
Enhancing Task Performance of Learned Simplified Models via
Reinforcement Learning

Hien Bui1 and Michael Posa1

Abstract— In contact-rich tasks, the hybrid, multi-modal
nature of contact dynamics poses great challenges in model
representation, planning, and control. Recent efforts have
attempted to address these challenges via data-driven meth-
ods, learning dynamical models in combination with model
predictive control. Those methods, while effective, rely solely
on minimizing forward prediction errors to hope for better
task performance with MPC controllers. This weak correlation
can result in data inefficiency as well as limitations to overall
performance. In response, we propose a novel strategy: using a
policy gradient algorithm to find a simplified dynamics model
that explicitly maximizes task performance. Specifically, we
parameterize the stochastic policy as the perturbed output of
the MPC controller, thus, the learned model representation
can directly associate with the policy or task performance.
We apply the proposed method to contact-rich tasks where
a three-fingered robotic hand manipulates previously unknown
objects. Our method significantly enhances task success rate
by up to 15% in manipulating diverse objects compared to the
existing method while sustaining data efficiency. Our method
can solve some tasks with success rates of 70% or higher using
under 30 minutes of data. All videos and codes are available
at https://sites.google.com/view/lcs-rl.

I. INTRODUCTION

In many robotics tasks, such as dexterous manipulation
and locomotion, robots frequently need to make and break
contact with the environment. Yet, finding explicit models
and policies that can exploit the hybrid complex interaction
of the robot with its environment to solve the tasks remains a
challenge. Some works in model-based control [1]–[4] have
attempted to explicitly identify contact modes and plan the
contact sequences. However, these approaches face scalabil-
ity challenges as the number of contact modes increases.

Recent data-driven methods have made significant ad-
vances in tackling that scalability issue, broadly offering
two primary strategies. Modern model-free reinforcement
learning (RL) directly parameterizes control policies with
deep neural networks, then iteratively improves the policies
through large-scale trial and error [5]–[7]. However, be-
cause of their data inefficiency, carrying out experiments on
real robotic systems is always resource-intensive and time-
consuming. In contrast, a line of work, often referred to
as model-based RL [8]–[14], leverages the expressiveness
power of deep neural networks to learn intricate dynamic
models. The learned models are subsequently employed for
trajectory planning via random shooting techniques. De-
spite improving data efficiency compared to model-free RL,
model-based RL remains data-intensive because conventional

1The authors are with the GRASP Laboratory, University of Pennsylva-
nia, Philadelphia, PA 19104, USA {xuanhien, posa}@seas.upenn.edu

Proximal Policy
Optimization
(PPO) Loss

Prediction loss

Stochastic Policy

+

Policy Optimizer

Gaussian Noise

On-policy
Data

Learnable
Simplified

Dynamic Model

U
pd

at
e

Po
lic

y
Pa

ra
m

et
er

s

+

Model
Predictive

Control (MPC)
Planner

Fig. 1: The diagram demonstrates our proposed framework
of learning simplified dynamic models for solving contact-
rich manipulation tasks in low data regimes. Our framework
proposes an iterative learning loop that consists of main
components: a stochastic policy and a policy optimizer. Top
panel: Using learned dynamic models under MPC scheme
and Gaussian noise to construct the stochastic policy. Bottom
panel: Combining PPO and prediction loss to optimize the
policy parameters with the collected on-policy data.

methods for learning deep dynamic models struggle to cap-
ture stiffness and multi-modal contact dynamics [15], [16].
Moreover, by adopting simpler model representations such as
time-varying linear or Gaussian Process models, some works
[17]–[19] demonstrate good performance with limited data.

The most recent work [20] shows great performance with
only a few minutes of data by learning a simple multi-contact
dynamic model, or reduced-order model, and combining it
with an MPC planner. However, two main building blocks
of this work, the dynamic model fitting and planning with
the learned model, appear as two de-coupled optimization
problems repeated over many cycles of learning. More
specifically, ensuring better forward prediction capability
of the learned dynamic model is necessary but might not
be sufficient to achieve better task performance, leading to
limitations of data efficiency and task performance. This
issue is known as objective mismatch [21].

This paper presents LCS-RL, a low-dimensional RL
framework, to address the above issue, aiming to further
enhance task performance and data efficiency. Particularly,
the proposed framework directly bridges the dynamic model
learning part to task performance optimization via a policy

https://sites.google.com/view/lcs-rl

gradient algorithm.

A. Contributions

1) We present LCS-RL, a novel framework that lever-
ages the combination of RL and simple multi-contact
models for solving contact-rich tasks. Specifically, our
framework applies a reinforcement learning algorithm
to directly maximize the task performance of simplified
models in combination with the MPC planner.

