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ABSTRACT

TOWARD HIGH-PERFORMANCE SIMPLE MODELS OF LEGGED LOCOMOTION

Yu-Ming Chen

Michael Posa

This thesis addresses the challenges of model-based planning and control in legged locomotion,

particularly the trade-off between computational speed and robot performance presented by different

levels of model complexities. Full-order models, while rich in detail, are often too computationally

demanding for real time planning, whereas conventional reduced-order models (ROMs) tend to

oversimplify the dynamics, limiting overall performance potential. Our research focuses on a novel

approach – the direct optimization of ROMs. This study seeks to enhance the performance of

legged robots by automatically discovering the optimal ROMs that simultaneously deliver high robot

performance while maintaining the necessary low dimensionality for real time planning applications.

In this work, we formulate problems, provide algorithmic solutions, and deploy optimized ROMs

on real robots. In the beginning of the thesis, we focus on a special case where we aim to find

whole-body orientation coordinates (WBO) for legged robots that minimize angular momentum

errors. This optimal WBO, while being a simple forward kinematic function, serves as a proxy

of the real angular momentum and can be applied to complex tasks such as humanoid natural

walking. In the second part of the thesis, we formulate a bilevel optimization problem to find optimal

ROMs agnostic to controller choices, driven by user-defined objectives and task distributions. The

results show substantial improvements in walking speed, ground slope adaptability and torque

efficiency on a bipedal robot Cassie. Lastly, we cast the ROM optimization problem as a model-

based reinforcement learning (RL) problem to further improve the model performance. This does

not only show better performance improvements in experiment but also provide an easier way to

implement model optimization and to realize the model performance on the robot.
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CHAPTER 1

INTRODUCTION

State-of-the-art approaches for model-based planning and control of legged locomotion can be cat-

egorized into two types (Wensing et al., 2022). One leverages the full-order model of a robot, while

the other relies on a reduced-order model (ROM). Using the full model allows us to utilize a com-

prehensive understanding of the robot’s dynamics, leading to high performance (Westervelt et al.,

2003; Zhao et al., 2017; Reher et al., 2016). However, this comes at the cost of substantial compu-

tational resources and poses challenges in formal analysis, particularly given the complexity of mod-

ern legged robots with numerous degrees of freedom (Ackerman, 2017; Agility Robotics; Robotics;

Boston Dynamics). To manage this complexity, the community of legged robotics has embraced the

use of reduced-order models.

Most reduced-order models adopt constraints (assumptions) on the full model dynamics while cap-

turing the task-relevant part of the full-order dynamics. For example, the linear inverted pendulum

(LIP) model (Kajita and Tani, 1991; Kajita et al., 2001) assumes that the robot is a point mass

that stays in a plane, which greatly reduces energy efficiency and limits the speed and stride length

of the robot. The spring loaded inverted pendulum (SLIP) model (Blickhan, 1989) is a point mass

model with spring-mass dynamics, which implies zero centroidal angular momentum rate and zero

ground impacts at foot touchdown event. Therefore, when we plan for motions only in the reduced-

space, we unavoidably impose limitations on the full dynamics. This restricts a complex robot’s

motion to that of the low-dimensional model and necessarily sacrifices performance of the robot.

Recognizing the above limitations of the ROMs, researchers have explored various extensions to

reduced-order models, often relying on human intuition and incorporating mechanical compo-

nents (e.g., springs, dampers, rigid bodies, second legs) (Xiong and Ames, 2020; Xiong et al., 2021;

Kasaei et al., 2020; Takenaka et al., 2009; Sato et al., 2010; Shimmyo et al., 2012; Kasaei et al.,

2018; Faraji and Ijspeert, 2017). Several successful model extensions have enabled high-performance

real-time planning on hardware. For example, Chignoli et al. (Chignoli et al., 2021) utilized a
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single rigid body model with small body pitch and roll angles to formulate a convex planning

problem. Xiong et al. (Xiong and Ames, 2020) extended LIP with a double-support phase while

maintaining the zero ground impact assumption, so the model is still linear and conducive to a

LQR controller (Shaiju and Petersen, 2008; Garcia et al., 1989; Borrelli et al., 2017). Gibson et al.

(Gong and Grizzle, 2022; Gibson et al., 2022) introduced the angular-momentum-based LIP, offer-

ing improved prediction accuracy. Dai et al. and Herzog et al. (Dai et al., 2014; Herzog et al.,

2016) combined the centroidal momentum model with full robot configurations, and Boston Dy-

namics demonstrated its application in parkour on Atlas humanoid(Marion and the team).

While some of the above extensions have improved the robot performance, it remains unclear which

extension provides more performance improvement than the others, and we do not have a metric to

improve the model performance with. Moreover, it has been shown that not all model extensions

can significantly improve the performance of robots. For example, allowing the center of mass height

to vary provides limited aid in the task of balancing (Posa et al., 2017a; Koolen et al., 2016b).

In this thesis, we aim to algorithmically discover the low-dimensional representation of a high-

dimensional robot which maximizes the performance with respect to an objective function and task

distribution.

1.1. Outline and Contributions

We start by presenting the necessary technical background and introducing the definition of a

reduced-order model in Chapter 2. We then cover the related works of ROM optimization in

Chapter 3.

Our main contributions start with Chapter 4. It investigates a special case of model optimization

where we search for a whole-body orientation (WBO) with a specific objective function – minimizing

the angular momentum error between the ROM and the full model. We present a simple example

to clarify the concept behind the WBO, with clear definitions of how the problem and solution

are structured. We provide a concise algorithm that finds an WBO representation for a general

multibody robot in 3D. Lastly, we demonstrate the use of the WBO on hardware (the humanoid

2



robot Nadia) and in simulation (the biped robot Cassie), showing improvements in reducing angular

momentum oscillation and foot yaw moment.

Chapter 5 generalizes Chapter 4 by allowing optimizing a ROM given any user-specified objective

function and task distribution. We propose a bilevel optimization algorithm to automatically syn-

thesize new reduced-order models, embedding high-performance capabilities within low-dimensional

representations. We show several examples of model optimization, with different sizes of task space

and basis functions. We then design a real time model predictive control for the optimal ROM, and

demonstrate in simulation that the optimal model reduces the cost of joint torques by up to 23%

and increases its walking speed by up to 54%. We also show hardware result that the real robot

walks on flat ground with 10% lower torque cost. We analyze the source of the performance gain

and discuss the lessons learned in transferring the model performance from an open-loop system to

a closed-loop system. To the best of our knowledge, this is the first work that directly optimizes a

reduced-order model with respect to an objective function.

Chapter 6 improves upon Chapter 5 by considering the feedback controller for the ROM during

the model optimization, which closes the gap between the open-loop and closed-loop performance.

We formulate a model-based reinforcement learning (RL) problem to learn the ROM. Compared to

the baseline LIP model, the optimal ROM shows a 49% improvement in viable task region size for

inclined walking and up to 21% improvement in joint torque cost. Compared to the approach in

Chapter 5, the optimal ROM shows an up to 28% improvements in viable task region size with a

mild improvement in the torque cost. Lastly, we demonstrate the flexibility of our model-based RL

approach in task space parameterization in the post-training phase, in comparison to a model-free

RL approach.
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CHAPTER 2

BACKGROUND

In this chapter, we introduce necessary backgrounds to understand the technical chapters of this

thesis (Chapters 4 to 6). Section 2.1 introduces the bipedal robot Cassie along with its models

used through out the thesis. Section 2.2 provides an introduction to ROMs for legged robots and a

common ROM, Linear Inverted Pendulum (LIP), which we use as a baseline model for our methods

in Chapters 5 and 6. Section 2.3 outlines the model predictive control that we use for all controllers

in this thesis. Sections 2.4 and 2.5 present our mathematical definition of a reduced-order model.

Lastly, Sections 2.6 to 2.8 introduce trajectory optimization and bilevel optimization needed for

Chapter 5.

2.1. Full-order Models of Cassie

The bipedal robot Cassie (Fig. 2.1) is the platform we used to test our model optimization al-

gorithm. Here we briefly introduce its model. Let the state of Cassie be x = [q, v] ∈ R45 where

q ∈ R23 and v ∈ R22 are generalized position and velocity, respectively. We note that q and v

have different dimensions, because the floating base orientation is expressed via quaternion. The

conversion between q̇ and v depends only on q (Wie and Barba, 1985).

The standard equations of motion are

M(q)v̇ = fcg(q, v) +Bu+ Jh(q)Tλ+ τapp(q, v) (2.1)

where M is the mass matrix which includes the reflected inertia of motors, fcg contains the velocity

product terms and the gravitational term, B is the actuation selection matrix, u is the actuator

input, Jh is the Jacobian of holonomic constraints associated with the constraint forces λ, and

τapp includes the other generalized forces applied on the system such as joint damping forces. The

forces λ contain ground contact forces and constraint forces internal to the four-bar linkages of

Cassie. In simulation, the ground forces are calculated by solving an optimization problem based
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(a) Full model of Cassie. (b) Cassie robot.

Figure 2.1: Cassie and its model

on the simulator’s contact model (Tedrake, 2019). In trajectory optimization, the forces λ are

solved simultaneously with x and u while satisfying the dynamics, holonomic and friction cone

constraints. Furthermore, we assume the swing foot collision with the ground during walking is

perfectly inelastic in the trajectory optimization, so the robot dynamics is hybrid. Combining the

discrete impact dynamics (from foot collision) with Eq. (2.1), we derive the hybrid equations of

motion 
ẋ = f (x, u, λ) , x− 6∈ S

x+ = ∆(x−,Λ), x− ∈ S
(2.2)

where x− and x+ are pre- and post-impact state, Λ is the impulse of swing foot collision, f is the

continuous-time dynamics, ∆ is the discrete mapping at the touchdown event, and S is the surface

in the state space where the event must occur (Hurmuzlu and Marghitu, 1994; Grizzle et al., 2014).
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Cassie’s legs contain four four-bar linkages – two around the shin links and the other two around

the tarsus links. We simplify the model by lumping the mass of the rods of the tarsus four-bar

linkages into the toe bodies, while the shin linkages are modeled with fixed-distance constraints.

To simplify the model further, we assume Cassie’s springs are infinitely stiff (or equivalently no

springs), in which case q ∈ R19 and v ∈ R18. This assumption has been successfully deployed by

other researchers (Hereid et al., 2018), and it is necessary for the coarse integration steps in the

trajectory optimization1 in Section 2.6. We also use this assumption in Section 5.3 when comparing

the ROM performances between the trajectory optimization and simulation.

2.2. Reduced-order Models (ROMs) of Legged Robots

Modern legged robots like the Agility Robotics Cassie have many degrees of freedom and may

incorporate passive dynamic elements such as springs and dampers. To manage this complexity

and simplify the design of planning and control, reduced-order models have been widely adopted in

the research community.

