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Abstract— Non-prehensile manipulation of diverse objects
remains a core challenge in robotics, driven by unknown phys-
ical properties and the complexity of contact-rich interactions.
Recent advances in contact-implicit model predictive control
(CI-MPC), with contact reasoning embedded directly in the
trajectory optimization, have shown promise in tackling the task
efficiently and robustly, yet demonstrations have been limited
to narrowly curated examples. In this work, we showcase the
broader capabilities of CI-MPC through precise planar pushing
tasks over a wide range of object geometries, including multi-
object domains. These scenarios demand reasoning over numer-
ous inter-object and object-environment contacts to strategically
manipulate and de-clutter the environment, challenges that
were intractable for prior CI-MPC methods. To achieve this,
we introduce Consensus Complementarity Control Plus (C3+),
an enhanced CI-MPC algorithm integrated into a complete
pipeline spanning object scanning, mesh reconstruction, and
hardware execution. Compared to its predecessor C3, C3+
achieves substantially faster solve times, enabling real-time
performance even in multi-object pushing tasks. On hardware,
our system achieves overall 98% success rate across 33 objects,
reaching pose goals within tight tolerances. The average time-
to-goal is approximately 0.5, 1.6, 3.2, and 5.3 minutes for 1-,
2-, 3-, and 4-object tasks, respectively. Project page: https:
//dairlab.github.io/push-anything.

I. INTRODUCTION

A key challenge in robotic manipulation is planning dy-
namic, contact-rich motions with objects of arbitrary geome-
tries, especially within cluttered, multi-contact environments.
Model-based approaches like contact-implicit model predic-
tive control (CI-MPC) [1]–[3] are promising for these tasks
as they include contact terms as part of real-time trajectory
optimization. However, CI-MPC relies on local approxima-
tions of nonlinear dynamics, which can restrict its effective-
ness to regions where these approximations hold. To address
this limitation, Venkatesh, Bianchini et al. [4] augment CI-
MPC, specifically using Consensus Complementarity Control
(C3) [1], with global exploration through low-dimensional
sampling of end effector positions. Their approach separates
task execution into a contact-free stage, where the robot
follows easily computed collision-free paths, and a contact-
rich stage, during which CI-MPC effectively guides the robot
to make and break contacts as long as the local dynamics
permit progress toward the goal. Despite these advances,
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Fig. 1. Experimental Setup: The Franka Emika Panda arm uses a spherical
end effector to push and rearrange four objects from an initial cluttered
configuration.

prior demonstrations have largely been restricted to single-
object scenarios with precisely known geometries, mass,
and inertia from CAD models, limiting their applicability
to online, real-world settings. Moreover, tasks involving
complex multi-object interactions, such as resolving cluttered
scenes, remain intractable for prior CI-MPC methods as the
problem complexity grows exponentially with the number of
contacts.

We introduce Push Anything, a manipulation pipeline
for real-time planar pushing of a wide variety of objects,
including multi-object scenes. Push Anything integrates real-
world object scanning and mesh reconstruction, robust object
tracking, and a controller built on the framework of [4]
with improvements to the local CI-MPC. Central to these
improvements is Consensus Complementarity Control Plus
(C3+), an enhanced version of C3 that substantially accel-
erates solve times, enabling the system to reason over nu-
merous inter-object and object-environment contacts across
multi-step horizons. Our pipeline shows high-precision ma-
nipulation of diverse objects on hardware, including multi-
object decluttering tasks that were previously intractable.

In this paper, we contribute:

• Push Anything: A fully-integrated manipulation system
that processes real-world scans to reconstruct object
geometry, tracks objects robustly, and plans contact-rich
pushing motions in real-time.

https://dairlab.github.io/push-anything
https://dairlab.github.io/push-anything


Fig. 2. System diagram of the Push Anything framework.

• Consensus Complementarity Control Plus (C3+):
An enhanced CI-MPC algorithm capable of effi-
ciently reasoning over numerous inter-object and ob-
ject–environment contacts (demonstrated with up to 19
contacts), while planning over a multi-step horizon to
enable precise multi-object manipulation.

• Hardware validation: Extensive real-world experiments
demonstrating high-precision planar pushing over 928
trials with 98% overall success rate.

