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Abstract— Complex multibody legged robots can have com-
plex rotational control challenges. In this paper, we propose
a concise way to understand and formulate a whole-body
orientation that (i) depends on system configuration only and
not a history of motion, (ii) can be representative of the
orientation of the entire system while not being attached to any
specific link, and (iii) has a rate of change that approximates
total system angular momentum. We relate this orientation
coordinate to past work, and discuss and demonstrate, including
on hardware, several different uses for it.

I. INTRODUCTION

Many legged robots are best represented by nontrivial
multibody dynamic models. For these systems, reduced-order
coordinates have been widely used for model-based planning
and control, since these low-dimensional coordinates can
capture the bulk of the robot’s dynamics [1]–[4]. These
models and their coordinates are often derived from physical
intuition [3] or computed via optimization [4]. The total
system center of mass (CoM) is likely the most well-known
of these model-based coordinates. It responds to the total
net forces acting on the robot according to Newton’s 2nd
Law, and gives us an overall translational location for the
robot, providing extremely useful information for controlling
locomotion.

When we look more closely at complex tasks, such as
human-like walking and running, back-flips or aggressive
turning, we typically need to also consider the orientation of
the robot. In regulating orientation, many researchers have
used models based on centroidal angular momentum [5], [6].
Centroidal angular momentum models are usually based on
velocity level constraints, and tend not to readily produce
an (unique) absolute orientation coordinate for the entire
system. Other researchers use a single rigid body model [7],
where a single SO(3) coordinate represents the entire robot’s
orientation. The choice for this single body may stem from
the morphology and mass distribution of a specific robot.
For example, for robots with a heavy torso and light limbs,
such as the MIT Mini Cheetah [8], the torso orientation can
act as a good proxy for total system orientation. However,
for robots with relatively heavy and/or long limbs, where

1The authors are with the General Robotics, Automation, Sensing and
Perception (GRASP) Laboratory, University of Pennsylvania, Philadelphia,
PA 19104, USA {yminchen, posa}@seas.upenn.edu

2The author is with the Boston Dynamics Artificial
Intelligence Institute, 145 Broadway, Cambridge, MA 02142
gnelson@theaiinstitute.com

3The authors are with Boardwalk Robotics, 417 E Zaragoza St, Pen-
sacola, FL 32502 jerry.pratt@boardwalkrobotics.com

4The authors are with the Florida Institute for Human and Ma-
chine Cognition (IHMC), 40 S Alcaniz St, Pensacola, FL 32502, USA
rgriffin@ihmc.org

Fig. 1. Left: The humanoid Nadia walking with arm swing and spine
yaw rotation induced by tracking WBO. Right: The simulated biped Cassie
running and turning with the WBO coordinate visualized at the CoM.

appreciable mass is distributed throughout the system and far
from the CoM (e.g IHMC Nadia [9] and Agility Robotics
Cassie [10]), the coordinate choice for system orientation is
much less clear. Proposing a useful whole-body orientation
coordinate for these types of systems, that is not attached to
any specific link on the robot, is the focus of this paper.

Unlike the CoM, a weighted averaging of each link’s ori-
entation does not produce a consistently meaningful whole-
body orientation. To derive this orientation, some have used
angular excursion, which is an integral of an angular velocity
about the CoM derived from centroidal angular momentum
[11]. However, there is not a unique angular excursion value
for a defined joint configuration, as the integral is path
dependent. Another approach uses the principal axes of the
whole-body inertia tensor to derive a whole-body orientation
[12]. This approach also relies on the history of the axes in
order to produce a meaningful continuous orientation.

Researchers in geometric mechanics have, for about a
decade, devised ways of finding history-independent optimal
coordinates, called the minimum perturbation coordinates
[13]–[15]. However, to our knowledge, no literature has yet
shown the application of these coordinates to a complex
dynamic robot (except for Boston Dynamics’ patent [16]),
and they remain less prevalent than other approaches.

