
Vysics. Under severe occlusion, while the shape completion
models can achieve similar or slightly lower chamfer distance
than pure vision-based reconstruction, BundleSDF, they fall
behind Vysics by a large margin, showing that the data-driven
completion models are not as successful as Vysics at filling in
the missing pieces. Qualitative results of the single-view 3D
generation models are shown in Figure 6. We find that these
generative models typically assume an unobstructed view of
the object and do not generate a complete shape when given
a partially occluded view. Therefore, we do not evaluate these
models quantitatively.

In the following, we provide detailed comparisons between
Vysics and BundleSDF, as they both do not require a pre-
trained model on a large object dataset. Qualitative compar-
isons of Vysics and BundleSDF geometric reconstruction is
shown in Figure 7. In these examples, the robot arm touches

Fig. 9: The quantitative comparison of the dynamics prediction
accuracy in pose error. Trajectories are predicted by replaying
the robot interaction with the estimated geometry in simula-
tion.

an occluded portion of the geometry and causes motion of
the object. The view of the object is heavily occluded by the
obstacles (books/blanket), resulting in BundleSDF missing a
significant portion of the object in its geometry estimate. In
contrast, our method recovers the occluded geometry so that
the robot arm’s interactions with the objects can explain the
observed object trajectory. Figure 8 shows the quantitative
results of geometric reconstruction for each individual ses-
sion in terms of the surface-based metric, chamfer distance,
and the volume-based metric, IoU. Our method recovers the
occluded geometry through physics-based reasoning over the
observed trajectories, substantially and consistently improving
the geometric accuracy in both metrics.

B. Dynamics Predictions

We further use dynamics predictions to show that the
geometry estimated by our method better explains the observed
trajectory. Figure 9 shows the average position and rotation
errors when predicting the entire length of the original trajec-
tory as an open-loop rollout. The trajectories range in length
from 3 to 18 seconds. Compared with the shape estimated
by the vision-only method, the geometry estimated by our
method enabled much smaller simulation pose errors across



Fig. 10: The dynamics prediction accuracy evaluated by the
duration of the simulated trajectory under small pose error.

Fig. 11: The dynamics prediction accuracy evaluated by the
temporal overlap of robot-object contact happening in simu-
lation and in the real world. The real world ground truth was
manually annotated.

the dataset.
A similar trend can be found in the time-before-divergence

metric in Figures 10 and 12. Our method maintained a small
pose error for a longer time than the vision-only baseline in
simulations. Figure 12 compares Vysics against the vision-
only baseline, physics-only baseline, and a baseline featuring

Fig. 12: For quantifying dynamics prediction performance,
we compare how far into an open-loop rollout the predicted
pose stays within 10cm of position error and within 45
degrees of rotational error from the BundleSDF tracked poses.
We normalize the y-axis to the length of the trajectory. An
example interpretation from the right plot (the orange dashed
lines): 60% into the predicted trajectory, approximately half of
the BundleSDF dynamics predictions diverged in orientation
compared to 30% of the Vysics dynamics predictions and 10%
of the ground truth geometry and PLL predictions.

a simulation with the ground truth geometry. As expected, the
ground truth geometry simulations maintained more accurate
dynamics predictions for the longest. We point out that even
this baseline is imperfect, despite using essentially perfect
geometry, due to inaccurate modeling assumptions such as
object rigidity and the divergent nature of the dynamics in
many of our robot interactions. Vysics and PLL perform
closely to this baseline, though Vysics is moderately worse
in orientation divergence. While most of the dynamics perfor-
mance by PLL is retained in Vysics, it is unsurprising to see a
slight performance drop, given PLL optimizes only for physics
accuracy while Vysics balances with visual objectives. The
vision-only baseline is the least performant in both position
and orientation rollout accuracy.

The temporal IoU of contact activation is shown in Fig-
ure 11. Our method achieved better temporal consistency
between the observed contact and the contact reproduced in
the simulations than the vision-based geometry. Despite the
chaotic nature of open-loop simulation, our method achieved
consistent improvements in all three dynamics prediction
metrics across the dataset, which shows the capability of our
method in building better object models by exploiting the
vision and physics information.

VII. LIMITATIONS AND FUTURE WORK

A limitation of Vysics is that it does not incorporate notions
of object elasticity or bounciness into the learning problem.
This shortcoming means the dynamics predictions of our
learned models could deviate drastically from the ground-truth



trajectories, which saw more chaotic bouncing and slower
energy dissipation. While automated searches for simulator
contact parameters exist [2], preliminary attempts to improve
our dynamics prediction accuracy with these methods did
not yield significant improvements over our inelastic contact
model.