2) We show that the proposed method consistently
achieves higher task performance, up to 15% in three-
fingered robot manipulation tasks with various objects
compared to the prior methods [10], [20]. In addition,
our method is data efficient as it can solve some
dexterous manipulation tasks with 70% to 96% success
rates using just under 30 minutes of data.

3) We also demonstrate that the learned LCS model of
one object can be transferred to other objects, drasti-
cally improving data efficiency.

II. RELATED WORK

A. Differentiable MPC and Reinforcement Learning

The prior works [22]–[24] are the most relevant to ours:
forming parametric MPC with learnable either cost functions
or dynamic constraints, and optimizing its parameters via
some losses such as imitation or RL loss. However, those
works express some limitations. Amos et al. [23] propose to
use simple linear dynamic models and limit their experiments
to imitation learning on low-dimensional tasks. Meanwhile,
Esfahani et al. [24] focus more on robust MPC, optimizing
parameters of the cost functions for better performance with
the presence of disturbances and uncertainties, but critically
require access to ground-truth dynamics.

B. Baseline for Comparisons

Jin et al. [20] suggest that there exists a simple model
that can adequately capture task-relevant contact dynamics,
thereby enabling both high performance and real-time con-
trol for contact-rich manipulation. In particular, the authors
propose to use a reduced-order hybrid model to represent
and use the model predictive controller for planning. Since
the model is far simpler than deep neural networks, much
less data is required for model learning. Their framework
achieves high task performance with under 5 minutes of
data. In this paper, we compare the task performance and
data efficiency of our proposed method against this baseline
in some dexterous manipulation tasks.

III. BACKGROUNDS

A. Linear Complementarity Systems

A discrete-time linear complementarity system (LCS) is
a piecewise-affine system, where the state evolution is gov-
erned by linear dynamics in (1a) and a linear complemen-
tarity problem (LCP) in (1b).

xt+1 = Axt +But + Cλt + d, (1a)
0 ≤ λt ⊥ Dxt + Eut + Fλt + c ≥ 0. (1b)

Here, xt ∈ Rnx , ut ∈ Rnu , and λt ∈ Rnλ are respectively
the system state, action, and the complementarity variable at
time step t. And, xt+1 ∈ Rnx is the system state at the
next time step t + 1. Moreover, the matrix A ∈ Rnx×nx

defines the autonomous dynamics and matrix B ∈ Rnx×nu

captures the effect of actions on states. And, the matrix C ∈
Rnx×nλ and d ∈ Rnx describe the effect of the contact
forces and the constant forces acting on the state respectively.
Other matrices D ∈ Rnλ×nx , E ∈ Rnλ×na , F ∈ Rnλ×nλ

and c ∈ Rnλ altogether capture the relationship between
states, actions, and contact forces.

B. Learning Linear Complementarity Systems

Given a data buffer D that contains some state transitions
(xt,ut,xt+1), we can learn all matrix and vector parameters
of an LCS model (A,B,C,d, D,E, F, c) in (1) by using
the gradient descent method with the violation-based loss,
proposed by Jin et al. [25]

LΘ
vio = min

λt≥0,ϕt≥0

1

2
∥Axt +But + Cλt + d− xt+1∥2

+
1

ξ

(
λT
t ϕt +

1

2γ
∥Dxt + Eut + Fλt + c− ϕt∥2

)
.

(2)
Particularly, the loss LΘ

vio itself is an optimization problem
whose first and second terms specify the violation of the
affine dynamics (1a) and the LCP constraint (1b), respec-
tively. Under the condition 0 < γ ≤ σmin(F +FT), finding
λt to minimize the second term is equivalent to directly
solving an LCP in (1b) for λt, but poses a better-conditioned
landscape for LΘ

vio, thus enabling the identification of multi-
modal and stiff dynamics. The hyper-parameter ξ > 0 aims
to balance two terms of the loss LΘ

vio; and ϕt ∈ Rnλ is an
introduced slack variable for the complementarity equation.
Full explanations of the loss formulation and its hyper-
parameters can be found in [25].

As proven in [25], using Envelope Theorem [26], we can
analytically compute the gradient of the violation-based loss
with respect to LCS parameters dLΘ

vio

dΘ without differentiating
through the solution of the optimization problem.

C. Model Predictive Controller with LCS

Utilizing LCS to represent the dynamics model, one can
construct a model predictive controller (MPC) as follows:

min
ut,ut+1,...,ut+H−1

t+H−1∑
k=t

C (xk,uk) + Cf (xt+H)

s.t. xk+1 = Axk +Buk + Cλk + d,

0 ≤ λk ⊥ Dxk + Euk + Fλk + c ≥ 0,

umin ≤ uk ≤ umax.
(3)

where H is the planning horizon; C and Cf are the path and
terminal cost functions. And, umin and umax are the lower
and upper bounds of actions.