Similar to [13], our focus is to create an integrable
(history and path invariant) measure of whole-body orien-
tation for multi-link humanoid and legged robots, where
this orientation coordinate (e.g. an angle, or Euler angles,
or quaternion, etc.) has dynamically analogous behavior to
a CoM, but crucially in an angular sense. For example,



Fig. 2. While linear momentum is integrable, angular momentum is
generally not [17], [18].

once formulated, our desire would be that, should there be
no external moments acting on the system, this orientation
coordinate would remain at rest or rotate at a constant speed.
We call this coordinate the integrable whole-body orientation
(abbreviated WBO in this paper), though it has been called
the minimum perturbation coordinates for general coordi-
nates (other than SO(3) coordinates) [13], [14]. As such, we
design the WBO to have the same mathematical form as
other forward kinematics quantities such as a hand position,
or the CoM. Thus, most or all tools and techniques that apply
to forward kinematics can be applied to a WBO, such as
inverse kinematics, task-space control and planning, etc.

Contributions of this paper

1) Presenting a simple example that clarifies the concept
behind the WBO, with clear definitions of how the
problem and solution are structured.

2) Providing a concise algorithm that shows how to find
an WBO representation for a general multibody robot
in 3D.

3) Demonstrating the use of the WBO on hardware (the
humanoid robot Nadia) and in simulation (the biped
robot Cassie); showing improvements in reducing an-
gular momentum oscillation and foot yaw moment.

The paper is organized as follows. Section II uses simple
2D examples to introduce our WBO. Section III extends
this to complex 3D systems and demonstrates the WBO
algorithm with Nadia and Cassie. Sections IV and V apply
the derived WBO in walking and running controllers. Section
VI summarizes this paper and describes future work.

II. WBO OF SIMPLE SYSTEMS

A. Motivation and Problem Definition

Fig. 2 conceptually compares standard centroidal trans-
lational and rotational quantities often used in whole-body
control. While the total system CoM (a position), and linear
and angular momenta are concrete properties of a multibody
system, there is in general no unique rotational coordinate
(an orientation) corresponding to system CoM. Differenti-
ation of system CoM (scaled by total mass) will arrive at
linear momentum. Angular momentum though, for general
systems, is not integrable [17], highlighting that angular
momentum does not represent differential motion along any
unique history or path invariant manifold in configuration
space.

Thus, as discussed above, the WBO is an effort to approx-
imate an angular measurement for the upper-right quadrant

in Fig. 2. For general systems, it will be an angle, a set of
Euler angles, or a quaternion, etc. Its value is a manufactured
quantity (but not without physical relevance). It is the result
of a design process that can take various forms, and we
present one approach in this paper that we have found useful.

Often this topic involves a larger, typically formal, mathe-
matical discussion about differential calculus and geometric
mechanics, which we will consider beyond the scope of this
paper. Deeper treatments can be found in [13]–[15]. Our
goal is rather to provide a concise WBO formulation recipe,
and demonstrate its initial use on a few legged robots.

We propose the following benefits from using a WBO
for legged robots: (1) As a dynamically relevant WBO
for controller tracking: e.g. providing a feedback signal
for a proportional term on WBO control; (2) For planning
WBO motions or changes; (3) For encouraging low angular
momentum behavior for steady-state walking or running
[19]–[21]. We believe that a suitable WBO measure for an
anthropomorphic robot can aid in producing more natural
looking movement, since the whole-body orientation control
can be achieved by regulating the WBO directly, rather
than controlling the orientation of some specific base link
(often the pelvis or torso of the robot). This means the
base link is now free to be treated as just another link on
the robot, available for other user-specified objectives: e.g.
smoothing system CoM motion by extending leg reach or
stride length, stepping while ascending/descending terrain,
whole-body reaching motions, etc.

B. The Bar-and-Flywheel Model

We propose the following simple example as an aid
in understanding the WBO that we intend to find. The
example has simple and complex versions, which are meant
to demonstrate what the WBO does and does not represent.

Fig. 3 shows a planar “Bar-and-Flywheel” model: a long
solid bar attached, at its CoM, to the axis of a flywheel via
a rotary joint. The bar and flywheel have mass properties as
indicated, and are free floating with no gravity or external
forces acting. θ is the bar orientation in an inertially fixed
world-frame, and φ is the flywheel orientation relative to the
bar. A motor actuates the joint between the bar and flywheel.
Thus, the bar represents the base of a multibody system, and
the flywheel is an outboard body connected to the base by
an actuated joint. The angular momentum about the system
CoM, also called the centroidal angular momentum (CAM),
is

HCoM = (IB + IF )θ̇ + IF φ̇. (1)

In our definitions, we will delineate base orientation (θ in
this example; in general a SO(3) representation) from joint
positions or joint configuration (φ in this example; in general
represented by the vector q).