A considerable limitation of our method in its current form
is that it often cannot recover from poor pose estimates. In our
experience, this issue is accentuated by the challenges of our
occlusion-rife, contact-rich dataset. We found shorter video
lengths usually resulted in more consistent pose tracking, but
this is at odds with the benefits of more data for dynamics pa-
rameter regression. It is possible that the geometry supervision
from PLL during BundleSDF’s second run can help it perform
better pose estimation. In this case, we could cyclically repeat
our BundleSDF-PLL process until both shape and trajectories
converge. Future versions of Vysics may consider posing a
single joint learning problem that performs pose estimation
and dynamics model building simultaneously.

The scarcity of observation fundamentally limits the quality
of the reconstructed shape from our method. The visual data
is heavily occluded, while the contact signal is sparse by
nature, leaving limited information for our method to optimize
over. Therefore, readers may find the reconstructed shapes
qualitatively unappealing, with noisy artifacts and limited
details. A potential future direction is to leverage the data-
based priors in foundation models to guide shape estimation
while respecting visual and physics signals.

Lastly, our experiments featured robot interactions from
teleoperation with diversity of interactions in mind. In a
closed-loop system, it could be possible for explorative strate-
gies to determine where the robot should initiate contact to
lower its uncertainty about the object’s properties. While this
interactive approach is compatible with Vysics as designed,
this remains future work.

VIII. CONCLUSION

Vysics equips robots with the ability to construct high-
fidelity dynamics models of novel objects, identified from
vision and proprioception, in the face of contact-rich inter-
actions and extremely small amounts of data. This is the
first step toward unifying vision-based geometry estimation
with contact dynamics. Beyond improvements to the core
method of Vysics, discussed in §VII, future work might
replace teleoperated data collection with autonomous, active
exploration or the integration of these learned models with
planning and control to accomplish some desired task.
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[6] Dejan Azinović, Ricardo Martin-Brualla, Dan B Gold-
man, Matthias Nießner, and Justus Thies. Neural rgb-d
surface reconstruction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6290–6301, 2022.

[7] Mokhtar S Bazaraa, Hanif D Sherali, and Chitharanjan M
Shetty. Nonlinear programming: theory and algorithms.
John wiley & sons, 2013.

[8] Bibit Bianchini, Mathew Halm, Nikolai Matni, and
Michael Posa. Generalization bounded implicit learning
of nearly discontinuous functions. In Learning for
Dynamics and Control Conference, pages 1112–1124.
PMLR, 2022.

[9] Bibit Bianchini, Mathew Halm, and Michael Posa. Si-
multaneous learning of contact and continuous dynamics.
In Conference on Robot Learning, pages 3966–3978.
PMLR, 2023.

[10] Michael Bloesch, Jan Czarnowski, Ronald Clark,
Stefan Leutenegger, and Andrew J Davison.
Codeslam—learning a compact, optimisable
representation for dense visual slam. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2560–2568, 2018.

[11] Stephen P Boyd and Lieven Vandenberghe. Convex
optimization. Cambridge university press, 2004.

[12] Pedro Castro and Tae-Kyun Kim. Posematcher: One-shot
6d object pose estimation by deep feature matching. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 2148–2157, 2023.

[13] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint

https://openreview.net/forum?id=AEq0onGrN2


arXiv:1512.03012, 2015.
[14] Tao Chen, Megha Tippur, Siyang Wu, Vikash Kumar, Ed-

ward Adelson, and Pulkit Agrawal. Visual dexterity: In-
hand reorientation of novel and complex object shapes.
Science Robotics, 8(84):eadc9244, 2023.

[15] Xu Chen, Zijian Dong, Jie Song, Andreas Geiger, and
Otmar Hilliges. Category level object pose estimation
via neural analysis-by-synthesis. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XXVI 16, pages
139–156. Springer, 2020.

[16] Zhikai Chen, Fuchen Long, Zhaofan Qiu, Ting Yao,
Wengang Zhou, Jiebo Luo, and Tao Mei. Anchorformer:
Point cloud completion from discriminative nodes. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 13581–13590,
2023.

[17] Ho Kei Cheng and Alexander G Schwing. Xmem: Long-
term video object segmentation with an atkinson-shiffrin
memory model. In European Conference on Computer
Vision, pages 640–658. Springer, 2022.