Given any initial state xt, we solve the LCS-MPC in (3) to
plan a sequence of optimal actions [ut,ut+1, . . . ,ut+H−1]
that minimizes the total cost, then select the first action ut to

Algorithm 1: Warm-up phase for optimizing LCS-
MPC Policy

Parameterization: LCS-MPC policy parameters θ;
Hyper-parameters: The number of warm-up
iterations M ; the number of policy improvement
steps Np; and learning rate η;
Initialization: θ0, ϕ0, empty data buffer D;
for k = 0, 1, ...,M do

Collect N rollout trajectories by running the
LCS-MPC stochastic policy πθk

and add to D
for i← 0 to Np do

Using data in D, compute the gradient dLθi
vio

dθi

Update θi+1 ← θi − η
dLθi

vio

dθi

end
end
Save the final parameters θM for the main phase

apply on the robot and repeat the process in every time step
in a receding horizon manner. To efficiently solve the LCS-
MPC, we employ the direct trajectory optimization method
[27]. This approach simultaneously searches over trajectories
of x0:T , u0:T−1, and λ0:T−1, treating the LCS dynamics as
a separate constraint for each time step. Also, we use the
IPOPT solver [28] to solve such nonlinear problems.

D. Proximal Policy Optimization

Proximal Policy Optimization (PPO) [5] is a policy gradi-
ent algorithm that focuses on determining how to make the
most significant policy improvement using current data, all
while avoiding excessive steps that could lead to performance
collapse. Particularly, the PPO loss is defined as follows:

Lθ
PPO = − 1

|D|T
∑
τ∈D

T∑
t=0

{
max

(
hθ
t , 1− ϵ

)
At if At < 0

min
(
hθ
t , 1 + ϵ

)
At if At ≥ 0,

(4)
where D and |D| are the data buffer and its size, that

buffer consists of on-policy rollout trajectories τ , and T is
the length of trajectories. There are two key quantities in
(4): the ratio hθ

t = πθ(ut|xt)
πθold (ut|xt)

and the advantage function
At. Here, the ratio hθ

t indicates how much the new policy
differs from the old one. The scalar ϵ defines the bounds of
hθ
t , which are often referred to as the trust region of policy

improvements. In addition, the advantage function At guides
the policy search by measuring whether a certain action is a
good or bad decision within a given state

At = rt + γVϕ (xt+1)− Vϕ(xt), (5)

where rt is the reward obtained by executing action ut

at state xt and γ is the discount factor. The value function
Vϕ(xt) and Vϕ(xt+1) estimate the expected total rewards if
we follow the current policy from state xt and xt+1 till the
end of trajectories.

Algorithm 2: Main phase for optimizing LCS-MPC
Policy using the PPO algorithm

Parameterization: LCS-MPC policy parameters θ
and value function Vϕ

Hyper-parameters: Total number of iterations K,
the number of policy improvement steps N̄p;
Learning rate η̄ for the policy optimization; Loss
weighting parameter β in (7); and also the discount
factor γ for computing the advantage values.
Initialization: θM obtained from the warm-up phase,

ϕ0, and empty data buffer D
for k = 0, 1, ...,K do

Empty buffer D, collect N̄ new trajectories by
running the LCS-MPC policy πθk

, and add to D
For each trajectory, compute the bootstrapped
total reward Rt = r(xt,ut) + γVϕk

(xt+1) and
the advantage values At = Rt − Vϕk

(xt) for
t = 0, 1, . . . , T

for i← 0 to N̄p do
Compute the combined loss gradient dLθi

c

dθi

Update θi+1 ← θi − η̄ dLθi
c

dθi

end
Fit value function Vϕ by performing regression
with mean-square error

ϕk+1 = argmin
ϕ

1

|D|T
∑
τ∈D

T∑
t=0

(Vϕ (xt)−Rt)
2

end

IV. PRACTICAL ALGORITHM

In this section, we introduce our framework, LCS-RL, that
utilizes a reinforcement learning algorithm, here we use PPO,
to optimize an LCS dynamic model (in combination with
model predictive control) for solving contact-rich tasks.

First, we formulate a stochastic policy, called the LCS-
MPC stochastic policy, by adding Gaussian noise to the
output of the LCS-MPC planner in (3). In other words,
the LCS-MPC policy is directly parameterized by the LCS
model. Then, we use the combination of the PPO loss and
the violation-based loss given in (7) to improve the task
performance of that policy.