One observation, common to many approaches, lies in the relationship between foot placement,

ground reaction forces, and the center of mass (CoM) (Full and Koditschek, 1999). While focusing

on the CoM neglects the individual robot limbs, controlling the CoM position has proven to be

an excellent proxy for the stability of a walking robot. CoM-based simple models include the LIP

(Kajita and Tani, 1991; Kajita et al., 2001), SLIP (Blickhan, 1989), hopping models (Raibert et al.,

1984), inverted pendulums (Garcia et al., 1998; Schwab and Wisse, 2001), and others. Since these

models are universally low-dimensional, they have enabled a variety of control synthesis and anal-

ysis techniques that would not otherwise be computationally tractable. For example, numerical

methods have been successful at finding robust gaits and control designs (Byl and Tedrake, 2009;

Oguz Saglam and Byl, 2014; Kelly and Ruina, 2015; Koolen et al., 2012a), and assessing stability

(Pratt et al., 2006).

Many of the aforementioned reduced-order models feature massless legs, eliminating any foot-ground
1Reher et al. (Reher et al., 2019) showed 7 times increase in solve time when using the full Cassie model (with

spring dynamics) in trajectory optimization. Additionally, Cassie’s spring properties can change over time and are
hard to identify accurately, which discourages researchers from using the dynamic model of the springs on Cassie.
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Figure 2.2: The linear inverted pendulum (LIP) model. It is a point mass model of which height is
restricted in a plane. The point mass and the origin of this model correspond to the center of mass
and the stance foot of the robot, respectively. In the examples of Chapters 5 and 6, we initialize
the reduced-order model to the LIP model during model optimization.

impact during the swing foot touchdown event. When dealing with a robot or a model incorporating

a foot of non-negligible mass, zero impacts necessitate zero swing foot velocity at touchdown. This

constraint ensures the velocity continuity before and after the touchdown event.

2.2.1. Linear Inverted Pendulum (LIP)

In this thesis, we frequently use the LIP model as a benchmark to compare our optimal models

against, so we briefly introduce it here.

The model is a point mass model (representing the center of mass of the robot) with a assumption

that the vertical acceleration of this point mass is 0. The outcome of this model is that the point

mass is restricted in a plane. The equations of motion of the 3D LIP model are

ÿ =


ÿ1

ÿ2

ÿ3

 =


cg · y1/y3

cg · y2/y3

0

 , (2.3)

where cg is the gravitational acceleration constant. We note that, due to the point mass and point

foot assumption (where the ground force has to come from), the angular momentum about the

center of mass has to be zero when we embed LIP into the robot.
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Figure 2.3: An outline of a model predictive control. The planner outputs desired trajectories of the
reduced-order model. These trajectories are then tracked by a controller based on inverse dynamics
(ID) or inverse kinematics (IK) which uses the full model of the robot.

2.3. Model Predictive Control (MPC) with ROMs

In thesis, we use model predictive control (MPC) in all experiments to control the robot. Here we

briefly outline the structure of MPC, while the detailed implementation can be found in individual

chapter (Sections 5.2 and 4.3.1).

MPC is a control technique that uses a robot model to plan for desired input trajectories in receding

horizons. Its replanning (feedback) mechanism inherently rejects disturbances to the system. For

legged locomotion, the horizon is typically around 0.7 to 1 seconds, so it is necessary to use a

simplified robot model in order to plan in real time. Commonly, given an initial and a goal position

of the robot, the MPC plans for both the footstep locations and the ROM trajectories, and these

trajectories are then tracked using a low-level controller. Fig. 2.3 outlines the MPC.

It consists of two main components – a high-level planner that generates the ROM trajectories

and footstep locations, and a low-level controller that tracks these desired targets. The low-level
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controller are commonly implemented with Inverse Kinematics (IK) or Inverse Dynamics (ID).

2.4. Definition of ROMs

Let q and u be the generalized position and input of the full-order model, and let y and τ be the

generalized position and input of the reduced-order model. We define a reduced-order model µ of

dimension ny by two functions – an embedding function r : q 7→ y and the second-order dynamics

of the reduced-order model g(y, ẏ, τ). That is,

µ , (r, g), (2.4)

with

y = r(q), (2.5a)

ÿ = g(y, ẏ, τ), (2.5b)

where dim y < dim q and dim τ ≤ dimu. As an example, to represent SLIP, r is the center of

mass position relative to the foot, g is the spring-mass dynamics, and dim τ = 0 as SLIP is passive.

Additionally, we note that the choices of r and g are independent of each other. For example, LIP

and SLIP share the same r, but they have different dynamics function g (one has zero vertical

acceleration and the other is the spring-mass dynamics).

The embedding function r can explicitly include the left or right leg of the robot (e.g. choosing

left leg as support leg instead of right leg), in which case there will be two reduced-order models.

In this thesis, we assume to parameterize over left-right symmetric reduced-order models. As such,

we explicitly optimize over a model corresponding to left-support, which will then be mirrored to

cover both left and right-support phases. The details of this mirroring operation can be found in

the following section (Section 2.5).

Fig. 2.4 shows the relationship between the full-order and the reduced-order models. If we integrate

the two models forward in time with their own dynamics, the resultant trajectories will still satisfy
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Figure 2.4: Relationship of the full-order and reduced-order models. The generalized positions q
and y satisfy the embedding function r for all time, and the evolution of the velocities q̇ and ẏ
respects the dynamics f and g, respectively.

the embedding function r at any time in the future.

2.5. Definition of Mirrored ROMs

2.5.1. Definition

The model representation in Eq. (2.5) could be dependent on the side of the robot. For example,

when using the LIP model as the ROM, we might choose the generalized position of the model y

to be the CoM position relative to the left foot (instead of the right foot). In this case, we need to

find the reduced-order model for the right support phase of the robot. Fortunately, we can derive

this ROM by mirroring the robot configuration q about its sagittal plane (Fig. 2.5) and reusing the

ROM of the left support phase. We refer to this new ROM as the mirrored reduced-order model.

Let qm and vm be the generalized position and velocity of the “mirrored robot", shown in Fig. 2.5.

Mathematically, the mirrored ROM µm is

µm , (rm, g), (2.6)

with

ym = rm(q) = r(qm) = r(M(q)), (2.7a)

ÿm = g(ym, ẏm, τ), (2.7b)
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Figure 2.5: The mirror function M mirrors the robot configuration about the sagittal plane. This
function is necessary in planning and control when the embedding function (Eq. (2.5a)) of the
reduced-order model only represents one side of the robot. For example, the embedding function of
the LIP model was chosen to be the CoM relative to the left foot (and not the right foot).

where rm is the embedding function of the mirror model, and M is the mirror function such that

qm = M(q) and q = M(qm). We note that the two models, in Eq. (2.4) and (2.6), share the same

dynamics function g.

2.5.2. Time derivatives of the embedding function

Feedback control around a desired trajectory often requires the first and the second time deriva-

tives information. Here, we derive these quantities for the mirrored ROM in terms of the original

embedding function r in Eq. (2.5a) and its derivatives.

ẏm:

Let Jm be the Jacobian of the mirrored model embedding rm with respect to the robot configuration

q, such that

ẏm = Jmq̇. (2.8)

The time derivatives of ym is

ẏm =
∂r(M(q))

∂M(q)

∂M(q)

∂q
q̇ = J(qm)

∂M(q)

∂q
q̇ = J(qm)q̇m (2.9)
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where J(qm) is the Jacobian of the original model embedding r evaluated with qm. From Eq. (2.8)

and (2.9), we derive

Jm = J(qm)
∂M(q)

∂q
(2.10)

where ∂M(q)
∂q is a matrix which contains only 0, 1, and -1.

ÿm:

The i-th element of ÿm is

ÿm,i =
d

dt

(
∂ri(qm)

∂qm
q̇m

)
=

d

dt

∑
j

∂ri(qm)

∂qm,j
q̇m,j

=
∑
j

d

dt

(
∂ri(qm)

∂qm,j

)
q̇m,j +

∑
j

∂ri(qm)

∂qm,j

d

dt
(q̇m,j)

=
∑
jk

∂2ri(qm)

∂qm,j∂qm,k
q̇m,j q̇m,k +

∂ri(qm)

∂qm

d

dt
(q̇m) .

where ri is the i-th element of the embedding function. The above equation can be expressed in

the vector-matrix form
ÿm = q̇Tm∇2r(qm)q̇m + J(qm)q̈m

= J̇(qm, vm)q̇m + J(qm)q̈m

= J̇(qm, vm)q̇m + Jmv̇ (∵ Eq. (2.10))

(2.11)

where J̇(qm, vm) is the time derivatives of the J (of the original model) evaluated with the mirrored

position qm and velocity vm.

2.6. Trajectory Optimization

Chapter 5 will heavily leverage trajectory optimization within the inner loop of a bilevel optimization

problem. We briefly review it here, but the reader is encouraged to see (Betts, 2001) for a more

complete description. Generally speaking, trajectory optimization is a process of finding state

x(t) and input u(t) that minimize some measure of cost h while satisfying a set of constraints C.

Following the approach taken in prior work (Posa et al., 2013, 2016), we explicitly optimize over

state, input, and constraint (contact) forces λ(t),
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min
x(t),u(t),λ(t)

∫ tf

t0

h(x(t), u(t))dt

s.t. ẋ(t) = f(x(t), u(t), λ(t)),

C(x(t), u(t), λ(t)) ≤ 0,

(2.12)

where f is the dynamics of the system, λ are the forces required to satisfy holonomic constraints

(inside C ≤ 0), and t0 and tf are the initial and the final time respectively. Standard approaches dis-

cretize in time, formulating (2.12) as a finite-dimensional nonlinear programming problem. For the

purposes of this chapter, any such method would be appropriate, while we use DIRCON (Posa et al.,

2016) to address the closed kinematic chains of the Cassie robot. DIRCON transcribes the infinite

dimensional problem in Eq. (2.12) into a finite dimensional nonlinear problem

min
w

n−1∑
i=1

1

2

(
h(xi, ui) + h(xi+1, ui+1)

)
δi

s.t. fc(xi, xi+1, ui, ui+1, λi, λi+1, δi, αi) = 0,

i = 1, ..., n− 1

C(xi, ui, λi) ≤ 0, i = 1, ..., n

(2.13)

where n is the number of knot points, fc is the collocation constraint for dynamics, C ≤ 0 contains

all the other constraints such as the four-bar-linkage kinematic constraints, δi is a constant time

interval between knot point i and i+ 1, and the decision variables are

w = [x1, ..., xn,u1, ..., un, λ1, ..., λn, α1, ..., αn−1] ∈ Rnw ,

where α1, ..., αn−1 are slack variables specific to DIRCON. Eq. (2.13) uses the trapezoidal rule to

approximate the integration of the running cost in Eq. (2.12), simplifying the selection of decision

variables at knot points for evaluating the function h.