Let the system start at rest with φ = 0 (Fig. 3(a)). If
the motor drives the flywheel counter-clockwise, the reaction
torque will turn the bar towards the opposite direction.
These rotation directions are indicated by the green arrows.
Fig. 3(b) shows both the starting (dashed lines) and ending



(a) The starting configuration (φ = 0)

(b) The ending configuration (φ > 0)

Fig. 3. Bar-and-Flywheel model (an integrable system). The motor rotates
the flywheel counter-clockwise.

configurations. We would like to understand how the bar
moves due to the motion of the flywheel.

An important relationship often used in these problems
is the reconstruction equation, which includes a local con-
nection [14]. The reconstruction equation describes what we
have simulated going from Fig. 3(a) to Fig. 3(b): It maps
velocities in joint space (φ̇) to the velocity of the base (θ̇),
as the base will counter-rotate due to changes in joint space.
In this example (HCoM = 0), this reconstruction equation is

θ̇ = − IF
IB + IF

φ̇, (2)

where the coefficient in front of φ̇ (without the negative sign)
is the local connection. We can see that Eq. (2) lets us predict
the change in θ, from which we define

ψrel , −∆θ =
IF

IB + IF
∆φ, (3)

where ∆φ = φ since the starting position of φ is 0. In Fig.
3(b), we label these various angles. The initial orientation
of the bar, relative to the world, will be called ΨWbo. In a
general configuration, we can predict the final orientation of
the system using Eq. (3):

ΨWbo = θ + ψrel = θ +
IF

IB + IF
φ. (4)

This ΨWbo is the WBO of the system. Note that ψrel is the
relative orientation of the WBO to the base (bar), such that
the final ΨWbo will be a base orientation relative to the world
plus ψrel.

For this simple system, conservation of angular momen-
tum dictates that ΨWbo will never change, regardless of how

Fig. 4. Bar-and-Flywheel model with an actuated prismatic joint (a
non-integrable system). This system can reorient itself without external
torques. For example, the entire system can rotate counter-clockwise if
the joints (d, φ) repeat the following cyclic motion: (0, 0) → (l/2, 0) →
(l/2, π/2)→ (0, π/2)→ (0, 0), where l is the length of the bar.

we actuate the motor. Differentiating Eq. (4), we have (after
some rearrangement)

(IB + IF )Ψ̇Wbo = (IB + IF )θ̇ + IF φ̇. (5)

Note that the right hand sides of Eq. (1) and Eq. (5) are the
same. Thus:

HCoM = (IB + IF )Ψ̇Wbo. (6)

Eq. (6) shows that the WBO has behavior analogous to a
center of mass, but in a rotational sense: it represents an
underlying orientation state for the system that can only
be changed by external moments. The effective WBO mass
moment of inertia (MoI) is, not surprisingly, the sum of the
MoIs of the bar and flywheel.

The HCoM above is an integrable differential form. That
is, it can be rendered from the differentiation of an invariant
manifold (i.e. does not depend on a history of motion) in
configuration space. This manifold can be expressed exactly
as Eq. (4).

Also, looking at the left and right-hand sides of Eq. (6), we
could think of a system having two representations of angular
momentum: the actual system angular momentum about the
CoM in Eq. (1), and an approximated angular momentum
based on Ψ̇Wbo in Eq. (6). For this integrable example
system, we see that these angular momentum representations
are equivalent, though for general systems (usually non-
integrable) they are not.

We now extend this model by adding a long slot that
allows the flywheel to slide along the length of the bar
(Fig. 4). A linear actuator controls this movement, and d
is the offset of the flywheel axis from the CoM of the bar.
This change increases the size of our joint space (q) to 2
dimensions: q = [d, φ]T . The new CAM is

HCoM = (IB + IF +
mBmF

mB +mF
d2)θ̇ + IF φ̇. (7)

If d is fixed, then this system is much the same as the
simpler Bar-and-Flywheel model above. If, though, d is
allowed to change, the angular momentum becomes non-
integrable, and the goal of our WBO formulation becomes
contriving a differentiable and time independent function for
ψrel that, when differentiated with respect to q, maximally
approximates the local connection of the actual system over a
user-defined region of joint-space. We will call this contrived



function ψ̃rel(q). Like Eq. (2), the reconstruction equation is
found by setting HCoM = 0 in Eq. (7) and solving for θ̇:

