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Abstract— State-of-the-art approaches to legged locomotion
are widely dependent on the use of models like the linear
inverted pendulum (LIP) and the spring-loaded inverted pen-
dulum (SLIP), popular because their simplicity enables a wide
array of tools for planning, control, and analysis. However, they
inevitably limit the ability to execute complex tasks or agile
maneuvers. In this work, we aim to automatically synthesize
models that remain low-dimensional but retain the capabilities
of the high-dimensional system. For example, if one were to
restore a small degree of complexity to LIP, SLIP, or a similar
model, our approach discovers the form of that additional
complexity which optimizes performance. In this paper, we
define a class of reduced-order models and provide an algorithm
for optimization within this class. To demonstrate our method,
we optimize models for walking at a range of speeds and ground
inclines, for both a five-link model and the Cassie bipedal robot.

I. INTRODUCTION

Modern legged robots, like the Agility Robotics Cassie,
have many degrees of freedom, tens or more actuators
and may have passive dynamic elements such as springs
and dampers. To manage this complexity, and simplify the
process of planning and control design, the community
has embraced the use of reduced-order models. Particularly
popular are the linear inverted pendulum (LIP) [1], [2], the
spring-loaded inverted pendulum (SLIP) [3], and various
permutations. The LIP has a long history as a predominant
approach in robot walking, and formed the basis of many
approaches taken during the DARPA robotics challenge [4],
[5], [6]. The SLIP is widely used to explain energy efficient
running [7], [8], [9], [10]. These models have been empiri-
cally shown to capture the dominant dynamics of the robots
in particular tasks, and their simplicity enables solutions to
the challenging problems of control and planning design.
For example, many of locomotion planning problems can be
solved in realtime with the low-dimensional models [11].

The downside, however, is that by forcing robots to act like
a low-degree-of-freedom model, these approaches restrict the
motion of complex robots and necessarily sacrifices perfor-
mance. This can result in energetically inefficient motion,
or fail to extend to wide range of tasks. For example, the
LIP greatly restricts both efficiency and stride length. These
limitations have long been acknowledged by the community,
resulting in a wide array of extensions that universally
rely on human intuition, and are generally in the form of
mechanical components (a spring, a damper, a joint, a rigid
body with inertia, etc) [12], [13], [14], [15], [16], [17], [18].
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Fig. 1: An outline of the synthesis and deployment of optimal
reduced-order models. Offline, given a full-order model and
a distribution of tasks, we optimize a new model that is
effective over the task space. Online, we generate new plans
for the reduced-order model and track these trajectories on
the true, full-order system.

The ad hoc nature of these extensions demonstrates that the
community implicitly admits both that the simplest models
are insufficient, and that it is not known which extensions are
most beneficial. Additionally, it has been shown that not all
model extensions improve the performance of robots much.
For example, allowing center of mass height to vary provides
limited aid in the task of balancing [19], [20].

The primary contribution of this paper is an optimiza-
tion algorithm to automatically synthesize new reduced or-
der models, embedding high-performance capabilities within
low-dimensional representations. Given a distribution of
tasks, and a nominal full-order model, we propose a bilevel
optimization of stochastic gradient descent and trajectory
optimization to search within a broad class of simple models.



Fig. 2: Relationship of the full-order and reduced-order mod-
els. The generalized positions q and y satisfy the embedding
function r for all time, and the evolution of the velocities q̇
and ẏ respects the dynamics f and g, respectively.

II. BACKGROUND

A. Walking via simple models

A good simple model is a low-dimensional representation
that captures much of the relevant dynamics while enabling
effective control design, a concept closely related to that of
templates and anchors [21], [22]. One observation, common
to many approaches, lies in the relationship between foot
placement, ground reaction forces, and the center of mass
(COM). While focusing on the COM neglects the individual
robot limbs, controlling the COM position has proven to
be an excellent proxy for the stability of a walking robot.
COM-based simple models include the LIP [1], [2], which
restricts angular momentum and vertical motion, SLIP [3],
hopping models [23], inverted pendulums [24], [25], [26],
[27], [28], and others. Since these models are universally
low-dimensional, they have enabled a variety of control
synthesis and analysis techniques that would not otherwise be
computationally tractable. For example, numerical methods
have been successful at finding robust gaits and control
designs [29], [30], [31], [32], and assessing stability [33].
A common approach, which we also adopt in this work, is
to first plan motions of the reduced-order model, and then
track this lower-dimensional trajectory with a technique like
operational space control [34].