2.7. Heuristics in Trajectory Optimization

Solving the trajectory optimization problem in Eq. (2.13) for a high-dimensional robot is hard,

since the problem is nonlinear and of large scale. Even although there are off-the-shelf solvers such
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as IPOPT (Wächter and Biegler, 2006) and SNOPT (Gill et al., 2005) designed to solve large-scale

nonlinear optimization problem, it is often impossible to get a good optimal solution without any

heuristics, since there are many local optima. In this section, we will talk from our experience

about the heuristics that might help to solve the problem faster and also find a solution with a

lower cost and closer to the global optimum. That said, we have no objective manner in which to

assess proximity to global optimality, and thus this is a purely observational criterion.

Let the nonlinear problem be

min
w

h̃(w)

s.t. f̃(w) ≤ 0

(2.14)

where w contains all decision variables, h̃ is the cost function, and f̃ is the constraint function. It

turned out that scaling either w, h̃ or f̃ could help to improve the condition of the problem.

• w: Sometimes the decision variables are in different units and can take values of different

orders. For example, joint angles of Cassie are roughly less than 1 (rad), while its contact

forces are usually larger than 100 (N). In this case, we can scale w by some factor s, such that

the decision variables of the new problem are wscaled,i = siwi for i = 1, 2, ..., nw. After the

problem is solved, we scale the optimal solution of the new problem back by w∗i = 1
si
w∗scaled,i.

• f̃ : The constraints f̃ can take various units just like w. Similarly, we can scale each constraint

individually. Note that scaling constraints affects how well the original constraints are satisfied,

so one should make sure that the constraint tolerance is still meaningful.

• h̃: In theory, scaling the cost does not affect the optimal solution. However, it does matter in

the solver’s algorithm. It is desirable to scale the cost so that it is not larger than 1 around

the area of interest.

For more detail about scaling, we refer the readers to Chapter 8.4 and Chapter 8.7 of (Gill et al.,

1981). In addition to scaling the problem, the following heuristics could also be helpful:

• Provide the solver with a good initial guess.
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• Add small randomness to the initial guess: This helps to avoid singularities.

• Add regularization terms to the cost function: This could remove local minima in the cost

landscape and can also speed up the solve time. Adding regularization terms is similar to

the traditional reward shaping of Reinforcement Learning (Hu et al., 2020) and the policy-

regularized MPC (Bledt et al., 2017).

• Add intermediate variables (also called slack variables (Hereid and Ames, 2017)): This can

sometimes improve the condition number of the constraint gradients with respect to decision

variables. One example of this is reformulating the trajectory optimization problem based on

the single shooting method into that based on the multiple shooting method by introducing

state variables (Betts, 1998).

• Use solver’s internal scaling option: In the case of SNOPT (Philip et al., 2015), we found

setting Scale option to 2 helps to find an optimal solution of better quality. Note that this

option increases the solve time and demands a good initial guess to the problem.

2.8. Bilevel Optimization

Our formulation in Chapter 5 can be broadly categorized as bilevel optimization (Bracken and McGill,

1973). We briefly review its basics here. The basic structure of our bilevel optimization problem

is written as

min
θ

[∑
i

min
w

Ψi(w, θ)

]
(2.15)

The goal is to minimize the outer-level objective function
∑

i Ψi(w
∗
i (θ), θ) with respect to θ, where

w∗i (θ) is obtained by minimizing the inner-level objective Ψi(w, θ) parameterized by θ. Bilevel

optimization has recently been used in various applications such as meta-learning (Franceschi et al.,

2018), reinforcement learning (Rajeswaran et al., 2020), robotics (Jin et al., 2022; Pfrommer et al.,

2021), etc.

Solving a bilevel program is generally NP-hard (Sinha et al., 2017). There are two types of methods

to approach bilevel optimization. The first type is constraint-based (Hatz et al., 2012; Shi et al.,
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2005), where the key idea is to replace the inner level optimization with its optimality condition

(such as the KKT conditions (Kuhn and Tucker, 1951)), and finally solve a “single-level” constrained

optimization. However, those methods are difficult to apply to the problem of our work, because

our inner-level is a trajectory optimization, and replacing it with its optimality condition will addi-

tionally introduce a large number of dual variables and co-states, dramatically increasing the size

of the single-level optimization. The second type is gradient-based (Jin et al., 2020; Domke, 2012).

The idea is to maintain and solve the inner-level optimization, and then update the outer-level

decision variable by differentiating through the inner-level solution using graph-unrolling approx-

imation (Domke, 2012; Das et al., 2021) or implicit function theorem (Krantz and Parks, 2002).

Compared to constraint-based methods, gradient-based methods maintain the bilevel structure and

make bilevel optimization more tractable and efficient to solve.

In this work, we use the Envelope Theorem (Afriat, 1971; Takayama and Akira, 1985) and exploit

the fact that our problem uses the same objective functions in the outer level and the inner level. This

structure enables us to develop a more efficient gradient-based method (the second type) to solve our

problem. Specifically, the gradient of the outer-level objective does not require differentiating the

solution of the inner-level optimization with respect to the parameters. This leads to two numerical

advantages of our method over existing gradient-based methods. First, our method bypasses the

computationally intensive implicit theorem, which requires the inverse of Hessian of the inner-level

optimization. Second, our method leverages the inner-loop solver’s understanding of active and

inactive constraints, avoiding implementing the algorithm ourselves and avoiding tuning parameters

such as the active set tolerance.
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CHAPTER 3

RELATED WORKS

In this chapter, we provide the existing works pertaining to our main contributions of this thesis

(in Chapters 4, 5 and 6).

3.1. Whole-body Orientation for Legged Robots

For complex tasks, such as human-like walking and running, back-flips or aggressive turning, we

typically need to consider the orientation of the robot beside the center of mass (CoM). In reg-

ulating orientation, many researchers have used models based on centroidal angular momentum

(Orin and Goswami, 2008; Dai et al., 2014). Centroidal angular momentum models are usually

based on velocity level constraints, and tend not to readily produce an (unique) absolute orien-

tation coordinate for the entire system. Other researchers use a single rigid body (SRB) model

(Bledt et al., 2018), where a single SO(3) coordinate represents the entire robot’s orientation. The

choice for this single body may stem from the morphology and mass distribution of a specific

robot. For example, for robots with a heavy torso and light limbs, such as the MIT Mini Chee-

tah (Katz et al., 2019), the torso orientation can act as a good proxy for total system orientation.

However, for robots with relatively heavy and/or long limbs, where appreciable mass is distributed

throughout the system and far from the CoM (e.g IHMC Nadia (Nad) and Agility Robotics Cassie

(Batke et al., 2022)), the coordinate choice for system orientation is much less clear. Proposing a

useful whole-body orientation coordinate for these types of systems, that is not attached to any

specific link on the robot, is the focus of this chapter.

Unlike the CoM, a weighted averaging of each link’s orientation does not produce a consistently

meaningful whole-body orientation. To derive this orientation, some have used angular excursion,

which is an integral of an angular velocity about the CoM derived from centroidal angular momen-

tum (Zordan et al., 2014). However, there is not a unique angular excursion value for a defined

joint configuration, as the integral is path dependent. Another approach uses the principal axes of

the whole-body inertia tensor to derive a whole-body orientation (Du et al., 2021). This approach
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also relies on the history of the axes in order to produce a meaningful continuous orientation.

Researchers in geometric mechanics have, for about a decade, devised ways of finding history-

independent optimal coordinates, called theminimum perturbation coordinates (Travers et al., 2013;

Hatton and Choset, 2011, 2015). However, to our knowledge, no literature has yet shown the

application of these coordinates to a complex dynamic robot (except for Boston Dynamics’ patent

(Khripin and Rizzi, 2016)), and they remain less prevalent than other approaches.

3.2. Model Order Reduction and ROM Optimization for Legged Robots

Classical approaches to reduced-order modeling often seek to find low-dimensional models which

approximate some collected data (e.g. in approximating the solutions to fluid dynamics

(Peherstorfer and Willcox, 2015)). For a controlled system, such as a bipedal robot, the data is

necessarily a product of the control policy, and thus the data and the ROM-induced controller are

invariably intertwined. Nonetheless, recent work in locomotion has attempted this classical ap-

proach via model-based RL (Yang et al., 2020), or via robust control (treating the gap between a

ROM and the full model as a disturbance (Pandala et al., 2022)).

In contrast, we jointly optimize over the ROM and the induced control policy. Robot actuators are

partially utilized to ensure that the system behaves like the reduced-order model, up to the limits

of control performance. With this perspective, a good ROM is not one that matches some existing

set of robot behaviors. Rather, we find task-optimal ROMs that maximize robot performance when

deployed in conjuction with modern model-based planning and control architectures. Specifically,

both Chapter 5 and Chapter 6 evaluate this performance via a user-specified objective function.

Several researchers have sought to enhance the performance of the reduced-order model by mixing

it with a full model in the planning horizon of MPC. Li et al. (Li et al., 2021) divided the horizon

into two segments, utilizing a full model for the immediate part and a reduced-order model for

the distant part. Subsequently, Khazoom et al. (Khazoom et al., 2023) systematically determined

the optimal scheduling of these two models. Norby et al. (Norby et al., 2022) blended the full

and reduced-order models while adaptively switching between the two. Our work is different from
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these existing works in that we directly optimize a reduced-order model instead of reasoning about

scheduling two models to improve the overall model performance.

3.3. Model-based Reinforcement Learning for Legged Robots

Model-based planning and control have shown significant success for many years in navigating

legged robots(Kuindersma et al., 2016; Ackerman, 2012; Marion and the team; Gibson et al., 2022;

Xiong and Ames, 2022; Wensing et al., 2022). For example, Boston Dynamics’s bipedal robots per-

formed parkour and natural walking (Marion and the team; PET), while SRI’s humanoid DURUS

achieved high energy efficiency in walking (Reher et al., 2016; Ackerman, 2015). Moreover, hav-

ing robot models makes it possible to analyze the system stability and provide stability or safety

guarantees via techniques such as capturability (Koolen et al., 2012b), sums of squares (Posa et al.,

2017b), hybrid zero dynamics (Westervelt et al., 2003) or control barrier functions (Ames et al.,

2019; Nguyen et al., 2016; Khazoom et al., 2022). However, as these methods can be computation-

ally costly, reduced-order models (ROMs) are frequently deployed to achieve real time planning and

control, albeit at the cost of reduced performance (Wensing et al., 2022; Chen et al., 2023a).