II. RELATED WORK

A. Planar Pushing
Non-prehensile planar pushing is a canonical problem in

robotics, with a rich history rooted in model-based control.
Pioneering work established the mechanical foundations of
pushing based on friction and contact geometry [5]–[7],
an analytical lineage that extended into planning combined
pushing and grasping actions in cluttered environments [8],
developing planar pushing interaction datasets [9], and for-
mulating novel contact models [10]. While these methods
offer precise control by explicitly modeling physics, they
face significant scalability challenges. The primary difficulty
lies in the combinatorial complexity of hybrid dynamics;
searching through all possible sequences of contact modes
(e.g., sticking, slipping) is often intractable for multi-object
scenarios.

To sidestep modeling complexities, data-driven approaches
have gained prominence. Push-Net demonstrated robust repo-
sitioning of single objects using a recurrent policy learned
from interaction history [11]. Building on this, reinforcement
learning (RL) methods improved generalization and task
complexity: multi-modal exploration captured hybrid dynam-
ics to enable more accurate motions [12], while location-
based attention allowed for goal-directed, collision-avoiding
pushing in cluttered scenes [13]. However, the learning
paradigm introduces its own limitations. These methods are
typically data-intensive and, to date, have been demonstrated
primarily on single-object tasks, failing to solve the general
problem of multi-object rearrangement.

B. Contact-Implicit MPC
CI-MPC enables online reasoning about contact-rich dy-

namics. These approaches typically embed rigid-body con-
tact physics directly into the predictive model, allowing

control inputs and contact interactions to be optimized
simultaneously without pre-specified mode schedules. To
achieve real-time performance, prior work relies on local
approximations of the nonlinear dynamics. For example,
some approaches [1], [14], [15] explicitly model non-smooth,
multi-modal dynamics and employ ADMM-based consensus
decomposition to parallelize contact scheduling. Other meth-
ods [2], [3], [16] use smoothed contact dynamics, enabling
differentiable optimization and faster real-time performance,
but at the cost of reduced contact fidelity and artifacts such
as forces acting at a distance. Because CI-MPC depends
on these local approximations, its ability to reason about
contacts in distant regions or escape local minima is limited.

C. Sampling-Based MPC

One prominent category of sampling-based MPC directly
samples a multitude of control input sequences, a strategy
popularized by methods like Model Predictive Path Integral
control (MPPI) [17] or Cross Entropy Method (CEM) [18].
These approaches use a forward dynamics model, often
within a fast simulator, to roll out each sequence and evaluate
its outcome against a cost function [19]–[22]. The best-
performing trajectory is then selected for execution. While
effective for exploring the input space, this direct sampling
approach can be computationally demanding and is often
challenged by the curse of dimensionality, particularly for
high-dimensional systems or long-horizon tasks.

To combine the broad exploration of sampling with the
precision of trajectory optimization, another line of work
integrates sampling with CI-MPC. These hybrid methods
typically use sampling to generate a diverse set of high-
level candidate goals, thereby avoiding the local minima that
can trap a standalone CI-MPC. For instance, some meth-
ods sample low-dimensional end effector positions online
[4], while others leverage offline sampling of stable grasp
configurations [23]. For each candidate, local CI-MPC is
solved to find a dynamically feasible trajectory. The robot
then executes the motion plan corresponding to the overall
lowest-cost solution, effectively using CI-MPC as a powerful
local planner within a broader sampling framework. Our
paper builds directly upon this line of work, particularly the
framework by Venkatesh, Bianchini et al. [4].



III. BACKGROUND

We first introduce hybrid models for contact dynamics
(§III-A) then describe the general formulation of CI-MPC
(§III-B). Finally, we discuss how a sampling approach can
extend CI-MPC toward more global solutions (§III-C).