Despite their successes, many deficiencies have been
found in these simplest models (e..g [35]). For example, by
eliminating the use of angular momentum and prohibiting
impacts, the LIP greatly reduces energy efficiency and limits
speed and stride length. This has necessitated extensions
(e.g. [16] and others), where all replace inverted pendulum
abstractions with that of a more complex physical model.

B. Trajectory optimization

This paper will heavily leverage trajectory optimization
within the inner loop of a bilevel optimization problem. We
briefly review the area here, but the reader is encouraged to
see [36] for a more complete description. Generally speaking,
trajectory optimization is a process of finding state x(t) and
input u(t) that minimize some measure of cost h while
satisfying a set of constraints C. Following the approach
taken in prior work [37], [38], we explicitly optimize over
state, input, and constraint (contact) forces λ (t),

min
x(t),u(t),λ (t)

∫ t f

t0
h(x(t),u(t))dt

s.t. ẋ(t) = f (x(t),u(t),λ (t)),
C(x(t),u(t),λ (t))≤ 0,

(1)

where f is the dynamics of the system, λ are the forces re-
quired to satisfy holonomic constraints, and t0 and t f are the
initial and the final time respectively. Standard approaches
discretize in time, formulating (1) as a finite-dimensional
nonlinear programming problem. For the purposes of this pa-
per, any such method would be appropriate; we use DIRCON
[38] to address the closed kinematic chains present in the
Cassie robot. DIRCON transcribes the infinite dimensional
problem in (1) into a finite dimensional nonlinear problem

min
w

n−1

∑
i=1

1
2
(
h(xi,ui)+h(xi+1,ui+1)

)
δk

s.t. fc(xi,xi+1,ui,ui+1,λi,λi+1,δi,αi) = 0,
i = 1, ...,n−1

C(xi,ui,λi)≤ 0, i = 1, ...,n

(2)

where n is the number of knot points, fc is the collocation
constraint for dynamics, and the decision variables are

w = [x1, ...,xn,u1, ...,un,λ1, ...,λn,

δ1, ...,δn−1,α1, ...,αn−1]
> ∈ Rnw .

where δi’s are time intervals, and αi’s are slack variables
specific to DIRCON.

III. APPROACH

In this section, we first propose a concrete definition of
reduced-order models, along with a notion of quality (or cost)
for such models. We then introduce a bilevel optimization
algorithm to optimize within our class of models.

A. Definition of reduced-order models

Let q and u be the generalized position and input of the
full-order model, and let y and τ be the generalized position
and input of the reduced-order model. We define a reduced-
order model µ of dimension ny by two things – an embedding
function r : q 7→ y(q) and the second-order dynamics of the
reduced-order model g(y, ẏ,τ). That is,

µ , (r,g), (3)

with
y = r(q),

ÿ = g(y, ẏ,τ),
(4)

where dimy < dimq and dimτ ≤ dimu. As an example, to
represent SLIP, r is the spring length and the spring angle
with respect to the normal direction of ground, g is the
spring-mass dynamics, and dimτ = 0 as SLIP is passive.

Fig. 2 shows the relationship between the two models.
If we integrate the two models forward in time with their
own dynamics, the resultant trajectories will still satisfy the
embedding function r at any time in the future.



B. Problem statement

As shown in the upper half of Fig. 1, the goal is to find an
optimal model µ∗, given a distribution Γ over a set of tasks.
The distribution could be provided a priori or estimated via
the output of a higher-level motion planner. The tasks might
include anything physically achievable by the robot, such as
walking up a ramp at different speeds, turning at various
rates, jumping, running with least amount of energy, etc.
The goal, then, is to find a reduced-order model that enables
low-cost motion over the space of tasks,

µ
∗ = argmin

µ∈M
Eγ

[
Jγ(µ)

]
, (5)

where M is the model space, Eγ takes the expected value
over Γ, and Jγ(µ) is the cost required to achieve the tasks
γ ∼ Γ while the robot is restricted to a particular model µ .