On the other hand, model-free reinforcement learning (RL) has emerged as a powerful tool for au-

tomatically synthesizing high-performance control policies (Siekmann et al., 2021; Crowley et al.,

2023; Dao et al., 2022; Ma et al., 2023; Miki et al., 2022). Siekmann et al. highlighted the ro-

bustness achieved by a neural network (NN) policy in blind stair-walking (Siekmann et al., 2021),

while Ma et al. developed a policy utilizing a robot’s arm for fall damage mitigation and recovery

(Ma et al., 2023). These works demonstrate that neural networks, as universal approximators, en-

able robots to excel in specific tasks. However, model-free polices lack interpretability, rendering

the existing model-based stability and safety techniques unsuitable. Additionally, the model-free

methods struggle with generalizing policies to new task parameters without policy retraining, as

task space parameterization is determined during the training phase. For example, the policy de-

scribed in (Ma et al., 2023) effectively recovers a fallen robot but does not consider walking velocity

commands. To enable the robot to walk, it is necessary to incorporate these velocity commands

as additional inputs to the NN and undergo a fresh policy training process. Moreover, robots may
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encounter a wide array of potential tasks, such as footstep timing, adaptive limb adjustment dur-

ing hardware failure, head movement for item detection, whole-body interactions between arms

and legs, or collaborative furniture carrying with humans. Thus, it is impractical to enumerate all

possible tasks to avoid future policy retraining.

Our work in Chapter 6 attempts to combine model-based planning and control with reinforcement

learning framework to obtain the best of both worlds in the context of bipedal locomotion. It aims

to retain the physical intepretabilty and the task flexibility of the model-based approach and utilizes

the RL capability in maximizing the robot performance. Specifically, we use model predictive control

(MPC) as the model-based control policy and learn a model within the MPC that maximizes the

robot’s performance via RL.
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CHAPTER 4

INTEGRABLE WHOLE-BODY ORIENTATION FOR LEGGED ROBOTS

Parts of this chapter were previously published as parts of Yu-Ming Chen, Gabriel Nelson, Robert

Griffin, Michael Posa, and Jerry Pratt. Integrable whole-body orientation coordinates for legged

robots. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

©2023 IEEE. Gabe Nelson formulated the problem to find the whole-body orientation and devised

an algorithm to solve the problem. The remaining included portions represent original contributions.

In this chapter, we look at a special case of ROM optimization where we aim to find an embedding

function r that minimizes centroidal angular momentum errors. Specifically, we aim to create an

integrable (history and path invariant) measure of whole-body orientation for multi-link humanoid

and legged robots, where this orientation coordinate (e.g. an angle, or Euler angles, or quaternion,

etc.) has dynamically analogous behavior to a CoM, but crucially in an angular sense. For example,

once formulated, our desire would be that, should there be no external moments acting on the

system, this orientation coordinate would remain at rest or rotate at a constant speed. We call

this coordinate the integrable whole-body orientation (abbreviated WBO in this thesis), though it

has been called the minimum perturbation coordinates for general coordinates (other than SO(3)

coordinates) (Hatton and Choset, 2011; Travers et al., 2013). As such, we design the WBO to have

the same mathematical form as other forward kinematics quantities such as a hand position, or the

CoM. Thus, most or all tools and techniques that apply to forward kinematics can be applied to a

WBO, such as inverse kinematics, task-space control and planning, etc. The accompanying video

for this chapter can be found at https://www.youtube.com/watch?v=p4nRva-AcMU.

This chapter is organized as follows. Section 4.1 uses simple 2D examples to introduce our WBO.

Section 4.2 extends this to complex 3D systems and demonstrates the WBO algorithm with Nadia

and Cassie. Sections 4.3 and 4.4 apply the derived WBO in walking and running controllers. Section

4.5 summarizes this chapter and describes future work.
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Figure 4.1: Left: The humanoid Nadia walking with arm swing and spine yaw rotation induced
by tracking WBO. Right: The simulated biped Cassie running and turning with the whole-body
orientation (WBO) coordinate visualized at the CoM.

Figure 4.2: While linear momentum is integrable, angular momentum is generally not
(Nakamura and Mukherjee, 1990; Saccon et al., 2017).
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4.1. Whole-body Orientation of Simple Systems

4.1.1. Motivation and Problem Definition

Fig. 4.2 conceptually compares standard centroidal translational and rotational quantities often

used in whole-body control. While the total system CoM (a position), and linear and angular

momenta are concrete properties of a multibody system, there is in general no unique rotational

coordinate (an orientation) corresponding to system CoM. Differentiation of system CoM (scaled

by total mass) will arrive at linear momentum. Angular momentum though, for general systems,

is not integrable (Nakamura and Mukherjee, 1990), highlighting that angular momentum does not

represent differential motion along any unique history or path invariant manifold in configuration

space.

Thus, as discussed above, the WBO is an effort to approximate an angular measurement for the

upper-right quadrant in Fig. 4.2. For general systems, it will be an angle, a set of Euler angles,

or a quaternion, etc. Its value is a manufactured quantity (but not without physical relevance). It

is the result of a design process that can take various forms, and we present one approach in this

chapter that we have found useful.

Often this topic involves a larger, typically formal, mathematical discussion about differential cal-

culus and geometric mechanics, which we will consider beyond the scope of this work. Deeper

treatments can be found in (Travers et al., 2013; Hatton and Choset, 2011, 2015). Our goal is

rather to provide a concise WBO formulation recipe, and demonstrate its initial use on a few legged

robots.

We propose the following benefits from using a WBO for legged robots: (1) As a dynamically

relevant WBO for controller tracking: e.g. providing a feedback signal for a proportional term

on WBO control; (2) For planning WBO motions or changes; (3) For encouraging low angular

momentum behavior for steady-state walking or running (Popovic et al., 2005; Erez and Todorov,

2012; Miyata et al., 2019). We believe that a suitable WBO measure for an anthropomorphic robot

can aid in producing more natural looking movement, since the whole-body orientation control can
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be achieved by regulating the WBO directly, rather than controlling the orientation of some specific

base link (often the pelvis or torso of the robot). This means the base link is now free to be treated

as just another link on the robot, available for other user-specified objectives: e.g. smoothing system

CoM motion by extending leg reach or stride length, stepping while ascending/descending terrain,

whole-body reaching motions, etc.

4.1.2. The Bar-and-Flywheel Model

We propose the following simple example as an aid in understanding the WBO that we intend to

find. The example has simple and complex versions, which are meant to demonstrate what the

WBO does and does not represent.

Fig. 4.3 shows a planar “Bar-and-Flywheel” model: a long solid bar attached, at its CoM, to the

axis of a flywheel via a rotary joint. The bar and flywheel have mass properties as indicated, and

are free floating with no gravity or external forces acting. θ is the bar orientation in an inertially

fixed world-frame, and φ is the flywheel orientation relative to the bar. A motor actuates the joint

between the bar and flywheel. Thus, the bar represents the base of a multibody system, and the

flywheel is an outboard body connected to the base by an actuated joint. The angular momentum

about the CoM, also called the centroidal angular momentum (CAM), is

HCoM = (IB + IF )θ̇ + IF φ̇. (4.1)

In our definitions, we will delineate base orientation (θ in this example; in general a SO(3) repre-

sentation) from joint positions or joint configuration (φ in this example; in general represented by

the vector q).

Let the system start at rest with φ = 0 (Fig. 4.3a). If the motor drives the flywheel counter-

clockwise, the reaction torque will rotate the bar in the opposite direction. These rotation directions

are indicated by the green arrows. Fig. 4.3b shows both the starting (dashed lines) and ending

configurations. We would like to understand how the bar moves due to the motion of the flywheel.

An important relationship often used in these problems is the reconstruction equation, which includes
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(a) The starting configuration (φ = 0)

(b) The ending configuration (φ > 0)

Figure 4.3: Bar-and-Flywheel model (an integrable system). The motor rotates the flywheel counter-
clockwise.

a local connection (Hatton and Choset, 2011). The reconstruction equation describes what we have

simulated going from Fig. 4.3a to Fig. 4.3b: It maps velocities in joint space (φ̇) to the velocity

of the base (θ̇), as the base will counter-rotate due to changes in joint space. In this example

(HCoM = 0), this reconstruction equation is

θ̇ = − IF
IB + IF

φ̇, (4.2)

where the coefficient in front of φ̇ (without the negative sign) is the local connection. We can see
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that Eq. (4.2) can be integrated directly and also lets us predict the change in θ. Let ∆θ and ∆φ

be the changes in the angles. We define

ψrel , −∆θ =
IF

IB + IF
∆φ, (4.3)

and we note that ∆φ = φ since the starting position of φ is 0. In Fig. 4.3b, we label these various

angles. The initial orientation of the bar, relative to the world, will be called ΨWbo. In a general

configuration, we can predict the final orientation of the system using Eq. (4.3):

ΨWbo = θ + ψrel = θ +
IF

IB + IF
φ. (4.4)

This ΨWbo is the WBO of the system. Note that ψrel is the relative orientation of the WBO to the

base (bar), such that the final ΨWbo will be a base orientation relative to the world plus ψrel.

For this simple system, conservation of angular momentum dictates that ΨWbo will never change,

regardless of how we actuate the motor. Differentiating Eq. (4.4), we have (after some rearrange-

ment)

(IB + IF )Ψ̇Wbo = (IB + IF )θ̇ + IF φ̇. (4.5)

Note that the right hand sides of Eq. (4.1) and Eq. (4.5) are the same. Thus:

HCoM = (IB + IF )Ψ̇Wbo. (4.6)

Eq. (4.6) shows that the WBO has behavior analogous to a center of mass, but in a rotational sense:

it represents an underlying orientation state for the system that can only be changed by external

moments. The effective WBO mass moment of inertia (MoI) is, not surprisingly, the sum of the

MoI’s of the bar and flywheel.

TheHCoM above is an integrable differential form, meaning it can be derived from the differentiation

of a manifold in configuration space, independent of the joints’ history. This manifold can be

expressed exactly as Eq. (4.4).

26



Figure 4.4: Bar-and-Flywheel model with an actuated prismatic joint (a non-integrable system).
This system can reorient itself without external torques. For example, the entire system can ro-
tate counter-clockwise if the joints (d, φ) repeat the following cyclic motion: (0, 0) → (l/2, 0) →
(l/2, π/2)→ (0, π/2)→ (0, 0), where l is the length of the bar.

Also, looking at the left and right-hand sides of Eq. (4.6), we could think of a system having two

representations of angular momentum: the actual system angular momentum about the CoM in

Eq. (4.1), and an approximated angular momentum based on Ψ̇Wbo in Eq. (4.6). For this integrable

example system, we see that these angular momentum representations are equivalent, though for

general systems (usually non-integrable) they are not.