θ̇ = −
[
0 IF

IB+IF+
mBmF
mB+mF

d2

]
1×2

[
ḋ

φ̇

]
2×1

, (8)

where the 1x2 matrix is the local connection, which is a
function of d. In mathematical terms, the goal (stated above)
is finding a differentiable function ψ̃rel(q), such that[

∂ψ̃rel(q)
∂d

∂ψ̃rel(q)
∂φ

]
≈
[
0 IF

IB+IF+
mBmF
mB+mF

d2

]
. (9)

Coming up with this function is the core design process,
bearing in mind that an exact fit is impossible owing to
the non-integrability of the physical system. For instance,
an example function for ψ̃rel(q) could be c1 d2φ+c2 d

2φ3 +
c3 φ+ c4 φ

3, where the coefficients ci are found numerically
in order to maximize the approximation implied by Eq. (9)
over a user-defined region in joint-space. Our final WBO
now becomes (like Eq. (4)):

Ψ̃Wbo , θ + ψ̃rel(q). (10)

Finally we note that, mirroring Eq. (6), we now have actual
and approximated representations for angular momentum
(approximation resulting from Eq. (9)):

HCoM ≈ H̃CoM (11)

with

H̃CoM = (IB + IF +
mBmF

mB +mF
d2) ˙̃ΨWbo, (12)

where
˙̃ΨWbo = θ̇ +

[
∂ψ̃rel(q)
∂d

∂ψ̃rel(q)
∂φ

] [
ḋ

φ̇

]
. (13)

The main compromise in our approach is approximating
a non-integrable differential system with an integrable one.
This “collapses” explicit representation of the nonholonomic
motion of the actual physical system [14], [15], [17]. Our
WBO will still measure nonholonomic motions, but its
resulting dynamics will not correspond with fidelity to the
actual externally applied moments.

III. WBO OF COMPLEX ROBOTS

A. Extending WBO to 3D

Expressing Eq. (9) in the general 3D case is the goal of this
section. The concepts discussed using the Bar-and-Flywheel
models, though, are the same, and Table I will be important
in translating that structure into 3D. Fig. 5 shows the frames
we are interested in, and corresponds conceptually to Fig.
3(b).

We begin by translating Eq. (11) into 3D. The 3D angular
momentum is

HCoM = MBωB +Mq q̇ = MB [ωB +Aq̇], (14)

where MB and Mq are base and joint space centroidal mo-
mentum matrices [5], A ,M−1

B Mq is the local connection,
ωB is the angular velocity of the base relative to the world
expressed in the base frame, and q̇ are the joint velocities.
For the WBO, we have an approximated angular momentum

Fig. 5. The humanoid Nadia (left) and frames of interest (right). W , B and
Wbo are the world frame, base frame and the WBO frame, respectively.
QW,B is the base orientation in the world, and QB,Wbo is the orientation
of the WBO frame relative to the base. Translationally, we locate the WBO
frame at the CoM for convenience.

Bar-Flywheel in 3D
joint-space [d, φ] q

base orient. r.t. world θ QW,B

WBO r.t. base ψ̃rel Q , QB,Wbo

WBO r.t. world Ψ̃Wbo QW,Wbo

r.t. = relative to Q = Quaternion

TABLE I
NOTATION DEFINITIONS AND CORRESPONDENCES

H̃CoM = MB [ωB + Ãq̇], (15)

where Ã will be the approximated local connection as
discussed in arriving at Eq. (9). In 3D, trying to minimize
the differences between these two representations (Eq. (14)
and (15)) means making:

Aq̇ ≈ Ãq̇. (16)

We will keep q̇ on both sides of the approximation until we
sort out the 3D rotation representation for WBO in Section
III-B. We note that Aq̇ on the left hand side of Eq. (16) is
the relative angular velocity of the system [21]. On the other
hand, ΩWbo , Ãq̇ is the angular velocity of the WBO frame
relative to the base, expressed with respect to the base frame.

Paralleling the 2D example above (see Table I), we would
like to find a function for Q , QB,Wbo. This represents the
WBO frame orientation relative to the base. Thus, ΩWbo can
be expressed from the quaternion rate Q̇ using

ΩWbo = 2RQEQQ̇ (17)

where RQ is the rotation matrix representation of Q, and the
matrix 2 ·EQ maps a quaternion rate to an angular velocity
(details are omitted here for brevity; see [22]).