With our definition of model in (3), this is an infinite
dimensional problem over the space of embedding and
dynamics functions, r and g. To simplify, we express r and
g in terms of specified feature functions {φe,i | i = 1, . . . ,ne}
and {φd,i | i = 1, . . . ,nd} with linear weights θe ∈ Rny·ne and
θd ∈Rny·nd . Further assuming that the dynamics are affine in
τ with constant multiplier, r and g are given as

y = r(q;θe) = Θeφe(q), (6a)
ÿ = g(y, ẏ,τ;θd) = Θdφd(y, ẏ)+Bτ, (6b)

where Θe ∈Rny×ne and Θd ∈Rny×nd are θe and θd arranged
as matrices. φe = [φe,1, . . . ,φe,ne ]

>, φd = [φd,1, . . . ,φd,nd ]
>, and

B ∈ Rny×nτ . While we choose linear basis functions, note
that any differentiable function approximator (e.g. a neural
network) might be equivalently used.

We can see θ = [θ>e ,θ>d ]> ∈ Rnt parameterize the model
class M. Therefore, we can rewrite (5) as

θ
∗ = argmin

θ

Eγ

[
Jγ(θ)

]
. (O)

From now on, we work explicitly in θ , rather than µ .

C. Task evaluation

We use trajectory optimization to evaluate the task cost
Jγ(θ). Under this setting, the tasks γ are defined by a cost
function hγ and task-specific constraints Cγ . Jγ(θ) is the
cost to achieve the tasks while simultaneously respecting
the embedding and dynamics given by θ . The resulting
optimization problem is similar to (2), but contains addi-
tional constraints and decision variables for the reduced-
order model embedding,

Jγ(θ), min
w

n−1

∑
i=1

1
2
(
hγ(xi,ui,τi)+hγ(xi+1,ui+1,τi+1)

)
δk

s.t. fc(xi,xi+1,ui,ui+1,λi,λi+1,δi) = 0,
i = 1, . . . ,n−1

gc (xi,xi+1,τi,τi+1,δi;θ) = 0, i = 1, . . . ,n−1
Cγ(xi,ui,λi)≤ 0, i = 1, . . . ,n

(TO)
where fc and gc are collocation constraints for the full-
order and reduced-order dynamics. The decision variables
are w = [x1, ...,xn, u1, ...,un, λ1, ...,λn, τ1, ...,τn, δ1, ...,δn−1,

Algorithm 1 Reduced-order model optimization

Input: Γ

Output: θ ∗

Model initialization
1: θ ← θ0

Model optimization
2: repeat
3: Sample N tasks from Γ ⇒ γ j, j = 1, ...,N
4: for j = 1, . . . ,N do
5: Solve (TO) to get Jγ j(θ)

6: Calculate ∇θ

[
Jγ j(θ)

]
7: end for

8: Average the gradients ∆θ =
∑

N
j=1 ∇θ

[
Jγ j (θ)

]
N

9: Gradient descent θ ← θ −d ·∆θ

10: until convergence
11: return θ

α1, ...,αn−1]
>, noting the addition of τi. Observe that this

problem is equivalent to simultaneous optimization of full-
order and reduced-order trajectories that must also be consis-
tent with the embedding r. We solve the nonlinear problem
in (TO) using the SNOPT toolbox [39] .

The formulation of dynamics and holonomic constraints of
the full-order model are described in [38], so here we only
present gc. We approximate each segment of the trajectory y
by a cubic polynomial yp(t).

yp(t) = a0 +a1t +a2t2 +a3t3,

where a0 to a3 are coefficients and can be solved for in terms
of xi and xi+1 when we impose boundary conditions

yp(0) = yi =r(qi;θe),

ẏp(0) = ẏi =
∂ r(qi;θe)

∂qi
q̇i,

yp(δi) = yi+1=r(qi+1;θe),

ẏp(δi) = ẏi+1=
∂ r(qi+1;θe)

∂qi+1
q̇i+1.

In the line of standard direct collocation [40], gc = 0 re-
quires that the second time-derivative of yp must match the
dynamics in (6b) at the collocation point. That is,

ÿp(
δi
2 ) = g(yc, ẏc,τc;θd)⇒

ẏi+1− ẏi

δi
− g(yc, ẏc,τc;θd) = 0

(7)
where

yc = yp(
δi

2
) =

1
2
(yi + yi+1)+

δi

8
(ẏi− ẏi+1),

ẏc = ẏp(
δi

2
) =

3
2δi

(−yi + yi+1)−
1
4
(ẏi + ẏi+1),

τc =
τi + τi+1

2
.