We now extend this model by adding a long slot that allows the flywheel to slide along the length

of the bar (Fig. 4.4). A linear actuator controls this movement, and d is the offset of the flywheel

axis from the CoM of the bar. This change increases the size of our joint space (q) to 2 dimensions:

q = [d, φ]T . The new CAM is

HCoM = (IB + IF +
mBmF

mB +mF
d2)θ̇ + IF φ̇. (4.7)

If d is fixed, then this system is much the same as the simpler Bar-and-Flywheel model above. If,

though, d is allowed to change, the angular momentum becomes non-integrable, and the goal of

our WBO formulation becomes contriving a differentiable and time independent function for ψrel

that, when differentiated with respect to q, maximally approximates the local connection of the actual

system over a user-defined region of joint-space. We will call this contrived function ψ̃rel(q). Like
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Eq. (4.2), the reconstruction equation is found by setting HCoM = 0 in Eq. (4.7) and solving for θ̇:

θ̇ = −
[
0 IF

IB+IF+
mBmF
mB+mF

d2

]
1×2

ḋ
φ̇


2×1

, (4.8)

where the 1x2 matrix is the local connection, which is a function of d. In mathematical terms, the

goal (stated above) is finding a differentiable function ψ̃rel(q), such that

[
∂ψ̃rel(q)
∂d

∂ψ̃rel(q)
∂φ

]
≈
[
0 IF

IB+IF+
mBmF
mB+mF

d2

]
. (4.9)

Coming up with this function is the core design process, bearing in mind that an exact fit is

impossible owing to the non-integrability of the physical system. For instance, an example function

for ψ̃rel(q) could be c1 d
2φ+ c2 d

2φ3 + c3 φ+ c4 φ
3, where the coefficients ci are found numerically in

order to maximize the approximation implied by Eq. (4.9) over a user-defined region in joint-space.

Our final WBO now becomes (like Eq. (4.4)):

Ψ̃Wbo , θ + ψ̃rel(q). (4.10)

Finally we note that, mirroring Eq. (4.6), we now have actual and approximated representations

for angular momentum (approximation resulting from Eq. (4.9)):

HCoM ≈ H̃CoM (4.11)

with

H̃CoM = (IB + IF +
mBmF

mB +mF
d2) ˙̃ΨWbo, (4.12)

where

˙̃ΨWbo = θ̇ +

[
∂ψ̃rel(q)
∂d

∂ψ̃rel(q)
∂φ

]ḋ
φ̇

 . (4.13)

The main compromise in our approach is approximating a non-integrable differential system with
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Figure 4.5: The humanoid Nadia (left) and frames of interest (right). W , B and Wbo are the world
frame, base frame and the WBO frame, respectively. QW,B is the base orientation in the world, and
QB,Wbo is the orientation of the WBO frame relative to the base. Translationally, we locate the
WBO frame at the CoM for convenience.

Bar-Flywheel in 3D

joint configuration [d, φ] q

base orient. r.t. world θ QW,B

WBO r.t. base ψ̃rel Q , QB,Wbo

WBO r.t. world Ψ̃Wbo QW,Wbo

r.t. = relative to Q = Quaternion

Table 4.1: Notation definitions and correspondences

an integrable one. This “collapses” explicit representation of the nonholonomic motion of the actual

physical system (Nakamura and Mukherjee, 1990; Hatton and Choset, 2011, 2015). Our WBO will

still measure nonholonomic motions, but its resulting dynamics will not correspond with fidelity to

the actual externally applied moments.

4.2. Whole-body Orientation of Complex Robots

4.2.1. Extending WBO to 3D

The goal of this section is to express Eq. (4.9) in the general 3D case, while the concepts discussed

using the Bar-and-Flywheel models remain the same. Table 4.1 will be important in translating
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this structure into 3D. Fig. 4.5 shows the relevant frames, corresponding conceptually to Fig. 4.3b.

We begin by translating Eq. (4.11) into 3D. The 3D angular momentum is

HCoM = MBωB +Mq q̇ = MB[ωB +Aq̇], (4.14)

where MB and Mq are base and joint space centroidal momentum matrices (Orin and Goswami,

2008), A , M−1
B Mq is the local connection and a function of q, ωB is the angular velocity of the

base relative to the world expressed in the base frame, and q̇ are the joint velocities. For the WBO,

we have an approximated angular momentum

H̃CoM = MB[ωB + Ãq̇], (4.15)

where Ã will be the approximated local connection as discussed in arriving at Eq. (4.9). In 3D,

trying to minimize the differences between these two representations (Eqs. (4.14) and (4.15)) means

making:

Aq̇ ≈ Ãq̇. (4.16)

We will keep q̇ on both sides of the approximation until we sort out the 3D rotation representation

for WBO in Section 4.2.2. We note that Aq̇ on the left hand side of Eq. (4.16) is the relative angular

velocity of the system (Miyata et al., 2019). On the other hand, ΩWbo , Ãq̇ is the angular velocity

of the WBO frame relative to the base, expressed with respect to the base frame.

Paralleling the 2D example above (see Table 4.1), we would like to find a function for Q , QB,Wbo.

This represents the WBO frame orientation relative to the base. Thus, ΩWbo can be expressed from

the quaternion rate Q̇ using

ΩWbo = 2RQEQQ̇ (4.17)

where RQ is the rotation matrix representation of Q, and the matrix 2 ·EQ maps a quaternion rate

to an angular velocity (details are omitted here for brevity; see (Wie and Barba, 1985)).
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Algorithm 1 WBO optimization
Input: N random joint configurations qi, i = 1, ..., N
Output: Θ∗

1: Θ← 0 (initialize to constant identity rotation)
2: repeat
3: Substitute Q(qi; Θ) into TQ in Eq. (4.20) for i = 1, ..., N
4: Θ← Solve Eq. (4.20) with given TQ
5: until convergence
6: return Θ

4.2.2. Parameterization and Optimization Algorithm

Noting that Q has two portions Q = [Qs; Qx,y,z], we now parameterize Qx,y,z by a vector of basis

functions λ(q) with dimension nλ:

Qx,y,z(q; Θ) = Θλ(q), (4.18)

where Θ ∈ R3×nλ is a coefficient matrix. Qs can be recovered from the unit norm constraint

‖Q‖22 = 1. Similarly, we take the time derivatives of Qx,y,z and recover Q̇s from d
dt‖Q‖

2
2 = 0. These

algebraic manipulations will lead to a final form:

Ãq̇ = TQΘJλq̇ (4.19)

where TQ and Jλ are functions of q and are respectively defined as

TQ , 2RQEQ

−Q−1
s QTx,y,z

I3×3

 ∈ R3×3, and

Jλ ,
∂λ(q)

∂q
∈ Rnλ×nq .

Given Eq. (4.16), our objective is to minimize the difference between A and Ã, both of which are

functions of q. Since minimizing the difference over an infinite number of q in a region of joint space

is often intractable, we pre-select N number of random configurations (uniformly distributed in the
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robot’s operating joint space) to simplify the problem:

min
Θ

1

N

N∑
i=1

‖Ai − TQiΘJλi‖2F (4.20)

where ‖ · ‖F is the Frobenius norm. Given our choice in Eq. (4.18), we note that A and Jλ are

independent of Θ, while TQ is nonlinear in Θ.

One can solve Eq. (4.20) with many nonlinear solvers. In practice, we found that our simple

algorithm in Alg. 1 works. The algorithm exploits the structure of the cost function by identifying

that Eq. (4.20) is a least squares problem if TQ is given. In each iteration, we first substitute the

current solution Θ into TQ to turn (4.20) into a least squares problem2, and then solve the problem

to get a new solution Θ. We repeat the above steps until Θ converges. This algorithm is similar

to the Gauss-Newton method, differing in that it avoids linearizing the objective function at the

solution in each iteration.

4.2.3. WBO Optimization and Result

We optimized for an WBO function for Nadia (Fig. 4.5) using Alg. 1. Nadia is a humanoid robot

with 31 degrees of freedom (DoF) – 6DoF legs, 7DoF arms, 1DoF grippers and a 3DoF spine. We

randomly select 1000 configuration pairs mirrored about the sagittal plane (so N = 2000). We also

keep the gripper, wrist and ankle joints at neutral positions, because their contribution to the CAM

is relatively small. This reduces the configuration space (q) to 19 dimensions. The basis functions

are monomials in terms q, with all possible monomials up to 3rd order being used (e.g. qi, q2
i ,

qiqj , q3
i , q

2
i qj , ...), producing 1539 basis functions. The optimization converged smoothly in about 2

minutes or 10 iterations. After the optimization, we dropped terms with coefficients (in Θ) smaller

than 1e-8.

In addition to Nadia, we also optimized a WBO function for Cassie running (Fig. 4.1). Cassie has 16

joints. We ignored the toe and ankle spring joints during optimization, reducing the configuration

space to 12 dimensions. The optimization converged within 10 seconds and 7 iterations.
2The Kronecker product identity vec(XY Z) = ZT ⊗X vec(Y ) is useful in vectorizing the matrix Θ in preparation

for solving the least squares.
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(a) Angular velocities of one step of Nadia robot walking on flat ground.
The solid and dashed lines are Aq̇ and Ãq̇ in Eq. (4.16), respectively.
The spikes around 0.6 seconds are from the swing foot impact event
and the feedback reaction of the walking controller.

(b) The solid lines are the real CAM HCoM in Eq. (4.14), and the
dashed lines are the approximated CAM by the WBO H̃CoM in Eq.
(4.15).

Figure 4.6: Comparisons between real and approximated quantities. The data is from a simulation
where Nadia walked in a straight line at 0.6 m/s.

By comparing actual (measured) and approximated quantities, we can evaluate our WBO approx-

imation at different signal scales. For Nadia walking, Fig. 4.6a plots both sides of Eq. (4.16).
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Average angular velocity errors for each axis are about [0.034, 0.035, 0.061] rad/s. Fig. 4.6b plots

Eqs. (4.14) and (4.15). We see that HCoM and H̃CoM , which are larger signals dominated by base

motion, are relatively close: average errors for each axis are about [0.74, 0.84, 0.32] kg ·m2/s. Thus,

WBO reflects the actual HCoM in a meaningful way.

4.3. Walking Example

In this section, we design a walking controller for Nadia using the WBO derived in Section 4.2.3,

and show that a WBO reference tracking can induce natural upper body motions during walking

(Fig. 4.1).

4.3.1. Controller

Fig. 4.7b shows our WBO controller, while Fig. 4.7a shows the baseline controller which fixes the

desired joint positions for the upper body. Each controller has a planner that generates desired

trajectories. These are then converted into acceleration commands by the feedback controllers

shown in the diagrams. With the acceleration commands, we use an inverse dynamics whole body

controller (the rightmost block in each diagram in Fig. 4.7) to get the desired actuator commands

for the robot (Koolen et al., 2016a). We can roughly separate the controller into leg and upper body

parts. The leg part handles tracking the desired path and heading of the robot, while the rest of

the controller handles the upper body motion.

Legs

This part of the controller is the same between the baseline and WBO controllers. We use Capture

Point (CP) control for the locomotion task (Koolen et al., 2012b; Seyde et al., 2018). The footsteps

are generated given desired velocity commands from a higher level controller. The planner outputs

a reference Centroidal Moment Pivot trajectory that is converted into a linear momentum rate

command in the feedback controller, which is sent to the inverse dynamics controller.
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Upper body

Our short-term goal was getting more natural arm swing and spine yaw rotation by servoing just

WBO yaw3. In Fig. 4.7b, we servo the WBO yaw axis relative to the world frame, while both

the pelvis and the upper body tasks reside in the null space of the WBO task. In simulation,

we achieved straight-line walking with this controller. When moving to hardware, we temporarily

focused on demonstrating arm swing and spine yaw rotation. To do so, we servoed the pelvis

orientation relative to the world and regulated the WBO yaw angle relative to the pelvis to 0. More

complex motions have been left to future work, where we would like to take full advantage of our

WBO.