A. Hybrid Models for Contact Dynamics

Contact dynamics are inherently discontinuous, involving
sticking, sliding, or separation. Hybrid models capture these
behaviors by switching dynamics depending on the active
contact mode. A compact representation for contact dynam-
ics uses complementarity constraints:

xk+1 = f(xk, uk, λk), (1a)
0 ≤ λk ⊥ Φ(xk, uk, λk) ≥ 0, (1b)

where xk ∈ Rnx is the state, uk ∈ Rnu the control input,
λk ∈ Rnλ contact forces, and Φ the signed distance (gap
function) between potential contact pairs. The active set
Φ ≥ 0 defines the domain of each hybrid mode, while f and
Φ together implicitly specify the corresponding dynamics.
Simulating these dynamics requires solving (1b) for λk, a
nonlinear complementarity problem (NCP) [24], and then
updating xk+1 via (1a).

B. Contact-Implicit MPC

Given the contact dynamics in (1), the CI-MPC formu-
lation [25], [26] treats λk as decision variables within the
optimization. This increases the number of variables and
constraints, but often leads to better-conditioned problems.

min
x0:N ,u0:N−1,λ0:N−1

N−1∑
k=0

ℓ(xk, uk) + ℓf (xN ) (2a)

s.t. xk+1 = f(xk, uk, λk), (2b)
0 ≤ λk ⊥ Φ(xk, uk, λk) ≥ 0, (2c)
(xk, uk) ∈ C (2d)

Here, ℓ(·) and ℓf (·) denote the stage and terminal costs, re-
spectively, while constraints (2d) impose the initial condition
and state/input bounds.

Solving (2) in real time is generally intractable even for
relatively simple multi-contact systems, primarily due to
the non-smoothness and combinatorial complexity of non-
linear complementarity constraints (2c). As a result, many
approaches resort to local approximations of the contact
dynamics in (1) to obtain tractable formulations [1], [2].
These approximations are often too slow for complex, multi-
contact scenarios, and their more critical limitation is locality.
Local models restrict the controller to a narrow region of
validity, preventing it from taking short-term suboptimal
actions that are necessary for long-term success. As a result,
the controller risks becoming trapped in local minima and
failing to reach distant goals.

Current End-
Effector Position

Sample 1

Goal Pose

MPC Costs
Reposition to the

sample location with
lowest MPC cost

Sample 2

Fig. 3. Illustration of sampling-based CI-MPC on the planar Push-T task
[27]. Different end effector positions are shown with their associated MPC
costs. The black solid lines denote the current pose of the T, and the
red dashed lines denote the target pose. The optimal trajectory requires
translating the T upward and to the right while rotating it clockwise.
However, executing short-horizon MPC from the current end effector
position (red circle) produces the opposite effect, pushing the T downward
and counter-clockwise and resulting in higher cost. In contrast, the green
candidate position yields the lowest cost, as it enables MPC to effectively
align the T with its target. Thus, moving the end effector first to this green
location before executing MPC facilitates more effective manipulation.

C. Approximate Global CI-MPC via Sampling
Overcoming locality requires global guidance, and one

way of achieving this is through sampling, as in Venkatesh,
Bianchini et al. [4]. In this approach, candidate end effector
positions are sampled and evaluated by solving the CI-MPC
problem, augmented with a travel cost from the current loca-
tion. The candidate with the lowest overall cost is selected,
and if it differs from the current pose, the robot first moves
along a collision-free path to that position before executing
CI-MPC. As illustrated in Fig. 3, by steering the system
toward configurations that expand the reach of local MPC,
this strategy helps the controller overcome local minima and
achieve goals that require long-horizon reasoning.

IV. METHODS

We present the Push Anything framework (Fig. 2), a
pipeline integrating object perception with a novel controller.
Our framework operates in two phases. In the offline phase,
we build an object library by scanning objects to generate
meshes and URDFs, assuming the same mass and inertia. In
the online phase, our controller uses robot and object state
estimates to compute end effector trajectories. Following the
approach in [14], these trajectories are tracked by a low-level
operational space controller (OSC) [28]. We present our per-
ception pipeline for mesh reconstruction and object tracking
(§IV-A) followed by our controller (§IV-B), highlighting two
key components: the end effector sampling strategy (§IV-
B.1) and the improved local CI-MPC (§IV-B.2).