We address the poor data efficiency of the PPO algorithm
by leveraging data-efficient model learning at the start and
then transitioning to PPO when in a good neighborhood.
Therefore, our framework consists of two phases: the warm-
up phase and the main phase. In the warm-up phase, we
follow the algorithm proposed in [20], solely employing the
violation-based loss (2) to quickly learn the parameters of
the LCS model that can achieve good task performance.
Subsequently, we use the learned LCS model to accelerate
the main phase in which we start using the PPO algorithm. In
practice, we find that having the warm-up phase offers more
stable and progressive training than involving PPO right from
the beginning. Theoretically, we could merge two phases

(a)

Step 1 Step 5 Step 8

Step 13 Step 17 Step 20

(b)

Fig. 2: TriFinger dexterous manipulation tasks. (a) shows the
simulation environment that is constructed using MuJoCo
physics engine [29]. In this task, the three fingers need to
push the cube towards a random target pose, visualized by the
red transparent cube. (b) is an example of a rollout trajectory
that demonstrates how the fingers approach, make, and break
contacts to reposition the cube.

together and switch the loss upon transition. However, each
phase requires a different set of hyper-parameters such as the
learning rate, the gradient descent optimizer, or the number
of updating iterations, so it is simpler to keep two phases
separated. Details of the warm-up phase and main phase are
given in Algorithm 1 and 2.

A. LCS-MPC Stochastic Policy

The LCS-MPC policy is the probability density of an
action distribution associated with the current state xt:

πθ(ut|xt) =
exp

(
− 1

2 (ut − µΘ(xt))
TΣ−1(ut − µΘ(xt))

)
(2π)nu/2 det(Σ)1/2

,

(6)
where µΘ ∈ Rnu is the deterministic action or the optimal

output of the LCS-MPC planner, and Σ ∈ Rnu×nu is
the covariance matrix that indicates the noise magnitude.
Here, Θ = (A,B,C,d, D,E, F, c) is actually the LCS
parameters. And, θ = [Θ,Σ] denotes the joint vector of the
policy’s learnable parameters. The added noise encourages
exploration, thus avoiding low-quality local minima. Usually,
the noise magnitude is large at the beginning, then gradually
decreases as the task performance would be higher if the
policy exploits the knowledge it has acquired.

B. Loss for Optimizing LCS Model

Throughout our framework, we employ two types of
loss: the violation-based loss and the PPO loss. The former
focuses on improving the forward prediction capability of the
LCS model while the latter focuses on directly enhancing the
task performance of the LCS-MPC planner. By introducing
a hyper-parameter β ∈ [0, 1], we could balance the contribu-
tions of the PPO loss and the violation-based loss, resulting
in the combined loss:

Lθ
c = βLθ

PPO + (1− β)Lθ
vio, (7)

In order to optimize the parameters of LCS-MPC stochas-
tic policy, one must compute the gradient of the PPO loss and
the violation-based loss with respect to the policy parameters.
In section III-B we have already mentioned the method for

0 10 20 30 40 50
Amount of data (minutes)

0

20

40

60

80

100

T
as

k
S

u
cc

es
s

R
at

e
(%

)

LCS-RL (Ours)

Only Lvio [20]

Only LPPO
PDDM [10]

Fig. 3: Learning curves of the TriFinger Moving Cube task.
The red, blue, orange, and green lines show the average
task success rate of our proposed method, the prior method
[20], a method that uses PPO without a warm-up phase, and
PDDM [10] respectively. At the beginning of the training,
our method and the prior method [20] share the same
performance since the same algorithm is used. However, the
transition occurs after collecting 6 minutes of data, when our
method switches to fully employ the PPO algorithm. Shaded
regions indicate normal t-score 95% confidence intervals.

calculating dLθ
vio

dθ . Moving forward, we will illustrate the
process for computing dLθ

PPO

dθ .

C. Gradient of PPO Loss

The original PPO algorithm parameterizes policies via
deep neural networks [5], thus computing the gradient of
the PPO loss over policy parameters can be simply done
via automatic differentiation. However, it does not apply
to our case since our policy is actually an MPC planner.
Differentiating through the MPC requires special treatment.

Given the explicit form of PPO loss in (4), using chain
rule, the gradient with respect to θ can be computed as
follows:

dLθ
PPO

dθ
=

1

|D|T
∑
τ∈D

T∑
t=0

dhθ

t

dπθ

dπθ

dθ At if hθ
t ≥ 1− ϵ; At < 0

0 if hθ
t < 1− ϵ; At < 0

dhθ
t

dπθ

dπθ

dθ At if hθ
t ≤ 1 + ϵ; At ≥ 0

0 if hθ
t > 1 + ϵ; At ≥ 0.