B. Parameterization and Optimization Algorithm

Noting that Q has two portions Q = [Qs; Qx,y,z], we now
parameterize Qx,y,z by a vector of basis functions λ(q) with
dimension nλ:

Qx,y,z(q; Θ) = Θλ(q), (18)



Algorithm 1 WBO optimization
Input: N random joint configurations qi, i = 1, ..., N
Output: Θ∗

1: Θ← 0 (initialize to constant identity rotation)
2: repeat
3: Substitute Q(qi; Θ) into TQ in Eq. (20) for i =

1, ..., N
4: Θ← Solve Eq. (20) with given TQ
5: until convergence
6: return Θ

where Θ ∈ R3×nλ is a coefficient matrix. Qs can be
recovered from the unit norm constraint ‖Q‖22 = 1. Similarly,
we take the time derivatives of Qx,y,z and recover Q̇s from
d
dt‖Q‖

2
2 = 0. These algebraic manipulations will lead to a

final form:
Ãq̇ = TQΘJλq̇ (19)

where

TQ , 2RQEQ

[
−Q−1

s QTxyz
I3x3

]
, and Jλ ,

∂λ(q)

∂q
.

Now that we have an expression for Ã, our objective is to
minimize the difference between A and Ã for all configura-
tions q. To simplify the problem, we pre-select N number
of random configurations (uniformly distributed in a user-
chosen region of joint space) to minimize the difference over:

min
Θ

1

N

N∑
i=1

‖Ai − TQiΘJλi‖2F (20)

where ‖ · ‖F is the Frobenius norm. Given our choice in Eq.
(18), we note that A and Jλ are functions of q and not Θ,
while TQ is nonlinear in Θ.

One can solve Eq. (20) with many nonlinear solvers. In
practice, we found that our simple algorithm in Alg. 1 works.
The algorithm exploits the structure of the cost function by
identifying that Eq. (20) is a least squares problem if TQ
is given. In each iteration, we first substitute the current
solution Θ into TQ to turn (20) into a least squares problem4,
and then solve the problem to get a new solution Θ. We
repeat the above steps until Θ converges.

C. WBO Optimization and Result

We optimized for an WBO function for Nadia (Fig. 5)
using Alg. 1. Nadia is a humanoid robot with 31 degrees of
freedom (DoF) – 6DoF legs, 7DoF arms, 1DoF grippers and
a 3DoF spine. We randomly select 1000 configuration pairs
mirrored about the sagittal plane. We also keep the gripper,
wrist and ankle joints at neutral positions, because their
contribution to the CAM is relatively small. This reduces the
configuration space (q) to 19 dimensions. The basis functions
are monomials in terms q, with all possible monomials up to
3rd order being used (e.g. qi, q2

i , qiqj , q3
i , q2

i qj , ...), producing
1539 basis functions. The optimization converged smoothly

4The Kronecker product identity vec(XY Z) = ZT⊗Xvec(Y ) is useful
in vectorizing the matrix Θ in preparation for solving the least squares.

(a) Angular velocities of one step of Nadia robot walking on flat
ground. The solid and dashed lines are Aq̇ and Ãq̇ in Eq. (16),
respectively. The spikes around 0.6 seconds are from the swing foot
impact event and the feedback reaction of the walking controller.

(b) The solid lines are the real CAM HCoM in Eq. (14), and the dashed
lines are the approximated CAM by the WBO H̃CoM in Eq. (15).

Fig. 6. Comparisons between the real and the approximated quantities.
The data is from a simulation where Nadia walked in a straight line at 0.6
m/s.

in about 2 minutes or 10 iterations. After the optimization,
we dropped terms with coefficients (in Θ) smaller than 1e-8.

In addition to Nadia, we also optimized a WBO function
for Cassie running (Fig. 1). Cassie has 16 joints. We ignored
the toe and ankle spring joints during optimization, reducing
the configuration space to 12 dimensions. The optimization
converged within 10 seconds and 7 iterations.

By comparing actual (measured) and approximated quan-
tities, we can evaluate our WBO approximation at different
signal scales. For Nadia walking, Fig. 6(a) plots both sides
of Eq. (16). Average angular velocity errors for each axis are
about [0.034, 0.035, 0.061] rad/s. Fig. 6(b) plots Eq. (14) and
(15). We see that HCoM and H̃CoM , which are larger signals
dominated by base motion, are relatively close: average
errors for each axis are about [0.74, 0.84, 0.32] kg ·m2/s.