D. Bilevel optimization algorithm

Since there might be a large or infinite number of tasks γ ∼
Γ in (O), solving for the exact solution is often intractable.



Fig. 3: Examples of full-order models. On the left is a five-
link robot. On the right is the 3D Cassie biped, which has
five actuators per leg.

Therefore, we use stochastic gradient descent as the outer
loop (to trajectory optimization in the inner loop). That is,
we sample a set of tasks from the distribution Γ and optimize
the averaged sample cost over the model parameters θ .

The full approach to (O) is outlined in Algorithm 1.
Starting from an initial parameter seed θ0, N tasks are
sampled, and the cost for each task is evaluated by solving
the corresponding trajectory optimization problem (TO).

To compute each gradient ∇θ

[
Jγ j(θ)

]
, we adopt an

approach based in sequential quadratic programming. We
locally approximate (TO) with an equality-constrained
quadratic program, only considering the active constraints.
Let w̃γ = w−w∗γ and θ̃ = θ −θ (i), where w∗γ is the optimal
solution of (TO), and θ (i) is the parameter at the i-th iteration.
The approximated quadratic program is

Jγ(θ) ≈ min
wγ

1
2 w̃T

γ Hγ w̃γ +bT
γ w̃γ + cγ

s.t. Fγ w̃γ +Gγ θ̃ = 0
(8)

Using the Karush-Kuhn-Tucker (KKT) conditions [41], we
can derive the following equation for the optimal solution[

Hγ FT
γ

Fγ 0

][
w̃∗γ
ν∗γ

]
=

[
−bγ

−Gγ θ̃

]
, (9)

where ν∗γ is the optimal dual solution. (9) can be further
solved, with the solution rewritten as

w̃∗γ = Qγ θ̃ + pγ , (10)

for some Qγ ∈ Rnw×nt and pγ ∈ Rnw . Since we approximate
the original problem around w∗ and θ (i), we know that w̃∗γ = 0
if θ̃ = 0; therefore, pγ = 0. Substituting (10) into (8) and
taking the gradient of Jγ j , we derive

∇θ

[
Jγ j(θ)

]∣∣∣
θ=θ (i)

= Q>γ j
bγ j . (11)

The algorithm is deemed to have converged if the norm
of the gradient falls below a specified threshold.

IV. EXAMPLES

We test our algorithm of model optimization with two
robots: a five-link planar robot and the three dimensional
Cassie biped (Fig. 3). For all examples, the motions of the

Fig. 4: Two initial reduced-order models with generalized
positions. On the left is the standard LIP; on the right is an
LIP with an actuated swing foot.

optimized models are shown in the accompanying video2.
Examples were generated using the Drake software toolbox
[42] and source code is freely available2.

The planar robot consists of five links with non-zero mass
and inertia, and four actuated joints with torque saturation.
The thighs and shanks are of mass 2.5 kg and length 0.5 m.
The weight of the torso is 10 kg and the length is 0.3 m.
The robot has point feet, and the contacts between feet and
ground are perfectly inelastic.

The Cassie has stiff rotational springs in the knees and an-
kles. Here, however, we simplify the model by treating these
springs as infinitely stiff; this simplification is necessary for
the coarse integration steps used in trajectory optimization,
and has been used successfully with Cassie [43]. The legs
also contain two four-bar linkages, which we model with a
fixed-distance constraint and corresponding constraint force.
There are five motors on each leg. Three located at the hip,
one at the knee, and one at the toe.

The hybrid equations of motion of either robot are written{
ẋ = f (x,u), x− 6∈ S

x+ = ∆(x−,Λ), x− ∈ S
(12)

where x− and x+ are pre- and post-impact state, Λ is the
impulse of swing foot touchdown, ∆ is the discrete mapping
of the touchdown event, and S is the surface in the state
space where the event must occur.

We assume the robot walks with instantaneous change of
support. That is, the robot transitions from right support to
left support instantaneously, and vice versa. Therefore, the
phase sequence cycles through a single support phase. For the
examples here, we consider only half-gait periodic motion,
and so include right-left leg alternation in the impact map ∆.