(8)
Due to the clipping effect of the PPO loss, the gradients

are zero when the improvement steps of the PPO policy hθ
t

are outside of trust region [1− ϵ, 1 + ϵ]. Hence, we are left
to compute the gradients if hθ

t stays within the trust region.
To compute (8), one must compute dhθ

t

dπθ
and dπθ

dθ . While it

is straightforward to evaluate dhθ
t

dπθ
, computing dπθ

dθ requires
differentiation of the optimal actions of the MPC µΘ(xt)
with respect to its parameters Θ. We compute this derivative
via perturbations of Karush–Kuhn–Tucker (KKT) conditions
[30], with details given in [31]. Also, note that the MPC
problem is not always classically differentiable (e.g. when
strict complementarity does not hold in the KKT conditions),
but we have not found this problematic in practice.

V. EXPERIMENTS AND RESULTS

In this section, we will verify our proposed framework
on the three-fingered robotic hand manipulation task that
was first proposed by [20] (see Fig. 2). We call it the
TriFinger Moving Cube task. In the first experiment, we
show a comparison of the task performance of the LCS
model trained by our method and prior methods. Next,
we replace the cube with other objects that have more
complex shapes and repeat the same experiment. Lastly, we
demonstrate that the data efficiency of our framework can be
greatly improved via transfer learning. In order to guarantee
statistically meaningful results, for each experiment, we have
10 runs with 10 random seeds. Also, we compute the task
success rate by evaluating the learned models with 1000
random goal poses and aggregate results. All videos and
codes are available at https://sites.google.com/view/lcs-rl.

A. TriFinger Moving Cube Task
In this task, a TriFinger robot attempts to align a 6 cm-

sized cube with random goal poses on a planar surface. Each
episode consists of up to 20 steps, where each step takes 0.1
seconds.

1) States and Actions: We define the system state

x = [pcube, αcube, pfingertips] ∈ R9, (9)

where pcube ∈ R2 is the xy position of the cube; αcube ∈
R is the rotation angle around the z (vertical) axis; and
pfingertips ∈ R6 are the xy positions of three fingertips. We
define the actions as deviations from the current positions
of three fingertips in the Cartesian space. In addition, we
impose safety limits on actions (element-wise) to constrain
how far fingertips can move in one time step.

u = ∆pfingertips ∈ R6,

ui ∈ [−0.015, 0.015] m.
(10)

We employ operational space control (OSC) [32] in the
lower-level controller to map action u to the joint torque of
each finger. We also utilize the OSC controller to maintain
fingertips at a constant height as this TriFinger task involves
only planar manipulation.

2) Task Space: We use the same bounds for task space as
in [20], from which the goal poses are uniformly sampled

[−0.06, 0.06]T m ≤ pgoal ≤ [0.06, 0.06]T m,

− 0.5 rads ≤ αgoal ≤ 0.5 rads.
(11)

3) Task Success Criteria: When the cube pose is near the
goal pose and within some tolerances, we can consider that
the task is successfully completed. The goal tolerance values
are selected to establish the right level of difficulty as too
stringent tolerances make the task impossible to solve. We
follow some previous works on TriFinger tasks [33], [34] to
set the tolerances as follows:

∥pcube − pgoal∥ ≤ 0.02 m,

∥αcube − αgoal∥ ≤ 0.2 rads,
(12)

where pcube and αT
cube are the xy position and orientation of

the cube at the last time step T ; pgoal ∈ R2 and αgoal ∈ R
together specify the goal pose.

Peak Success Rate (%) Final Success Rate (%)
Object Only Lvio LCS-RL Only Lvio LCS-RL

(Ours) (Ours)
Sugar Box 87.5± 9.2 95.9 ± 2.4 44.3± 26.2 95.9 ± 2.4
Fish Can 59.1± 7.3 69.9 ± 8.1 38.8± 13.1 69.9 ± 8.1

Mug 32.5± 8.4 44.6 ± 3.9 10.0± 6.3 44.6 ± 3.9
Wrench 45.5± 8.7 60.0 ± 6.5 11.5± 8.6 59.5 ± 6.6
Clamp 24.7± 5.3 39.3 ± 9.7 6.1± 5.6 38.7 ± 10.2
Banana 28.4± 5.8 35.5 ± 5.3 7.5± 6.6 35.5 ± 5.3

TABLE I: Comparison task success rates between our
method [20] and prior method on diverse objects.