A. Mesh Reconstruction and Object Tracking
1) Novel Object Mesh Reconstruction: Given a new ob-

ject, we record a video of it with a RealSense D455 RGBD
camera. We manually select an object mask in the first frame,
and XMem [29] generates subsequent object masks automat-
ically. From RGB images, depth images, masks, and camera
intrinsics, BundleSDF [30] performs mesh reconstruction.
We post-process the mesh to make it watertight and orient its
z-axis to be upwards when the object lies flat on the table.



Fig. 4. Visualization of the sampling strategy for end effector locations.
The gray plane indicates the ground, and the orange planes represent
local tangent planes to the mesh surfaces. Blue arrows project surface
samples outwards from the mesh along the face normals, then purple arrows
project those to a fixed height in the world, generating candidate samples
(green dots). Samples located too close to object surfaces (e.g. red dot) are
discarded.

2) Multi-Object Tracking: To track multiple objects, we
run multiple instances of FoundationPose [31] in parallel,
directly sharing memory access to the camera frames. By
default, FoundationPose initializes object tracking by regis-
tering the object mask in the first frame and subsequently
propagating poses frame by frame. While effective in short
sequences, this approach is insufficient for our setting, which
involves frequent occlusions from other objects and the robot
end effector, imperfect object meshes, and the need for long-
horizon, high-accuracy tracking. To increase the tracking
robustness, we integrate XMem [29] to enable periodic re-
registration of the mask, thereby correcting drift accumulated
over time. We must also account for some symmetries in
the object poses. To resolve this, we check for and correct
sudden, unnaturally large changes in orientation.

B. Sampling-Based CI-MPC Controller

The success of the sampling-based CI-MPC framework
in [4] hinges on two key components: a robust sampling
strategy for selecting candidate end effector locations, and a
fast, effective local CI-MPC. While this approach is effective,
applying it to arbitrary objects, particularly in multi-object
scenarios, requires significant adaptations. We build upon the
original framework by introducing targeted improvements to
both the sampling strategy and the local CI-MPC.

1) Sampling Strategy of End Effector Positions: We pre-
process object meshes by storing body-frame face locations,
areas, and normal vectors. Given world-frame object pose
estimates, we generate a candidate end effector location by
first performing several random sampling steps in series: 1)
select an object uniformly, 2) select a stored face of this
object weighted by area, and 3) sample a point lying on this
face. This surface point is then projected a fixed distance
along the face’s outward normal vector then projected to a
fixed world height (Fig. 4). We reject samples which, even
after projection away from one face, are too close to any
of the objects. This can occur due to object non-convexity,
the presence of multiple objects, or the selection of a face
whose normal is too vertical. We repeat this process until
the desired number of end effector candidates is obtained.

2) Consensus Complementarity Control Plus (C3+): For
each candidate end effector location, we solve a local CI-
MPC and select the lowest-cost solution. To do so efficiently,
we approximate (1) by linearizing f and Φ with respect to

x, u, and λ, where x comprises of the current object state
and the sampled end effector location. The result is a Linear
Complementarity System (LCS) with dynamics:

xk+1 = Axk +Buk +Dλk + d, (3a)
0 ≤ λk ⊥ Exk + Fλk +Huk + c ≥ 0, (3b)

where A ∈ Rnx×nx , B ∈ Rnx×nu , D ∈ Rnx×nλ , d ∈
Rnx , E ∈ Rnλ×nx , F ∈ Rnλ×nλ , H ∈ Rnλ×nu , and c ∈
Rnλ . While using linearized terms, this model preserves
the multi-modal nature of contact dynamics through the
complementarity constraint (3b).

Combining this LCS model with a standard quadratic cost
function yields a Quadratic Program with Complementarity
Constraints (QPCC), a well-known class of non-convex op-
timization problems that can be reformulated into a Mixed-
Integer Quadratic Program (MIQP) [32]:

min
x0:N ,u0:N−1

λ0:N−1

N−1∑
k=0

(
xT
kQkxk + uT

kRkuk

)
+ xT

NQNxN (4a)

s.t. xk+1 = Axk +Buk +Dλk + d, (4b)
0 ≤ λk ⊥ Exk + Fλk +Huk + c ≥ 0, (4c)
(xk, uk) ∈ C. (4d)