A. Initial reduced-order models

To demonstrate the algorithm, we optimized two reduced-
order models for each robot. For the five-link robot, we
initialize the first model with LIP and the second model
with LIP plus an actuated point-mass swing foot (Fig. 4).
The generalized positions y for both models are shown in
Fig. 4. For reference, the equations of motion of the LIP

2 https://sites.google.com/view/ymchen/research/optimal-rom

https://sites.google.com/view/ymchen/research/optimal-rom


(a) 2D reduced-order model embedded in the five-
link planar robot.

(b) 4D reduced-order model embedded in the five-
link planar robot.

(c) 1D reduced-order model embedded in Cassie. (d) 3D reduced-order model embedded in Cassie.

Fig. 5: The averaged cost of the sampled tasks over iterations. Costs are normalized by the cost associated with the full-order
model (a lower bound on any reduced-order model). The costs at iteration 1 represent the averaged costs for the robots with
the embedded initial reduced-order models, e.g. LIP. Note that the empirical average does not strictly decrease, as tasks are
randomly sampled and are of varying difficulty.

model with a point-mass swing foot are

ÿ =


ÿ1
ÿ2
ÿ3
ÿ4

=


cg · y1/y2

0
0
0

+


0 0
0 0
1 0
0 1

[ τ1
τ2

]
, (13)

where cg is the gravitational acceleration. For the LIP model,
the dynamics are given in the first two rows of (13).

Similarly, we initialize the models for Cassie with the two
models mentioned above except that we reduce the model
dimensions by removing y1 in Fig. 4 from both models.
These models represent a point-mass body with/without a
swing foot, where the body has a constant speed in the
vertical direction. We choose this initialization because the
solver struggles to find a good optimal solution to (TO) when
the LIP constraint is imposed.

B. Five-link planar robot

The generalized position q is 7 dimensional where the first
3 elements are the floating-base joint. Recall that the contact
constraint with the ground is solved implicitly.

We choose a rich feature set φe that includes the COM
position with respect to the stance foot, the swing foot
position with respect to the center of mass, the hip position
(q1,q2), and all quadratic combinations of the elements in
{1,cos(q3),sin(q3), ...,cos(q7),sin(q7)}.

For the 2D model, the feature set φd includes cg ·
y1/y2, and all quadratic combinations of the elements in
{1,y1,y2, ẏ1, ẏ2}. For the 4D model, the feature set φ2 is
constructed in a similar way. Note that these feature vectors
were chosen to explicitly include elements of the LIP and

the LIP with a swing foot, but also include a diverse set of
additional terms. Initial parameters θ can be easily chosen
to match the LIP-based initial models.

We choose the tasks γ to include walking with different
speeds between 0.27 and 0.54 m/s and on ground inclines
between −0.08 and 0.08 radians. The cost hγ is the sum of
weighted norm of generalized velocity q̇, input of the robot
u and input of the reduced-order model τ . We include τ in
the cost to regularize the input to the reduced-order model,
and to correlate it with cost on the original model.

Fig. 5a and 5b show results from optimization, where the
empirical average cost decreases rapidly during the process.
The optimized model is capable of expressing lower cost
and more natural motion2 than the LIP, better leveraging the
natural dynamics of the five-link model.

C. Cassie

The generalized position q of Cassie is 19 dimensional
where the first 7 elements are the floating-base joint (trans-
lation and rotation expressed via quaternion). The feature sets
φe and φd are constructed in a similar way to that of the five-
link robot example. We pick the tasks γ to be walking with
different speeds between 0.25 and 0.75 m/s and on different
ground inclines between −0.08 and 0.08 radians.

Results, showing average cost per iteration, are shown in
Fig. 5c and 5d. As with the simpler example, reduced-order
model optimization maintains model simplicity but improves
performance. However, the costs with the initial models are
much lower than those in the five-link robot example. The
reason are that there are fewer constraints from the reduced-
order models, and that Cassie has more joints and degree of



freedom than the five-link robot. Furthermore, we note that
the final, optimized model, unlike its classical counterpart,
does not map easily to a simple, physical model. While
this limits our ability to attach physical meaning to y and
τ , we believe this to be a necessary sacrifice to improve
performance beyond that of hand-designed approaches.