4) Cost function for the LCS-MPC: We utilize the same
cost function for the LCS-MPC as in the prior work [20]:

J =

t+H−1∑
k=t

C(xk,uk) +H(xt+H),

C = 10.0
∥∥pfingertips − pcube

∥∥2 + 200.0
∥∥pcube − pgoal

∥∥2
+ 0.3 (αcube − αgoal)

2
+ 200∥u∥2,

H = 6.0
∥∥pfingertips − pcube

∥∥2 + 200.0
∥∥pcube − pgoal

∥∥2
+ 1.5

(
αcube − αgoal)2 ,

(13)
5) Reward function for PPO: We employ both dense and

sparse reward functions for the PPO algorithm. The dense
reward function rt(xt,ut) is simply the negation of the cost
function C in (13). One particular reason for this choice of
reward function is to ensure both PPO and the MPC planner
of the stochastic policy align in the same direction toward
task completion.

At the end of the rollout trajectory, we add a negative
sparse reward to penalize for not completing the task:

r(xT−1,uT−1) = −10.0× (1− is task completed), (14)

In practice, we find that sparse reward helps to accelerate
the training significantly.

B. Results of the TriFinger Moving Cube Task

To demonstrate the effectiveness of LCS-RL, we compare
against the prior method [20], which trains purely on Lθ

vio,
against PPO without a warm-up phase. We also compare
against a state-of-the-art model-based RL approach PDDM
[10] to demonstrate the utility of simple, non-smooth models
over deep neural networks for manipulation. Note that in the
main phase of our method, we set β = 1.0 for the combined
loss in (7), meaning that only the PPO loss is used. The
results are shown in Fig.3.

When utilizing only the violation-based loss, the mean
success rate peaks at 55% after 7 minutes of data, then
fluctuates and decreases as more data is collected, and finally
stops at approximately 30%. In contrast, starting with the
same performance at 6 minutes of data, our method improves
the task performance throughout the training, reaching 65%
of success rate after 25 minutes of data and 71.4% at the
end of the training. Since the LCS models have limited
expressiveness power, even if we optimize LCS models
for better capability of forward prediction, this capability
might not be optimally assigned to regions of state space

https://sites.google.com/view/lcs-rl

0

25

50

75

100

T
as

k
S

u
cc

es
s

R
at

e
(%

)

From scratch (Ours)

Transfer learning (Ours)

(a) Sugar Box

0

25

50

75

100

T
as

k
S

u
cc

es
s

R
at

e
(%

)

From scratch (Ours)

Transfer learning (Ours)

(b) Fish Can

0

25

50

75

100

T
as

k
S

u
cc

es
s

R
at

e
(%

)

From scratch (Ours)

Transfer learning (Ours)

(c) Mug

0

25

50

75

100

T
as

k
S

u
cc

es
s

R
at

e
(%

)

From scratch (Ours)

Transfer learning (Ours)

(d) Wrench

0 20 40
Amount of data (minutes)

0

25

50

75

100

T
as

k
S

u
cc

es
s

R
at

e
(%

)

From scratch (Ours)

Transfer learning (Ours)

(e) Clamp

0 20 40
Amount of data (minutes)

0

25

50

75

100

T
as

k
S

u
cc

es
s

R
at

e
(%

)

From scratch (Ours)

Transfer learning (Ours)

(f) Banana

Fig. 4: Comparison task performance between learning the LCS model from scratch and pre-trained models (obtained from
training with the TriFinger Moving Cube task) on the YCB objects using our LCS-RL framework.

where accuracy is needed for task performance. As a result,
the overall task performance might drop significantly. Our
method does not suffer from that issue because the only
objective of PPO is encouraging the policy, to repeat good
trajectories and avoid bad trajectories.

In addition, the PPO-only method and PDDM [10] have
the lowest task performances throughout the training, achiev-
ing merely 10% and 20% for the final task success rate.

C. TriFinger Manipulating Diverse Objects

We run a set of experiments on the TriFinger Moving
Object task, which is similar to the TriFinger Moving Cube
task, but the cube is replaced by other objects with non-
convex, highly intricate shapes. Those objects, including
sugar box, fish can, mug, wrench, clamp, and banana, are
selected from the YCB object and model set [35]. As seen
from Table I, our method consistently outperforms the prior
method in [20] given the same amount of data, gaining from
8% (sugar box) to 15% (clamp) higher task success rate.

D. Transfer Learning

To illustrate the transfer learning capabilities of our LCS-
RL framework, we employ the LCS model initially trained
on the TriFinger Moving Cube task as the starting point
for training on other objects. The results in Fig. 4 show
that our LCS-RL framework is highly suitable for transfer
learning. Particularly, we can observe that transfer learning
significantly accelerates the training, yielding even higher
final task success rates in all objects (except for the sugar
box), compared to the training from scratch model.

VI. CONCLUSIONS

In conclusion, we present LCS-RL, a novel approach that
leverages a reinforcement learning algorithm to directly max-
imize the task performance of the LCS model in combination
with the MPC planner. We demonstrate that the proposed
method attains higher task performance and greater sample
efficiency compared to prior methods in TriFinger robot tasks
involving pushing and rotating various objects. In addition,
we show that our method is highly suitable for transfer
learning, which further helps to improve data efficiency.