Our method, C3+, seeks a more efficient solution than
solving with an MIQP. C3+ builds upon the Consensus Com-
plementarity Control (C3) framework [1], which employs the
Alternating Direction Method of Multipliers (ADMM) [33].
The key insight of C3+ is to reformulate the problem (4)
by introducing a slack variable, ηk ∈ Rnλ , to represent the
linear expression within the complementarity constraint. By
defining ηk = Exk + Fλk + Huk + c, we arrive at the
following equivalent problem:

min
x0:N ,u0:N−1

λ0:N−1
η0:N−1

N−1∑
k=0

(
xT
kQkxk + uT

kRkuk

)
+ xT

NQNxN (5a)

s.t. xk+1 = Axk +Buk +Dλk + d, (5b)
ηk = Exk + Fλk +Huk + c, (5c)
0 ≤ λk ⊥ ηk ≥ 0, (5d)
(xk, uk) ∈ C. (5e)

To apply the ADMM-based strategy, C3+ first reframes (5)
into a consensus form. This leads to an augmented decision
variable zTk = [xT

k , λ
T
k , u

T
k , η

T
k ]. We then create a copy, δTk =

[(δxk)
T
,
(
δλk

)T
, (δuk )

T
, (δηk)

T
], of this variable, allowing us

to split the constraints into two sets and rewrite (5) as:

min
z

c(z) + ID(z) +
N−1∑
k=0

IHk
(δk)

s.t. zk = δk, ∀k = 0, . . . , N − 1.

(6)

Here, zT = [zT0 , z
T
1 , ..., z

T
N−1], δ

T = [δT0 , δ
T
1 , ..., δ

T
N−1], c(z)

is the original quadratic cost in (5a), I is the 0-∞ indicator
function, and the constraints are encoded in the sets. The set
D comprises all feasible z satisfying the coupled constraints
across time: the linear dynamics (5b), the slack-variable
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Fig. 5. Projection step in C3+. Dashed lines indicate paths from the original
(λ◦, η◦) (blue circles) to the projected (δλk , δ

η
k)

∗ (yellow circles) onto the
feasible complementarity set (orange lines).

equality (5c), and initial and state/input bounds (5e). The
set Hk, by contrast, contains all feasible δ satisfying only
the now-simplified complementarity constraint, 0 ≤ δλk ⊥
δηk ≥ 0, which is local to each timestep k.

The ADMM algorithm solves this consensus problem by
iteratively minimizing the general augmented Lagrangian
Lρ(z, δ, w) of (6) (see [1] §V-B.2), which involves cyclically
performing three updates:

1) Quadratic Step (z-update):

zi+1 = argminz Lρ

(
z, δi, wi

)
(7)

2) Projection Step (δ-update):

δi+1
k = argminδk Lρ

(
zi+1
k , δk, w

i
k

)
,∀k (8)

3) Dual Update (w-update):

wi+1
k = wi

k + zi+1
k − δi+1

k ,∀k (9)

where wk are the scaled dual variables and ρ is a penalty
parameter. Each iteration begins with the quadratic step,
updating z by solving a convex Quadratic Program (QP)
derived from the augmented Lagrangian:

min
z

c(z) +

N−1∑
k=0

ρ
∥∥zk − δik + wi

k

∥∥2
G

s.t. z ∈ D.

(10)

Unlike C3, C3+ augments the set D with an additional linear
equality constraint on ηk as given in (5c). While this slightly
increases the size of the QP, it remains convex and can be
solved efficiently by standard solvers like OSQP [34].

The solution of this QP, zi+1, then feeds into the second
step, the projection step. This operation decouples across
all timesteps k, allowing for parallel computation. For each
timestep, the task is to project the output from the first step
onto the simple complementarity set Hk:

min
δk

∥δk − (zi+1
k + wi

k)∥2U
s.t. 0 ≤ δλk ⊥ δηk ≥ 0.