[18] Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov,
Alexander G Schwing, and Liang-Yan Gui. Sdfusion:
Multimodal 3d shape completion, reconstruction, and
generation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 4456–
4465, 2023.

[19] Ruihang Chu, Enze Xie, Shentong Mo, Zhenguo Li,
Matthias Nießner, Chi-Wing Fu, and Jiaya Jia. Diffcom-
plete: Diffusion-based generative 3d shape completion.
Advances in neural information processing systems, 36:
75951–75966, 2023.

[20] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey
Allen, Josh Tenenbaum, and J Zico Kolter. End-to-end
differentiable physics for learning and control. Advances
in neural information processing systems, 31:7178–7189,
2018.

[21] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong
Ngo, Oscar Michel, Aditya Kusupati, Alan Fan, Christian
Laforte, Vikram Voleti, Samir Yitzhak Gadre, et al.
Objaverse-xl: A universe of 10m+ 3d objects. Advances
in Neural Information Processing Systems, 36:35799–
35813, 2023.

[22] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca
Weihs, Oscar Michel, Eli VanderBilt, Ludwig Schmidt,
Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi.
Objaverse: A universe of annotated 3d objects. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 13142–13153, 2023.

[23] Yan Di, Ruida Zhang, Zhiqiang Lou, Fabian Manhardt,
Xiangyang Ji, Nassir Navab, and Federico Tombari.
Gpv-pose: Category-level object pose estimation via
geometry-guided point-wise voting. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 6781–6791, 2022.

[24] Nima Fazeli, Samuel Zapolsky, Evan Drumwright, and

Alberto Rodriguez. Learning data-efficient rigid-body
contact models: Case study of planar impact. In Confer-
ence on Robot Learning, pages 388–397. PMLR, 2017.

[25] Mathew Halm. Addressing Stiffness-Induced Challenges
in Modeling and Identification for Rigid-Body Systems
With Friction and Impacts. PhD thesis, University of
Pennsylvania, 2023.

[26] Zexin He and Tengfei Wang. Openlrm: Open-source
large reconstruction models. https://github.com/3DTopia/
OpenLRM, 2023.

[27] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang
Zhou, Difan Liu, Feng Liu, Kalyan Sunkavalli, Trung
Bui, and Hao Tan. Lrm: Large reconstruction model for
single image to 3d. arXiv preprint arXiv:2311.04400,
2023.

[28] Tingbo Hou, Adel Ahmadyan, Liangkai Zhang, Jianing
Wei, and Matthias Grundmann. Mobilepose: Real-time
pose estimation for unseen objects with weak shape
supervision. arXiv preprint arXiv:2003.03522, 2020.

[29] Taylor A Howell, Simon Le Cleac’h, J Zico Kolter,
Mac Schwager, and Zachary Manchester. Dojo: A
differentiable simulator for robotics. arXiv preprint
arXiv:2203.00806, 2022.

[30] Shun Iwase, Katherine Liu, Vitor Guizilini, Adrien
Gaidon, Kris Kitani, Rareş Ambruş, and Sergey Za-
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[33] Yann Labbé, Justin Carpentier, Mathieu Aubry, and Josef
Sivic. Cosypose: Consistent multi-view multi-object
6d pose estimation. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part XVII 16, pages 574–591.
Springer, 2020.
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APPENDIX

A. BundleSDF Hyperparameters

Description Symbol in [66] Value
RGB loss weight wc 100
Uncertain free space loss weight wu 50
Uncertain free space SDF target ϵ 0.1
Empty space loss weight we 1
Near-surface space loss weight wsurf 3,000
Truncation distance of the near-surface
space

N/A 0.01 m

SDF target corresponding to the trunca-
tion distance

λ 1

Eikonal loss weight weik 0
(Ours) Support point loss weight on (8) N/A 2
(Ours) Hyperplane-constrained loss
weight on (11)

N/A 1

(Ours) Convexity loss weight on (13) N/A 1

TABLE II: Hyperparameters for modified BundleSDF [66].

BundleSDF [66] employed five loss terms to optimize the
object SDF and poses:

• RGB loss: a penalty on the discrepancy between the color
rendered from the SDF and object pose and the observed
RGB value.

• Uncertain free space loss: encourages the SDF to predict
a small constant in regions near observed object surfaces.
This preserves the shape’s contour while being able to
quickly adapt to more reliable observations.

• Empty space loss: encourages the foreground empty
space in front of the depth readings up to a truncation
distance to predict the constant truncation SDF.

• Near-surface loss: for near-surface points with distance
to the depth readings under the truncation distance, en-
courages the SDF to be predicted exactly.