Our framework is not limited to only the PPO algorithm
since any RL algorithms can be incorporated. Thus, one
direction for future work is to explore other RL algorithms
and employ them in our framework. There are off-policy RL
algorithms such as TD3 [6] or SAC [7], known for better
data efficiency when compared to on-policy algorithms like
PPO [36]. Nevertheless, this advantage may not be as evident
in situations with limited data.

Lastly, we observe the limitation of using the LCS model
to represent system dynamic models, especially when dealing
with complex geometries such as bananas or clamps. We
would like to explore alternative structured models that are
still much simpler than neural networks and also exhibit
nonlinear components, though with a trade-off in data ef-
ficiency. One potential candidate would be the Nonlinear
Complementarity System (NCS) model.

ACKNOWLEDGMENT

Toyota Research Institute provided funds to support this
work.

REFERENCES

[1] T. Marcucci and R. Tedrake, “Warm Start of Mixed-Integer Programs
for Model Predictive Control of Hybrid Systems,” IEEE Transactions
on Automatic Control, vol. 66, pp. 2433–2448, 2019.

[2] D. Frick, A. Georghiou, J. L. Jerez, A. Domahidi, and M. Morari,
“Low-complexity method for hybrid MPC with local guarantees,”
SIAM Journal on Control and Optimization, vol. 57, no. 4, pp. 2328–
2361, 2019.

[3] A. Aydinoglu, A. Wei, and M. Posa, “Consensus Complementarity
Control for Multi-Contact MPC,” arXiv preprint arXiv:2304.11259,
2023.

[4] A. Aydinoglu and M. Posa, “Real-Time Multi-Contact Model Pre-
dictive Control via ADMM,” in 2022 International Conference on
Robotics and Automation (ICRA). Philadelphia, PA, USA: IEEE,
2022, pp. 3414–3421.

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[6] S. Fujimoto, H. Hoof, and D. Meger, “Addressing Function Approx-
imation Error in Actor-Critic Methods,” in Proceedings of the 35th
International Conference on Machine Learning. PMLR, 2018, pp.
1587–1596.

[7] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor,” in Proceedings of the 35th International Conference
on Machine Learning, vol. 80. PMLR, 2018, pp. 1861–1870.

[8] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural Net-
work Dynamics for Model-Based Deep Reinforcement Learning with
Model-Free Fine-Tuning,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), 2018, pp. 7559–7566.

[9] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep Reinforce-
ment Learning in a Handful of Trials using Probabilistic Dynamics
Models,” in Advances in Neural Information Processing Systems,
vol. 31, 2018.

[10] A. Nagabandi, K. Konoglie, S. Levine, and V. Kumar, “Deep Dynam-
ics Models for Learning Dexterous Manipulation,” in Conference on
Robot Learning. PMLR, 2020, pp. 1101–1112.

[11] A. S. Morgan, D. Nandha, G. Chalvatzaki, C. D’Eramo, A. M. Dollar,
and J. Peters, “Model Predictive Actor-Critic: Accelerating Robot
Skill Acquisition with Deep Reinforcement Learning,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), 2021,
pp. 6672–6678.

[12] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine, “Visual
Foresight: Model-Based Deep Reinforcement Learning for Vision-
Based Robotic Control,” arXiv:1812.00568 [cs], 2018.

[13] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. J. Johnson, and
S. Levine, “SOLAR: Deep Structured Representations for Model-
Based Reinforcement Learning,” in Proceedings of the 36th Interna-
tional Conference on Machine Learning, vol. 97. PMLR, 2019, pp.
7444–7453.

[14] R. Ghugare, H. Bharadhwaj, B. Eysenbach, S. Levine, and
R. Salakhutdinov, “Simplifying Model-based RL: Learning Represen-
tations, Latent-space Models, and Policies with One Objective,” arXiv
preprint arXiv:2209.08466, 2022.

[15] M. Parmar, M. Halm, and M. Posa, “Fundamental Challenges in Deep
Learning for Stiff Contact Dynamics,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Prague, Czech
Republic: IEEE, 2021, pp. 5181–5188.

[16] B. Bianchini, M. Halm, N. Matni, and M. Posa, “Generalization
Bounded Implicit Learning of Nearly Discontinuous Functions,” in
Proceedings of The 4th Annual Learning for Dynamics and Control
Conference (L4DC), ser. Proceedings of Machine Learning Research,
vol. 168, 2022, pp. 1112–1124.