(a) Controller with fixed upper body joints.

(b) Controller with WBO-induced upper body motions.

Fig. 7. Controller diagrams. Each diagram is composed of a high-level
planner, low-level feedback controllers and an inverse-dynamics quadratic
program (QP). Blue color highlights the difference between the two con-
trollers. Red color is used for indicating the task priorities. Tier 0 is
implemented as a constraint in the QP, while other Tiers are implemented via
cost functions in the QP. Additionally, Tier n has higher priority than Tier
n + 1 for n > 0. We use the null-space projection technique to prioritize
tasks [23]. The zeros and nominal joint configuration in the planner are
constant trajectory sources.

IV. WALKING EXAMPLE

In this section, we design a walking controller for Nadia
using the WBO derived in Section III-C, and show that
a WBO reference tracking can induce natural upper body
motions during walking.

A. Controller

Fig. 7(b) shows our WBO controller, while Fig. 7(a) shows
the baseline controller with fixed upper body joints. Each
controller has a planner that generates desired trajectories.
These are then converted into acceleration commands by
the feedback controllers shown in the diagrams. With the
acceleration commands, we use an inverse dynamics whole
body controller (the rightmost block in each diagram in Fig.
7) to get the desired actuator commands for the robot [24].
We can roughly separate the controller into leg and upper
body parts. The leg part handles tracking the desired path
and heading of the robot, while the rest of the controller
handles the upper body motion.

1) Legs: This part of the controller is the same between
the baseline and WBO controllers. We use Capture Point
(CP) control for the locomotion task [25], [26]. The footsteps
are generated given desired velocity commands from a higher
level controller. The planner outputs a reference Centroidal
Moment Pivot trajectory that is converted into a linear

momentum rate command in the feedback controller, which
is sent to the inverse dynamics controller.

2) Upper body: Our short-term goal was getting more
natural arm swing and spine yaw rotation by servoing just
WBO yaw5. In Fig. 7(b), we servo the WBO yaw axis
relative to the world frame, while both the pelvis and the
upper body tasks reside in the null space of the WBO
task. In simulation, we achieved straight-line walking with
this controller. When moving to hardware, we temporarily
focused on just demonstrating arm swing and spine yaw
rotation. To do so, we servoed the pelvis orientation relative
to the world and regulated the WBO yaw angle relative to
the pelvis to 0. More complex motions have been left to
future work, where we would like to take full advantage of
our WBO.

We use a task hierarchy [23] in our whole body controller,
shown in Fig. 7 as “Tiers”. In experiments, we noticed that
the inverse dynamics QP solver would trade swing foot orien-
tation tracking performance for WBO tracking performance.
This happened when the robot could not regulate WBO yaw
to 0 with only the upper body. Thus, in order to prevent the
WBO task from impairing the leg tasks, we set the WBO
task to a lower priority than the leg tasks.

Besides the above task objectives, we also add nominal
joint configuration tracking to handle the system’s redun-
dancy. This task can exist in the null space of the WBO task
or at the same level as WBO. The parameters for this nominal
upper body joint controller can be used to sculpt the desired
motion. For example, if we want more arm swing and less
spine rotation, we can increase the cost weight on the spine
joint.

3) Joint limits: The joint limit controller takes current
joint positions and ranges of motion, and outputs limits
on joint accelerations for the whole body controller. These
limits are used for self-collision avoidance and aesthetics.
Because the legs on Nadia are much heavier than the arms,
when regulating the WBO yaw to 0, the robot can generate
excessive arm swing or spine rotation. Thus, self-collision
avoidance helps contain these motions, and therefore affects
WBO tracking and overall appearance. We note that conven-
tional momentum approaches [20], [21] would also exhibit
this same behavior on Nadia.

B. Experiment Result

In both simulation and hardware experiments, we saw
natural upper body motion induced by tracking a constant
WBO. Additionally, although the controller for the upper
body motion was designed for straight-line walking, we
found that, in simulation, the robot was also able to walk
forward, backward, sideways, and turn. The video clips can
be found in the accompanying video for this paper.

Fig. 8 shows the z-component of CAM of straight-line
walking for both the WBO and fixed upper body controllers.

5In our experiments, we found that arm swing and spine yaw rotation
were mostly induced by servoing the WBO yaw angle to zero. Additionally,
Miyata et al. [21] only used the yaw part of angular momentum to generate
the arm swing.