(11)

This projection is the source of C3+’s significant com-
putational advantage. The introduction of a slack variable

Fig. 6. Diverse objects in Push Anything hardware experiments.
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Fig. 7. Visualization of the selected contact pairs in planar pushing task.

means that the non-convex component, the complementarity
constraint, becomes decoupled across contacts. Therefore,
solving (11) is equivalent to solving many independent 1D
MIQPs, each of which has a simple closed-form solution,
effectively transforming the costly, coupled exponential-
time MIQP into a constant-time analytical computation and
yielding a significant overall speedup. As defined below and
illustrated in Fig. 5, the optimal value for each component
of (δλk , δ

η
k) is computed as

(δλk , δ
η
k)

∗ =


(0, η◦) if η◦ ≥ 0 and η◦ ≥

√
uλ/uη λ◦,

(λ◦, 0) if λ◦ ≥ 0 and η◦ <
√

uλ/uη λ◦,

(0, 0) otherwise,
(12)

where λ◦ = (zi+1
k +wi

k)
λ, η◦ = (zi+1

k +wi
k)

η and uλ, uη > 0
are the weights. Note that the above formula is applied
element-wise for each component of (δλk , δ

η
k). After the

projection is complete, the third and final step of the iteration
is the dual update, where the scaled dual variables wk are
adjusted to drive the consensus variables zk and δk toward
agreement in the next iteration.

Although many ADMM iterations could be performed
to achieve full convergence, in practice we terminate early
after a small, fixed number of iterations, accepting a poten-
tially suboptimal but sufficiently good solution, to maintain
real-time control rates. Additionally, we terminate after the
quadratic step, as empirical observations indicate this yields



Fig. 8. Time-to-goal distributions for various objects. Boxplots show the median and interquartile range, while orange dots represent individual data points
from each trial. For visualization clarity, the y-axis is truncated. The shaded region notes the presence of outliers that fall beyond this truncated range.

better performance. In the final quadratic step, we set large
weights, 1000 in our implementation, in the weight matrix
G of the augmented cost (10) for the end effector–object
contact components of zλk and zηk . This encourages the end
effector–object forces to closely match their values from the
previous projection step, which satisfies the complementarity
constraints and results in more dynamically feasible forces.
While this could theoretically be applied to all contacts, in
practice it is too restrictive and may prevent the QP solver
from finding a solution.

We note that the concurrent work [15] independently
developed an approach similar to C3+, though in the context
of an inverse dynamics controller.

V. HARDWARE EXPERIMENTS

A. Experimental Setup

1) Task Description: To evaluate our pipeline, we con-
duct experiments on a Franka Panda arm equipped with a
spherical end effector, tasked with manipulating objects to
random pose goals. Once objects reach their goals within
specified position and orientation tolerances, new pose goals
are generated, thereby demonstrating generalization across
diverse initial and goal poses. We select a diverse set of 33
objects including convex and non-convex shapes, from 3D-
printed letters to household objects (Fig. 6).

2) System State and Contact Modeling: The state x in-
cludes the end effector position, the positions and orienta-
tions of the objects, as well as all velocities. The control
input u ∈ R3 represents the Cartesian forces applied at the

# Objs nx nλ N ∆t (s) # ADMM # Samples
1 19 20 10 0.075 3 6
2 32 40 15 0.075 3 5
3 45 64 7 0.075 3 5
4 58 76 7 0.075 3 5

TABLE I
CONTROLLER SETTINGS FOR 1-4 OBJECT EXPERIMENTS.

end effector. Contact forces are captured by λ ∈ R4nc , where
nc is the number of contact pairs, each approximated using
a 4-sided polyhedral friction cone [35].

We predefine contact geometries, but contact point pairs
and their corresponding normals are determined dynamically
via collision detection at each control loop. In our setup, we
define: one contact pair between the end effector and its
nearest object (blue arrow in Fig. 7), three contact pairs for
each object with the ground (purple circles), one contact pair
for each object with the wall (green arrow, omitted in the 4-
object setting), and one contact pair between every pair of
objects. In a 3-object setting, this results in 16 contact pairs,
yielding λ ∈ R64.

3) Controller Parameters: Table I lists the key controller
parameters: state and contact force dimensions, the planning
horizon N , timestep ∆t, ADMM iterations, and the number
of end effector samples used per control loop.