We use a task hierarchy (Hutter et al., 2013) in our whole body controller, shown in Fig. 4.7 as

“Tiers". In experiments, we noticed that the inverse dynamics QP solver would trade swing foot

orientation tracking performance for WBO tracking performance. This happened when the robot

could not regulate WBO yaw to 0 with only the upper body. Thus, in order to prevent the WBO

task from impairing the leg tasks, we set the WBO task to a lower priority than the leg tasks.

Besides the above task objectives, we also add nominal joint configuration tracking to handle the

system’s redundancy. This task can exist in the null space of the WBO task or at the same level as

WBO. The parameters for this upper body joint controller can be used to sculpt the desired motion.

For example, increasing the cost weight on the spine joint achieves more arm swing and less spine

rotation.

Joint limits

The joint limit controller takes current joint positions and ranges of motion, and outputs limits on

joint accelerations for the whole body controller. These limits are used for self-collision avoidance

and aesthetics. Because the legs on Nadia are much heavier than the arms, when regulating the

WBO yaw to 0, the robot can generate excessive arm swing or spine rotation. Thus, self-collision

avoidance helps contain these motions, and therefore affects WBO tracking and overall appearance.
3In our experiments, we found that arm swing and spine yaw rotation were mostly induced by servoing the WBO

yaw angle to zero. Additionally, Miyata et al. (Miyata et al., 2019) only used the yaw part of angular momentum to
generate the arm swing.

35



(a) Controller with constant desired joint positions of the upper body.

(b) Controller with WBO-induced upper body motions.

Figure 4.7: Controller diagrams. Each diagram is composed of a high-level planner, low-level
feedback controllers and an inverse-dynamics quadratic program (QP). Blue color highlights the
difference between the two controllers. Red color is used for indicating the task priorities. Tier
0 is implemented as a constraint in the QP, while other Tiers are implemented via cost functions
in the QP. Additionally, Tier n has higher priority than Tier n + 1 for n > 0. We use the null-
space projection technique to prioritize tasks (Hutter et al., 2013). The zeros and nominal joint
configuration in the planner are constant trajectory sources.

We note that conventional momentum approaches (Erez and Todorov, 2012; Miyata et al., 2019)

would also exhibit this same behavior on Nadia.

4.3.2. Experiment Result

In both simulation and hardware experiments, we saw natural upper body motion induced by

tracking a constant WBO. Additionally, although the controller for the upper body motion was

designed for straight-line walking, we found that, in simulation, the robot was also able to walk

forward, backward, sideways, and turn. The video clips can be found in the introduction of this
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(a) Simulation (average walking speed ≈ 0.6 m/s)

(b) Hardware (average walking speed ≈ 0.37 m/s)

Figure 4.8: The CAM about the z axis when Nadia walked in a straight line. We note that there
were issues with Nadia’s leg actuator at the time of hardware experiment and the update rate of
the control loop was not fast. These issues partially caused the non-smoothness in the hardware
plot.

chapter.

Fig. 4.8 shows the z-component of CAM of straight-line walking for both the WBO and the baseline

controller. We see that the angular momentum profiles look similar between the simulation and

hardware, and that the CAM is 50% smaller when the desired WBO yaw is set to 0. Joint limit

constraints prevent the CAM from tracking closer to zero. Additionally, we observed in simulation

that the WBO controller reduces foot yaw moment against the ground. These are some of the

advantages of using the upper body to counter moments generated by the legs during walking
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Figure 4.9: The CAM about the z axis when Cassie runs at 2.7 m/s and follows a desired yaw
trajectory that goes from 0 to π/2 rad in 10 seconds.

(Miyata et al., 2019).

The conventional approach to generating natural upper body motions is directly minimizing the

CAM (Erez and Todorov, 2012; Miyata et al., 2019). The downside of this approach is that the

CAM controller is a feedback controller based on mutually constrained velocities rather than posi-

tions. Thus the upper body configuration could gradually drift away from a neutral target unless

care is taken. To address this, a competing control objective is typically introduced that servos the

robot, or some specific link on the robot, back to a desired orientation relative to the world. In

contrast, a control law based on the WBO provides a single desired orientation for the entire robot,

and thus need not employ competing objectives.

4.4. Running Example

Besides the walking example, we also want to test our WBO on a slightly more agile motion. For

this, we implemented two running controllers on Cassie.

4.4.1. Controller

The baseline running controller uses a finite state machine with four states – left stance, left flight,

right stance and right flight. The state transitions are triggered by foot touch-down and lift-off

events. In the left/right stance state, the stance leg behaves like a vertical virtual spring, the pelvis

pitch and roll angles are regulated to 0, and pelvis yaw follows a desired trajectory. The swing leg
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uses a Raibert-style control law (Raibert, 1986), while the leg length is determined by the nominal

leg length at touchdown. In the flight state, the controller continues to track the desired orientation

of the pelvis and the desired positions of the leading swing foot. The desired pelvis orientation is

relative to the world frame.

The second (preliminary) running controller is the same as the baseline controller, except that we

replace the pelvis yaw with WBO yaw.

4.4.2. Experiment Result

In our experiments, Cassie is commanded to run at 2.7 m/s in the Drake simulator (Tedrake, 2019).

We also set a desired yaw trajectory, which goes from 0 to π/2 rad linearly in 10 seconds. The

baseline controller tracks this desired yaw with the pelvis, while the WBO controller tracks it with

WBO. Fig. 4.9 shows the CAM of Cassie. We can see that the momentum oscillates less with the

WBO controller (more than a 26% reduction). This reduction is due to the WBO representing the

orientation of the entire system, and the total momentum is approximated by its time derivative

via Eq. (4.15). Also, the WBO controller is able to adjust the desired pelvis orientation when the

legs move. In contrast, the baseline controller considers the pelvis motion only and ignores the

contributions from the legs. One could, of course, regulate the CAM while tracking the desired

orientation of the pelvis, but these two objectives could conflict since the pelvis alone does not

represent the entire system well. The advantage of the WBO approach here is the consistency

between the orientation-tracking and momentum objectives.

4.5. Conclusion and Future Work

We introduced the integrable whole-body orientation (WBO) with simple examples and clear prob-

lem motivation, so it is more accessible to a general robotic audience. A formulation of the WBO

problem was provided, including an algorithm that solves the problem quickly by exploiting its

structure. WBO functions were synthesized offline for the Nadia and Cassie robots, and were then

used to induce arm swing and spine yaw rotation in a walking example and to turn the robot’s

global orientation in a running example.
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The WBO enables us to servo the orientation of the entire system. Thus, it can free up the base

link (e.g. pelvis) to achieve high-level goals such as natural walking with natural pelvis motion and

stepping up/down terrain. In this work, we mostly demonstrated more natural arm swing and spine

rotation. Future work will utilize the WBO to achieve more complex behaviors, such as whole-body

natural walking. Another area of future research involves incorporating high-level planning for the

WBO trajectories (e.g. using the SRB model in planning), which could potentially enable more

agile motions for the robots. Lastly, this chapter does not explore the impact of WBO on system

stability, leaving it for further investigation. However, a prior study (Posa et al., 2017b) found larger

regions of attraction for balance and step recovery by moving from a point-mass to SRB model. We

believe substituting WBO for the SRB model could also improve stability for the above systems.
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CHAPTER 5

OPTIMAL REDUCED-ORDER MODELING OF LEGGED LOCOMOTION

Parts of this chapter were previously published as parts of Yu-Ming Chen and Michael Posa. Optimal

reduced-order modeling of bipedal locomotion. In 2020 IEEE International Conference on Robotics

and Automation (ICRA), pages 8753–8760. ©2020 IEEE, and also as parts of Yu-Ming Chen,

Jianshu Hu, and Michael Posa. Beyond inverted pendulums: Task-optimal simple models of legged

locomotion. arXiv preprint arXiv:2301.02075, 2023.

This chapter generalizes Chapter 4 to optimize a model (both embedding function r and the reduced-

order dynamics g) with respect to any user-specified objective function. Specifically, we propose a

model optimization algorithm that automatically synthesizes reduced-order models, optimal with

respect to a user-specified distribution of tasks and corresponding cost functions. All videos and

code of this chapter can be found at https://sites.google.com/view/ymchen/research/optimal-rom.

This chapter is organized as follows. Section 5.1 formulates the model optimization problem, pro-

vides an algorithm that solves the problem, and finally demonstrates model optimization with a

few examples. Section 5.2 introduces an MPC for a specific class of ROMs. Section 5.3 uses this

MPC to embed a ROM into the robot, and compares and analyzes the performance improvement

in trajectory optimization, in simulation and in hardware. Section 5.4 discusses the hybrid nature

of legged robot dynamics and introduces the MPC for a general ROM. Finally, we discuss some of

the lessons learned during the journey of realizing better performance on the robot in Section 5.5,

and conclude the paper in Section 5.6.
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Figure 5.1: An outline of the synthesis and deployment of optimal reduced-order models (ROM). Offline, given a full-order model
and a distribution of tasks, we optimize a new model that is effective over the task space (Section 5.1). Online, we generate new
plans for the reduced-order model and track these trajectories on the true, full-order system (Section 5.2). This diagram also shows
the bipedal robot Cassie (in the rightmost box) and its full model. Cassie has five motors on each leg – three located at the hip,
one at the knee and one at the toe. Additionally, there are 2 leaf springs in each leg, and the spring joints are visualized by q16 to
q19 in the figure. The springs are a part of the closed-loop linkages of the legs. We model these linkages with distance constraints,
so there are no rods visualized in the model.
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5.1. ROM Optimization

In this section, we introduce a notion of quality (or cost) for reduced-order models. We then

introduce a bilevel optimization algorithm to optimize within our class of models.

5.1.1. Problem Statement

As shown in the left half of Fig. 5.1, the goal is to find an optimal model µ∗, given a distribution

Γ over a set of tasks. The distribution could be provided a priori or estimated via the output of a

higher-level motion planner. The tasks might include anything physically achievable by the robot,

such as walking up a ramp at different speeds, turning at various rates, jumping, running with

a specified amount of energy, etc. The goal, then, is to find a reduced-order model that enables

low-cost motion over the space of tasks,

µ∗ = argmin
µ∈M

Eγ [Jγ(µ)] , (5.1)

where M is the model space, Eγ takes the expected value over Γ, and Jγ(µ) is the cost required to

achieve the tasks γ ∼ Γ while the robot is restricted to a particular model µ.