(a) Simulation (average walking speed ≈ 0.6 m/s)

(b) Hardware (average walking speed ≈ 0.37 m/s)

Fig. 8. The CAM about the z axis when Nadia walked in a straight line.
We note that there were issues with Nadia’s leg actuator at the time of
hardware experiment and the update rate of the control loop was not fast.
These issues partially contributed to the non-smoothness in the hardware
plot.

We see that the angular momentum profiles look similar
between the simulation and hardware, and that the CAM
is 50% smaller when the desired WBO yaw is set to 0. Joint
limit constraints prevent the CAM from tracking closer to
zero. Additionally, we observed in simulation that the WBO
controller reduces foot yaw moment against the ground.
These are some of the advantages of using the upper body to
counter moments generated by the legs during walking [21].

The conventional approach to generating natural upper
body motions is directly minimizing the CAM [20], [21]. The
downside of this approach is that the CAM controller is a
feedback controller based on mutually constrained velocities
rather than positions. Thus the upper body configuration
could gradually drift away from a neutral target unless care
is taken. To address this, a competing control objective is
typically introduced that servos the robot, or some specific
link on the robot, back to a desired orientation relative to the
world. In contrast, a control law based on the WBO provides
a single desired orientation for the entire robot, and thus need
not employ competing objectives.

Fig. 9. The CAM about the z axis when Cassie runs at 2.7 m/s and follows
a desired yaw trajectory that goes from 0 to π/2 rad in 10 seconds.

V. RUNNING EXAMPLE

Besides the walking example, we also want to test our
WBO on a slightly more agile motion. For this, we imple-
mented two running controllers on Cassie.

A. Controller

The baseline running controller uses a finite state machine
with four states – left stance, left flight, right stance and right
flight. The state transitions are triggered by foot touch-down
and lift-off events. In the left/right stance state, the stance
leg behaves like a vertical virtual spring, the pelvis pitch
and roll angles are regulated to 0, and pelvis yaw follows a
desired trajectory. The swing leg uses a Raibert-style control
law [27], while the leg length is determined by the nominal
leg length at touchdown. In the flight state, the controller
continues to track the desired orientation of the pelvis and
the desired positions of the leading swing foot. The desired
pelvis orientation is relative to the world frame.

The second (preliminary) running controller is the same
as the baseline controller, except that we replace the pelvis
yaw with WBO yaw.

B. Experiment Result

In our experiments, Cassie is commanded to run at 2.7
m/s in the Drake simulator [28]. We also set a desired
yaw trajectory, which goes from 0 to π/2 rad linearly in
10 seconds. The baseline controller tracks this desired yaw
with the pelvis, while the WBO controller tracks it with
WBO. Fig. 9 shows the CAM of Cassie. We can see that the
momentum oscillates less with the WBO controller (more
than a 26% reduction). This reduction is due to the WBO
representing the orientation of the entire system, and the
total momentum is approximated by its time derivative via
Eq. (15). Also, the WBO controller is able to adjust the
desired pelvis orientation when the legs move. In contrast,
the baseline controller considers the pelvis motion only and
ignores the contributions from the legs. One could, of course,
regulate the CAM while tracking the desired orientation of
the pelvis, but these two objectives could conflict since the
pelvis alone does not represent the entire system well. The



advantage of the WBO approach here is the consistency
between the orientation-tracking and momentum objectives.

VI. CONCLUSION AND FUTURE WORK

We introduced the integrable whole-body orientation
(WBO) with simple examples and clear problem motivation,
so it is more accessible to a general robotic audience. A
formulation of the WBO problem was provided, including an
algorithm that solves the problem quickly by exploiting its
structure. WBO functions were synthesized for the humanoid
robot Nadia and the biped Cassie, and were used to induce
arm swing and spine yaw rotation in a walking example and
to turn the robot’s global orientation in a running example.

The WBO enables us to servo the orientation of the entire
system. Thus, it can free up the base link (e.g. pelvis) to
achieve high-level goals such as natural walking with natural
pelvis motion and stepping up/down terrain. In this paper,
we mostly demonstrated more natural arm swing and spine
rotation. Future work will utilize the WBO to achieve more
complex behaviors, such as whole-body natural walking.
Another future work is to incorporate high-level planning
for the WBO trajectories (e.g. using the single rigid body
model), which could potentially enable more agile motions
for the robots.
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