# Objs Object Names Success
Rate

Control
Rate (Hz)

Time to Goal (s) within Pose Tolerances
Tight (2cm, 0.1rad) Loose (5cm, 0.4rad)

Mean ± σ Min, Max Mean ± σ Min, Max

2

Lotion & Letter R

100/102
(98.0%)

14.06 97.01± 45.92 47.49, 204.35 74.26± 39.33 17.91, 171.49
Baby toy & Letter E 14.34 106.91± 47.62 60.98, 232.75 54.13± 14.28 20.95, 71.86
Letter B & Letter 3 14.31 85.31± 28.30 41.97, 129.53 53.64± 24.39 17.98, 114.74

Chicken Broth & Expo Box 13.84 99.35± 38.26 63.78, 180.85 75.94± 28.79 53.77, 158.16
Chicken Broth & Wood Block 14.12 74.43± 20.54 41.69, 107.64 54.62± 14.29 32.24, 76.12

Clamp & Letter I 14.14 87.19± 26.44 42.45, 132.87 44.15± 15.77 28.52, 80.74
Book & Letter S 14.43 92.88± 27.27 67.60, 168.00 81.51± 27.38 61.09, 154.14
Tape & Letter A 14.36 119.07± 44.10 69.88, 231.70 73.62± 24.24 50.63, 138.86

Letter T & Letter H 11.76 79.63± 21.47 44.14, 119.52 47.17± 11.19 34.06, 69.34
Letter G & Xbox 13.93 104.37± 23.78 75.97, 149.74 64.50± 14.89 45.15, 89.71

3

Letter R & Letter A & Letter S

60/62
(96.8%)

14.70 185.94± 63.01 113.44, 299.09 141.28± 48.89 94.30, 227.94
Letter C & Letter 3 & Letter + 14.85 173.43± 29.56 135.00, 219.33 116.54± 21.72 80.66, 148.72
Letter A & Letter N & Letter Y 14.72 159.63± 37.27 111.57, 237.65 121.65± 26.65 92.85, 175.08
Letter I & Letter N & Letter G 14.84 173.98± 46.20 115.48, 275.02 120.18± 40.28 68.20, 189.52
Letter D & Letter I & Letter Y 14.72 188.96± 38.93 139.52, 247.20 137.41± 19.84 106.46, 173.66

Clamp & Lotion & Book 15.19 224.03± 53.01 148.22, 307.58 157.98± 41.55 97.30, 228.89

4

PUSH

50/63
(79.3%)

9.32 312.34± 60.07 160.34, 394.28 248.64± 60.06 159.82, 366.18
ICRA 8.63 267.85± 59.80 176.62, 396.33 208.86± 44.50 126.65, 278.78
URDF 9.10 269.01± 93.90 149.50, 465.47 204.92± 84.96 121.98, 401.88
C3PO 9.31 281.66± 85.97 120.23, 458.00 192.54± 38.75 120.23, 246.98
DAY+ 9.12 326.67± 117.10 202.43, 597.04 213.84± 58.18 149.72, 333.82

TABLE II
RESULTS FOR MULTI-OBJECT PUSHING

B. Implementation

The controller is implemented in C++ using Drake’s
Systems framework [36]. We use three computers in our
experiments: (i) an Intel Core i9-13900KF (13th-gen, 32
threads) dedicated to the sampling-based controller, (ii) an
Intel Core i7-9700K running the operational-space controller
and robot drivers on a real-time kernel for Franka commu-
nication, and (iii) an Intel Core i9-14900K paired with an
NVIDIA GeForce RTX 4090 for FoundationPose [31]. All
computers communicate via LCM [37].

C. Results For Single-Object Pushing

As detailed in Fig. 8, we evaluated our method in 701
hardware trials, testing 25 objects, with each object run until
28 successful trials were obtained. The system achieved a
99.9% success rate (700/701), with the only failure occurring
when the large egg carton was pushed out of the robot’s
reach. The mean time-to-goal across all trials is approxi-
mately 31 s, evaluated under tight success criterion requiring
translational error ≤ 2 cm and rotational error ≤ 0.1 rad
(5.7◦). For the Push T task, our framework achieves a mean
time-to-goal of 26.9 s, improving upon prior work [4] at
30.5 s by 3.5 s (about 11.5%) while being more broadly
applicable. The few outliers for the chicken broth and milk
bottle occurred when the robot took longer to bring the
objects back into reach, while the clamp’s numerous outliers
are better explained by its difficult physical properties, such
as its complex shape, greater mass, and high friction.