With our model definition in Eq. (2.4), the problem in Eq. (5.1) is infinite dimensional over the

space of embedding and dynamics functions, r and g. To simplify, we parametrize r and g with

basis functions {φe,i | i = 1, . . . , ne} and {φd,i | i = 1, . . . , nd} with linear weights θe ∈ Rny ·ne and

θd ∈ Rny ·nd . Further assuming that the dynamics are affine in τ with constant multiplier, r and g

are given as

y = r(q; θe) = Θeφe(q), (5.2a)

ÿ = g(y, ẏ, τ ; θd) = Θdφd(y, ẏ) +Byτ, (5.2b)

where Θe ∈ Rny×ne and Θd ∈ Rny×nd are θe and θd arranged as matrices, φe = [φe,1, . . . , φe,ne ], φd =

[φd,1, . . . , φd,nd ], and By ∈ Rny×nτ . For simplicity, we choose a constant value for By. Observing

that physics-based rigid-body models lead to state-dependent values for By, one can also extend

43



this method by parameterizing By(y, ẏ). Moreover, while we choose linear parameterization here,

any differentiable function approximator (e.g. a neural network) can be equivalently used.

Let the model parameters be θ = [θe, θd] ∈ Rnt . Eq. (5.1) can be rewritten as

θ∗ = argmin
θ

Eγ [Jγ(θ)] . (O)

From now on, we work explicitly in θ, rather than µ. As we will see in the next section, Jγ(θ) is an

optimal cost of a trajectory optimization problem, making Eq. (O) a bilevel optimization problem.

Additionally, given the parameterization in Eq. (5.2), the ROM dimension ny is fixed during the

model optimization.

5.1.2. Task Evaluation

We use trajectory optimization to evaluate the task cost Jγ(θ). Under this setting, the tasks γ are

defined by a cost function hγ and task-specific constraints Cγ . Jγ(θ) is the optimal cost to achieve

the tasks while simultaneously respecting the embedding and dynamics given by θ. We note that the

cost function hγ is a function of the full model, although we occasionally refer to the cost evaluated

by this function as the ROM performance because the ROM is embedded in the full model.

The resulting optimization problem is similar to (2.13), but contains additional constraints and

decision variables for the reduced-order model embedding,

Jγ(θ) , min
w

n−1∑
i=1

1

2

(
hγ(xi, ui) + hγ(xi+1, ui+1)

)
δi

s.t. fc(xi, xi+1, ui, ui+1, λi, λi+1, δi, αi) = 0,

i = 1, . . . , n− 1

gc (xi, ui, λi, τi; θ) = 0, i = 1, . . . , n

Cγ(xi, ui, λi) ≤ 0, i = 1, . . . , n

(5.3)

where fc and gc are dynamics constraints for the full-order and reduced-order dynamics, respectively.

The decision variables are w = [x1, ..., xn, u1, ..., un, λ1, ..., λn, τ1, ..., τn, α1, ..., αn−1], noting the
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addition of τi.

The formulation of dynamics and holonomic constraints of the full-order model are described in

(Posa et al., 2016), while the reduced-order constraint gc is

gc = ÿi − g(yi, ẏi, τi; θd) = 0

⇒ gc = Jiv̇i + J̇ivi − g(yi, ẏi, τi; θd) = 0

(5.4)

where
yi = r(qi; θe), ẏi =

∂r(qi; θe)

∂qi
q̇i, Ji =

∂r(qi; θe)

∂qi
, and

v̇i = M(qi)
−1
(
fcg(qi, vi) +Bui + Jh(qi)

Tλi + τapp(qi, vi)
)
.

The constraint gc = 0 not only explicitly describes the dynamics of the reduced-order model but also

implicitly imposes the embedding constraint r via the variables y and ẏ. Therefore, the problem

(5.3) is equivalent to simultaneous optimization of full-order and reduced-order trajectories that

must also be consistent with the embedding r.

For readability, we rewrite Eq. (5.3) as

Jγ(θ) = min
w

h̃γ(w)

s.t. f̃γ(w, θ) ≤ 0,

(TO)

where h̃γ is the cost function of Eq. (5.3) and f̃γ ≤ 0 encapsulates all the constraints in Eq. (5.3).

In Section 5.3, we will use h̃γ to evaluate both the open-loop and closed-loop performance.

Remark 1. Model optimization can change the physical meaning of a ROM. Regardless, if JiM−1B

(which maps a full model input u to a reduced-order acceleration ÿi) has full row rank, the ROM can

be exactly-embedded into the full model.

5.1.3. Bilevel Optimization Algorithm

Since there might be a large or infinite number of tasks γ ∼ Γ in Eq. (O), solving for the exact solu-

tion is often intractable. Therefore, we use stochastic gradient descent to solve Eq. (O) (specifically
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in the outer optimization, as opposed to the inner trajectory optimization). That is, we sample a set

of tasks from the distribution Γ and optimize the averaged sample cost over the model parameters

θ.

The full approach to (O) is outlined in Algorithm 2. Starting from an initial parameter seed θ0,

N tasks are sampled, and the cost for each task Jγj (θ) is evaluated by solving the corresponding

trajectory optimization problem (TO).

To compute the gradient ∇θ
[
Jγj (θ)

]
, we previously (Chen and Posa, 2020) adopted an approach

based in sequential quadratic programming. It introduced extra parameters (e.g. tolerance for

determining active constraints) and required solving a potentially large and ill-conditioned system

of linear equations which can take minutes to solve to good accuracy. Here, we take a new approach

where we apply the Envelope Theorem and directly derive the analytical gradient ∇θ
[
Jγj (θ)

]
shown

in Corollary 1 (also see Section 2.8).

Proposition 1 (Differentiability Condition (Jin et al., 2021)). Assume h̃ and f̃ are continuously

differentiable functions, and consider an optimization problem

J̃ (θ) = min
w

h̃(w, θ)

s.t. f̃(w, θ) ≤ 0,

(5.5)

where J̃ (θ) is the optimal cost of the problem. Let w∗(θ) be the optimal solution to Eq. (5.5). w∗

is differentiable with respect to θ if the following conditions hold:

1. the second-order optimality condition for Eq. (5.5),

2. linear independence constraint qualification (LICQ), and

3. strict complementarity at w∗.

Theorem 1 (Envelope Theorem (Riley, 2012)). Assume the problem in Eq. (5.5) satisfies the
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differentiability condition. The gradient of the optimal cost J̃ (θ) with respect to θ is

∇θ
[
J̃ (θ)

]
=
∂h̃(w∗, θ)

∂θ
+ λ∗T

∂f̃(w∗, θ)

∂θ
, (5.6)

where λ∗ is the dual solution to Eq. (5.5).

Proof. We provide our own proof for the Envelope theorem in this thesis, since others’

(Takayama and Akira, 1985) are quite complex, and also for self-contained purpose.

The primal-dual solution (w∗, λ∗) to (5.5) should satisfy the following KKT conditions

(Kuhn and Tucker, 1951)

∂h̃(w∗, θ)

∂w∗
+ λ∗T

∂f̃(w∗, θ)

∂w∗
= 0 (5.7)

f̃(w∗, θ) ≤ 0, (5.8)

λ∗ ≥ 0, (5.9)

λ∗T f̃(w∗, θ) = 0, (5.10)

where (5.8), (5.9), and (5.10) are the primal feasibility, dual feasibility, and complementarity con-

ditions, respectively. In the following proof, we occasionally write the primal and dual solution as

w∗ = w∗(θ) and λ∗ = λ∗(θ) for the sake of clear exposition, as they both implicitly depend on θ

through the KKT condition. Due to (5.10), one has

Jγ(θ) = h̃(w∗, θ) = h̃(w∗(θ), θ) + λ∗T f̃(w∗(θ), θ). (5.11)

and thus,

∇θ [Jγ(θ)] =

(
∂h̃(w∗, θ)

∂w∗
+ λ∗T

∂f̃(w∗, θ)

∂w∗

)
︸ ︷︷ ︸

=0

dw∗(θ)

dθ

+
∂h̃(w∗, θ)

∂θ
+ λ∗T

∂f̃(w∗, θ)

∂θ
+ f̃(w∗, θ)

T dλ∗(θ)

dθ
.

(5.12)

47



Here, the first term vanishes because of (5.7). Next, we will show that the last term f̃(w∗, θ)
T dλ∗(θ)

dθ

will also vanish due to the strict complementarity.

Suppose f̃(w∗, θ) ∈ Rl. Strict complementarity says that the i-th (i = 1, 2, . . . , l) entry of f̃(w∗, θ),

written as f̃(w∗, θ)[i], and i-th entry of λ∗, written as λ∗[i], satisfy (5.10), rewritten as

f̃(w∗, θ)[i] · f̃(w∗, θ)[i] = 0, (5.13)

but cannot be f̃(w∗, θ)[i] = 0 and λ∗[i] = 0 simultaneously, for any i = 1, 2, . . . , l. Differentiating

(5.13) with respect to θ on both side, yielding

f̃(w∗, θ)[i]
dλ∗(θ)[i]

dθ
+ λ∗(θ)[i]

∂f̃(w∗, θ)[i]

∂θ
= 0. (5.14)

Due to the strict complementarity, from (5.14), we can find

dλ∗(θ)[i]

dθ
= 0 if f̃(w∗, θ)[i] < 0. (5.15)

Back to the last term in (5.12) , one has

f̃(w∗, θ)
T dλ∗(θ)

dθ
=

l∑
i=1

f̃(w∗, θ)[i] · dλ
∗(θ)[i]

dθ
= 0. (5.16)

This is because if f̃(w∗, θ)[i] < 0, f̃(w∗, θ)[i] · dλ
∗(θ)[i]
dθ = 0 due to (5.15); and if f̃(w∗, θ)[i] = 0,

f̃(w∗, θ)[i] · dλ
∗(θ)[i]
dθ = 0 trivially holds. Thus, (5.12) becomes

∇θ [Jγ(θ)] =
∂h̃γ(w∗, θ)

∂θ
+ λ∗T

∂f̃γ(w∗, θ)

∂θ
,

which is (5.17). This completes the proof.
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Algorithm 2 Reduced-order model optimization
Input: Task distribution Γ and step size α
Output: θ∗

Model initialization
1: θ ← θ0

Model optimization
2: repeat
3: Sample N tasks from Γ ⇒ γj , j = 1, ..., N
4: for j = 1, . . . , N do
5: Solve (TO) to get Jγj (θ)
6: Compute ∇θ

[
Jγj (θ)

]
by Eq. (5.17)

7: end for
8: Average the gradients ∆θ =

∑N
j=1∇θ[Jγj (θ)]

N
9: Gradient descent θ ← θ − α ·∆θ

10: until convergence
11: return θ

Corollary 1. The gradient of the optimal cost of (TO) is

∇θ [Jγ(θ)] = λ∗T
∂f̃γ(w∗, θ)

∂θ
, (5.17)

where w∗ and λ∗ are respectively the primal and the dual solution to (TO).