• Eikonal loss: encourages the regressed SDF to have a
gradient of magnitude 1 at any point. While described in
[66], this loss term has a weight of 0 in BundleSDF’s
official implementation.

The weights for the loss terms introduced in Vysics are listed
in Table II.

B. PLL Hyperparameters

Description Symbol in [9] Value
Prediction loss weight wpred 4
Complementarity loss weight wcomp 1
Dissipation loss weight wdiss 5000
Penetration loss weight wpen 0.5
(Ours) BundleSDF loss weight on (6) N/A 0.04

TABLE III: Loss term weights for modified PLL [9, 53].

PLL [9, 53] features a violation-based implicit loss function
with 4 main components:

• Prediction loss: a penalty on the difference between the
dynamics model’s predicted next state (using hypothe-
sized contact forces) and the observed next state.

• Complementarity loss: a penalty on violation of con-
tact complementarity, i.e. penalize any predicted contact
forces if the geometry model does not predict contact.

• Dissipation loss: a penalty on violation of the Coulomb
friction model.

• Penetration loss: a penalty on the penetration of the
current geometric model into the known environment
surface at the end of the time step.

PLL learns dynamics models as a bilevel optimization prob-
lem: 1) Per epoch, the hypothesized set of contact forces are
selected to minimize the sum of the above terms. 2) Between
epochs, the dynamics model parameters update via gradient
descent. See [53] for more details. We add (6) as a term
directly to the above from PLL with the loss weights according
to Table III.

C. Other Vysics Hyperparameters

1) Hyperparameters for converting from PLL outputs to
modified BundleSDF inputs: §IV-B describes querying the
PLL geometry for supervising BundleSDF via (8) and (11).
Since odometry-based contact learning may lack signal in
many directions, data for supervising the next round of
BundleSDF is extracted by running all of the input trajectory
data again (after PLL has already been trained) through PLL’s
violation-based implicit loss. Vysics retains only the queried
points with the top fraction of hypothesized contact normal
forces – we used the top 30%. Thus, we yield hypothesized-
force-filtered data points {(n̂p, sp)i} that confidently saw
contact during PLL training.

We go from one DSF input/output pair (n̂p, sp) to many
SDF inputs/outputs {(p, l)j} subject to (8) by sampling on
the ray r⃗ defined by (n̂p, sp):

• 100 points randomly sampled up to 5mm from sp in the
−n̂p direction (into the convex hull),

• 100 points randomly sampled up to 5mm from sp in the
+n̂p direction, and

• 50 points randomly sampled up to 10cm from sp in the
+n̂p direction.

Per epoch, BundleSDF randomly picks up to 1K of these SDF
input/output pairs.

For obtaining SDF inputs/lower bounds {(q, lmin)k} subject
to (11), we first sample 25K points evenly-spaced on the PLL
mesh. We filter out any points that are more than 1mm away
from a supporting hyperplane defined by the hypothesized-
force-filtered support points and directions {(n̂p, sp)i}. This
yields a set of points sampled on the PLL learned mesh plus
their associated face’s outward normal, {(m̂,v)n}. Sampling
on the mesh instead of using the support points and directions
directly yields supervision over a broader portion of the
geometry even after filtering based on supporting hyperplane
proximity, since the support points themselves are sparse and
can be highly local. We go from one direction/point pair
{(m̂,v)} to many SDF inputs/lower bounds {(q, lmin)k} by
sampling:

https://github.com/NVlabs/BundleSDF/blob/master/config.yml#L84
https://github.com/NVlabs/BundleSDF/blob/master/config.yml#L84


• 200 points randomly sampled within a cylinder of radius
5cm, starting at v with its axis extending 5mm along the
−m̂ direction,

• 100 points randomly sampled within a cylinder of radius
5cm, starting at v with its axis extending 5mm along the
+m̂ direction, and

• 100 points randomly sampled within a cylinder of radius
10cm, starting at v with its axis extending 10cm along
the +m̂ direction.

Per epoch, BundleSDF randomly picks up to 5K of these
input/SDF limit pairs.

2) Hyperparameters for converting from BundleSDF out-
puts to modified PLL inputs: §IV-A describes querying
the BundleSDF geometry to obtain DSF input/output pairs
{(n̂v, sv)i} for supervising PLL via (6). We query 5,768
approximately evenly-spaced n̂v directions and obtain their
corresponding support points sv on the BundleSDF geometry.
Per epoch, PLL randomly picks up to 1K of these points to
incorporate into its loss via (6).
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