D. Results For Multi-Object Pushing

In the 3- and 4-object tasks, we shorten the planning
horizon to maintain a real-time control rate, as the growing
number of contacts would otherwise slow down computation

# Objs Step C3 [1] C3+ (ours)
Mean ± σ Max Mean ± σ Max

1
Quadratic 1.67 ± 0.39 5.45 3.09 ± 0.12 5.67
Projection 10.38 ± 3.84 41.27 0.007 ± 0.001 0.085

2
Quadratic 3.87 ±0.94 7.69 9.13 ± 0.44 13.50
Projection 37.2 ± 9.12 131.98 0.011 ± 0.003 0.043

3
Quadratic 2.74 ± 0.47 5.82 7.97 ± 0.02 13.36
Projection 40.39 ± 11.17 1241.85 0.006 ± 0.001 0.038

4
Quadratic 4.59 ± 0.67 8.56 10.10 ± 0.69 16.02
Projection 44.07 ± 11.92 704.23 0.007 ± 0.002 0.041

TABLE III
COMPARISON OF SOLVE TIMES (MS) FOR C3 AND C3+

(Table I). While a shorter horizon can limit long-term look-
ahead, it enables faster reasoning per step and higher sam-
pling rate, yielding a practical trade-off. With these settings,
we conducted a total of 227 trials, comprising 10 experiments
for the 2-object case, 6 for the 3-object, and 5 for the 4-
object case. Each experiment was run until 10 successful
trials were achieved. Our method achieved a 92.5% success
rate (210/227), with detailed results under both tight and
loose tolerances presented in Table II. All failures occurred
when an object moved beyond the robot’s reach. The mean
time-to-goal for these tasks was approximately 96.4s, 191.1s,
and 315.7s for the 2-, 3-, and 4-object settings, respectively.
These numbers do not scale linearly with the number of
objects because goal assignments are permuted across objects
in each trial, requiring object rearrangements that introduce
additional execution time.

E. Comparison of Solve Times for C3 and C3+

We benchmark our CI-MPC algorithm C3+ against its
predecessor, C3 [1], to highlight its substantial speedup.
Solve times are reported for 1-, 2-, 3-, and 4-object scenarios,



totaling 103,959, 42,306, 78,129, and 40,161 solves, respec-
tively. As shown in Table III, C3+ achieves faster overall
performance: while the quadratic step is slightly slower, the
projection step is four to five orders of magnitude faster.

VI. LIMITATIONS AND FUTURE WORK

While our framework demonstrates strong performance in
both single- and multi-object settings, overall performance
is constrained by the accuracy of pose tracking provided by
FoundationPose, particularly in multi-object scenes. When
objects fully or partially occlude one another, per-object
tracking degrades, propagating to the controller and affecting
performance. Next steps could include improving perception
robustness with multi-view tracking. Another limitation is
we model all objects with identical mass and inertia. While
effective for the similar objects in our experiments, scaling
to greater diversity will require online model learning or
adaptation [38], [39]. Furthermore, our control approach does
not do any multi-step long-horizon planning (e.g., first move
object A, then B, etc.), and thus grows more inefficient as
the complexity of the task grows. A clear direction for future
work would be to combine our method with higher-level
reasoning. Lastly, we aim to extend the pipeline to 3D non-
prehensile manipulation.

VII. CONCLUSION

In this work, we introduce Push Anything, a pipeline
for real-time planar pushing that integrates (i) real-world
object scanning and mesh reconstruction, (ii) robust object
tracking, and (iii) a controller built on the framework of [4]
with an improved local CI-MPC, called C3+. C3+ accel-
erates solve times by turning the costly projection in C3
[1] into a lightweight, closed-form operation. This enables
long-horizon reasoning over numerous object–object and ob-
ject–environment contacts and delivers reliable performance
across a broad set of geometries. Hardware experiments
show high-precision, real-time control across 33 objects, suc-
cessfully handling complex multi-object systems previously
considered intractable, achieving high success rates and low
average time-to-goal.
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