[17] V. Kumar, E. Todorov, and S. Levine, “Optimal control with learned
local models: Application to dexterous manipulation,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA). Stock-
holm, Sweden: IEEE, 2016, pp. 378–383.

[18] S. Levine and V. Koltun, “Guided Policy Search,” in Proceedings of the
30th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, S. Dasgupta and D. McAllester, Eds.,
vol. 28. Atlanta, Georgia, USA: PMLR, 2013, pp. 1–9.

[19] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A Model-Based and
Data-Efficient Approach to Policy Search,” in Proceedings of the 28th
International Conference on International Conference on Machine

Learning, ser. ICML’11. Madison, WI, USA: Omnipress, 2011, pp.
465–472.

[20] W. Jin and M. Posa, “Task-Driven Hybrid Model Reduction for
Dexterous Manipulation,” arXiv preprint arXiv:2211.16657, 2022.

[21] N. Lambert, B. Amos, O. Yadan, and R. Calandra, “Objective
Mismatch in Model-based Reinforcement Learning,” arXiv preprint
arXiv:2002.04523, 2021.

[22] M. Okada, L. Rigazio, and T. Aoshima, “Path Integral Net-
works: End-to-End Differentiable Optimal Control,” arXiv preprint
arXiv:1706.09597, 2017.

[23] B. Amos, I. D. J. Rodriguez, J. Sacks, B. Boots, and J. Z. Kolter, “Dif-
ferentiable MPC for End-to-end Planning and Control,” in Advances
in Neural Information Processing Systems, 2019.

[24] H. N. Esfahani, A. B. Kordabad, and S. Gros, “Approximate Robust
NMPC using Reinforcement Learning,” in 2021 European Control
Conference (ECC), Rotterdam, Netherlands, 2021.

[25] W. Jin, A. Aydinoglu, M. Halm, and M. Posa, “Learning Linear Com-
plementarity Systems,” in Proceedings of The 4th Annual Learning
for Dynamics and Control Conference (L4DC). PMLR, 2022, p. 13.

[26] S. N. Afriat, “Theory of maxima and the method of lagrange,” SIAM
Journal on Applied Mathematics, vol. 20, no. 3, pp. 343–357, 1971.

[27] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory op-
timization of rigid bodies through contact,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.

[28] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.

[29] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[30] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proceed-
ings of the Second Berkeley Symposium on Mathematical Statistics and
Probability, 1950. Berkeley and Los Angeles: University of California
Press, 1951, pp. 481–492.

[31] C. Büskens and H. Maurer, “Sensitivity analysis and real-time control
of nonlinear optimal control systems via nonlinear programming
methods,” in Variational Calculus, Optimal Control and Applications:
International Conference in Honour of L. Bittner and R. Klötzler,
Basel: Birkhäuser Basel, 1998.

[32] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE J. Robotics
Autom., vol. 3, pp. 43–53, 1987.

[33] A. Allshire, M. Mittal, V. Lodaya, V. Makoviychuk, D. Makoviichuk,
F. Widmaier, M. Wüthrich, S. Bauer, A. Handa, and A. Garg, “Trans-
ferring Dexterous Manipulation from GPU Simulation to a Remote
Real-World TriFinger,” arXiv:2108.09779 [cs], 2021.

[34] N. Funk, C. Schaff, R. Madan, T. Yoneda, J. U. De Jesus, J. Watson,
E. K. Gordon, F. Widmaier, S. Bauer, S. S. Srinivasa, T. Bhattacharjee,
M. R. Walter, and J. Peters, “Benchmarking Structured Policies and
Policy Optimization for Real-World Dexterous Object Manipulation,”
IEEE Robotics and Automation Letters, vol. 7, no. 1, pp. 478–485,
2022.

[35] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The YCB object and Model set: Towards common bench-
marks for manipulation research,” in 2015 International Conference
on Advanced Robotics (ICAR). Istanbul, Turkey: IEEE, 2015, pp.
510–517.

[36] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2019.

	Introduction
	Contributions

	Related Work
	Differentiable MPC and Reinforcement Learning
	Baseline for Comparisons

	Backgrounds
	Linear Complementarity Systems
	Learning Linear Complementarity Systems
	Model Predictive Controller with LCS
	Proximal Policy Optimization

	Practical Algorithm
	LCS-MPC Stochastic Policy
	Loss for Optimizing LCS Model
	Gradient of PPO Loss

	Experiments and Results
	TriFinger Moving Cube Task
	States and Actions
	Task Space
	Task Success Criteria
	Cost function for the LCS-MPC
	Reward function for PPO

	Results of the TriFinger Moving Cube Task
	TriFinger Manipulating Diverse Objects
	Transfer Learning

	Conclusions
	References