V. PLANNING WITH REDUCED-ORDER MODELS

As shown in Fig. 1, given an optimal model µ∗, we plan
in the reduced-order space. As an example, we formulate a
trajectory optimization problem to walk l meters in ns strides.
Since the reduced-order model only captures the continuous
dynamics, and perfect embedding of a reduced-order hybrid
model is often impossible, we mix the reduced-order model
with the discrete dynamics from the full-order model. This
approach results in a low-dimensional trajectory optimization
problem, a search for y j(t) and τ j(t), with additional decision
variables x−, j,x+, j, representing the pre- and post-impact
full-order states. The index j = 1, . . . ,ns refers to the jth
stride. The additional constraints relating these full-order
states to the impact mapping and the reduced order model
are

y j(t j) = r(q−, j;θe), ẏ j(t j) =
∂ r(q−, j;θe)

∂q−, j
q̇−, j,

y j+1(t j) = r(q+, j;θe), ẏ j+1(t j) =
∂ r(q+, j;θe)

∂q+, j
q̇+, j,

and Chybrid(x−, j,x+, j,Λ j)≤ 0,

where t j’s are the impact times (ending the jth stride), Chybrid
represents the hybrid guard S and the impact mapping ∆

without left-right leg alternation. Costs are nominally ex-
pressed in terms of [y>, ẏ>]> and τ , though the pre- and post-
impact full-order states can also be used to represent goal
locations. This formulation preserves an exact representation
of the hybrid dynamics, but results in a significantly reduced
optimization problem that can be used for real-time planning.

We tested the planning algorithm with the optimized 4D
model embedded in the five-link robot. The distance l varies
from 0.2 to 6 meters with stride numbers ns between 1 to 10.
To plan a single step, the average runtime was 240 ms, on a
computer with Intel i7-8750H processor, without optimizing
code for efficiency. Similar code required tens of seconds for
the full-order model. We note that including the full-order
state impact states roughly doubles the computation time,
as planning purely with the reduced-order model, without
impacts, takes only 110 ms.

Fig. 6 visualizes the pre-impact states in the case where the
robot walks two meters with four strides, connected by the
hybrid events and continuous low-dimensional trajectories
y j(t). We were able to retrieve q(t) from y j(t) through in-
verse kinematics, meaning that the optimal trajectories y j(t)
are feasible for the robot. The resulting motion, shown in
the accompanying video2, looks smooth and is qualitatively
more efficient than the gait that the original model (LIP with
a foot) would generate.

We note that reduced-order model trajectories for walk-
ing are necessarily hybrid, except for zero-impact motions.

Fig. 6: Given a task of covering two meters in four steps,
we rapidly plan a trajectory for the reduced-order model. The
high-dimensional model is used to capture the hybrid event,
at stepping, as illustrated in the cartoon.

Therefore, traditional approaches to reduced-order planning
and embedding must also grapple with approximations of the
impact event.

The example above demonstrates that the mixed model
planner greatly reduces planning speed, and that the opti-
mized reduced-order models can be used to achieve tasks in
full-order space.

VI. DISCUSSION

We present a novel method for automatically generating
reduced-order models for legged locomotion, a step toward
uncovering which aspects of the dynamics are necessary for
tasks performance. This approach is demonstrated over an
array of tasks on both a simple, planar robot and a 3D model
of the Cassie. We also present an algorithm, suitable for real-
time use, for planning reduced-order trajectories.

While there is no guarantee that the motions planned
in Section V are feasible for the full model, we observe,
empirically, that embeddings do seem to exist, and also note
that classical models like LIP also provide no guarantees.
One direction for future work, for both LIP and the optimized
models, is to generate constraints for reduced-order planning
that guarantee feasibility on the original system.

Other future work will continue to develop and deploy
reduced-order models, with an immediate goal of tracking
and executing the planned motions on the physical Cassie
robot using operational space control (e.g. [34]). In Section
V, we note that the planner must still use the full-order
model for the discrete mapping; future work will explore
optimization of hybrid reduced-order model. Since impact
maps are fully autonomous, it is not possible to find a
perfect, low-order reduction. This necessitates the need for
approximate hybrid models, where we will leverage existing
notions of hybrid distance [44]. Lastly, we would like to



increase the tasks space and explore alternative function
bases to evaluate the quality of different resulting models.
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