Proof. The proof follows directly from Theorem 1. Note that the cost function in (TO) is indepen-

dent of θ, in which case the first term of Eq. (5.6) becomes 0.

We note that there is, in general, no guarantee on global convergence when using Eq. (5.6) in a

gradient descent algorithm, except for simple cases where h̃ and f̃ are convex functions in (w, θ)

(Boyd and Vandenberghe, 2004). As for local convergence towards a stationary point, the gradient

descent with Eq. (5.6) is guaranteed to converge with a sufficiently small step size.

While there is no guarantee that the differentiability condition in Proposition 1 holds everywhere

(in fact we expect it to fail under certain conditions), in practice we have observed that Algorithm 1

reliably converges. Additionally, the accuracy of the gradient ∇θ [Jγ(θ)] is bounded by the accuracy

of the primal and dual solutions to (TO) (Jin et al., 2021). In practice, we observed that the gradient
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Example # 1 2 3 4 5

Stride length (m) [-0.4, 0.4] [0.3, 0.4] [0.0, 0.42]
Pelvis height (m) [0.87, 1.03] 0.8

Ground incline (rad) 0 [-0.35, 0.35]
Turning rate (rad/s) 0 [-0.72, 0.72]
Stride duration (s) 0.35 0.35
Parameterize (r, g)? both (r, g) only g
Monomial order nφ 2 4 2 2 4
Dominant cost in Jγ u u v̇ v̇ u

Cost reduction 22.8% 20.7% 27.6% 38.2% 22.4%

Table 5.1: Examples of model optimization. This table includes the task space used to train models
(uniform task distribution), the highest order of the monomials of basis functions, the dominant
term of the cost function Jγ , and the cost reduction percentage (relative to the cost of the initial
model).

was accurate enough (showing local convergence behavior) with the default optimality tolerance and

constraint tolerance given by solvers like SNOPT (Gill et al., 2005).

In Algorithm 2, the sampled tasks can sometimes be infeasible for the trajectory optimization

problem due to a poor choice in ROM or numerical difficulties when solving (TO). In these cases,

we do not include these samples in the gradient update step. This is a reasonable approach as we

expect that optimizing the ROM for nearby tasks simultaneously improves performance for the failed

task by continuity. This does have the potential to break the optimization process if large regions of

the task space were infeasible, but in practice we have found this sample-rejection procedure robust

enough to the occasional numerical difficulties.

The model optimization in Algorithm 2 is deemed to have converged if the norm of the average

gradient of the sampled costs falls below a specified threshold. This threshold can be set on a case

by case basis, depending on the robot models, tasks, etc. In our experiments, we simply look at

the cost-iteration plots (e.g. Fig 5.2) and terminate the optimization when the cost has stopped

decreasing visibly.
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5.1.4. Examples of Model Optimization

In the trajectory optimization problem in Eq. (TO), we assume the robot walks with instantaneous

change of support. That is, the robot transitions from right support to left support instantaneously,

and vice versa. We consider only half-gait periodic motion, and so include right-left leg alternation

in the impact map ∆.

We solve the problems (TO) in parallel in each iteration of Algorithm 2 using the SNOPT toolbox

(Gill et al., 2005). All examples were generated using the Drake software toolbox (Tedrake, 2019)

and source code is available in the link provided in the Introduction.

Initialization and parameterization of ROM

To demonstrate Algorithm 2, we optimize for 3D reduced-order models on Cassie. The models are

initialized with a three-dimensional LIP, of which the generalized position y is shown in Fig. 2.2.

We choose basis functions such that they not only explicitly include the position of the LIP, but

also include a diverse set of additional terms. That is, the basis set φe includes the CoM position

relative to the stance foot, and monomials of {1, q7, ..., q19} up to nφ-th order. Similarly, the

feature set φd includes the terms in LIP dynamics (i.e. cgy1/y3 and cgy2/y3) and monomials of

{1, y1, y2, y3, ẏ1, ẏ2, ẏ3} up to nφ-th order. With these basis functions, the ROM parameters θ can

be trivially initialized to match the LIP model’s.

Optimization Examples and Result

We demonstrate a few examples of model optimization and compare their results. The examples

are shown in Table 5.1 along with their detailed settings. The optimization results are shown in

Fig. 5.2, where the costs are normalized by the optimal cost of (TO) without ROM embedding (i.e.

without the constraints gc).

The cost function hγ was chosen to be the weighted sum of squares of the robot input u, the

generalized velocity v and acceleration v̇. In Examples 1, 2 and 5, we heavily penalize the input

term which is a proxy of a robot’s energy consumption. For the other examples, we heavily penalize
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Figure 5.2: The averaged cost of the sampled tasks of each model optimization iteration in Examples
1 to 5. Costs are normalized by the cost associated with the full-order model (i.e. the cost of full
model trajectory optimization without any reduced-order model embedding). Therefore, the costs
cannot go below 1. The costs at iteration 1 represent the averaged costs for the robots with
the embedded initial reduced-order models, LIP. Note that the empirical average does not strictly
decrease, as tasks are randomly sampled and are of varying difficulty.

the acceleration v̇. We observed that Cassie’s motions with the initial ROM are very similar among

all examples. In contrast, the motions with optimal ROMs are mostly dependent on the cost

function hγ , given the same ROM parameterization. Compared to Example 1, the optimal motion

of Example 3 shows more vertical pelvis movement.

A comparison between Example 1 to Example 2 shows the effect of the order of the monomials

nφ in the basis function. We can see in Fig. 5.2 that these two examples share the same starting

cost, because the initial weights on the monomials are zeros, making the trajectory optimization

problems identical. Additionally we can also see that parameterizing the ROM with second-order

monomials seems sufficient for the task space of Examples 1 and 2, since the final normalized cost

is close to 1.

A comparison between Example 1 to Example 3 shows the effect of different choices of cost function
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hγ . The initial cost of Example 3 is much higher than Example 1’s, which we can interpret as the

LIP model being more restrictive under the performance metric of Example 3 than that of 1.

A comparison between Example 3 and Example 4 shows the effect of the task space. Example

4’s task space is a subset of Example 3’s, specifically the part of the task space with bigger stride

length. We would expect the LIP model does not perform well with big stride length, and indeed

Fig. 5.2 shows that the initial cost of Example 4 is higher than that of Example 3. Fortunately, a

high initial cost provides us with a bigger room of potential improvement. As we see in Table 5.1,

Example 3 has higher cost reduction than Example 1, and Example 4 has the highest cost reduction.

In Example 5, the dimension of the task space4 is increased compared to the other examples, and we

only parameterize the ROM dynamics g. That is, the embedding function r remains to be a simple

forward kinematic function – the center of mass position relative to the stance foot. In this case,

the algorithm was again able to find an optimal model, and the result shows that parameterizing

only the ROM dynamics g is sufficient enough for achieving near full model performance (about 5%

higher than full-order model’s performance).

The optimized models are capable of expressing more input-efficient motions than the LIP model,

better leveraging the natural dynamics of Cassie.The reduced-order model optimization improves

the performance of the robot, while maintaining the model simplicity. We note that the optimal

model, unlike its classical counterpart, does not map easily to a physical model, if the embedding

function r contains abstract basis functions such as monomials. While this limits our ability to

attach physical meaning to y and τ , it is a sacrifice that one can make to improve performance

beyond that of hand-designed approaches.

5.2. MPC for a Special Class of ROMs

After a ROM is optimized, we embed it in the robot via an MPC to achieve desired tasks, depicted

in Fig. 5.1. Specifically, in this and the next section (Sections 5.2 and 5.3), we build upon Example

5. Example 5 limits the ROM to a fixed embedding function r, the CoM position relative to the
4The dimension here is the non-degenerate dimension, meaning the task dimension with non-zero volume. In

Example 5, the dimension is 3 because we vary the stride length, ground incline and turning rate.

53



Figure 5.3: The diagram of the MPC introduced in Section 5.2. The MPC is composed of the
controller process and the planner process, and it contains a time-based finite state machine which
outputs either left or right support state. This finite state machine determines the contact se-
quence of the high-level planner and the contact mode of the low-level model-based controller. The
high-level planner solves for the desired reduced-order model trajectories and swing foot stepping
locations, given tasks (commands) and the finite state. For reduced-order models without body
orientation (e.g. CoM model without moment of inertia), we send the turning rate command to
the controller process instead of planner process. Inside the controller process, the regularization
trajectories are used to fill out the joint redundancy of the robot. These regularization trajec-
tories are derived from simple heuristics such as maintaining a horizontal attitude of the pelvis
body, having the swing foot parallel to the contact surface, and aligning the hip yaw angle with
the desired heading angle. All desired trajectories are sent to the Operational Space Controller
(OSC) which is a quadratic-programming based inverse-dynamics controller (Sentis and Khatib,
2005; Wensing and Orin, 2013).

stance foot. This physically-interpretable embedding simplifies the planner and enables a richer

performance analysis in Section 5.3. The planner for a general ROM will be introduced in Section

5.4.

The MPC structure is shown in Fig. 5.3. It contains a high-level planner in the reduced-order

space (Section 5.2.1) and a low-level tracking controller in the full-order space (Section 5.2.2). The

high-level planner receives the robot state and tasks, and plans for the desired ROM trajectory
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and the footsteps of the robot. The controller tracks these desired trajectory and footsteps, while

internally using nominal trajectories to handle the system redundancy.

Trajectory yosci dim yosci
cost weight W Kp Kd

x y z x y z x y z

reduced-order model 3 0.1 0 10 10 0 50 0.2 0 1
pelvis orientation 3 2 4 0.02 200 200 0 10 10 10
swing foot position 3 4 4 4 150 150 200 1 1 1
swing leg hip yaw joint 1 0.5 40 0.5
swing leg toe joint 1 2 1500 10

Table 5.2: Trajectories and gains in the Operational Space Control (OSC)

5.2.1. Planning with Reduced-order Models

We formulate a reduced-order trajectory optimization problem to walk ns strides, using direct

collocation method described in Section 2.6 to discretize the trajectory into n knot points. Under

the premise that the ROM embedding r is the CoM, we further assume the ROM does not have

continuous inputs τ (e.g. center of pressure) but it has discrete inputs τfp ∈ R2 which is the stepping

location of the swing foot relative to the stance foot. Let z = [y, ẏ] ∈ R2ny , and let z− and z+ be

the reduced state of pre- and post-touchdown event, respectively. The discrete dynamics is

z+ = z− +Bfpτfp (5.18)

with

Bfp =

−1 0 0 0 0 0

0 −1 0 0 0 0


T

.

The first two rows of Eq. (5.18) correspond to the change in stance foot reference for the COM

position. The last three rows are derived from the assumption of zero ground impact at the foot

touchdown event.

To improve readability, we stack decision variables into bigger vectors z = [y, ẏ] ∈ R2ny , Z =

[z0, z1, ..., zn] ∈ R2ny(n+1), and Tfp = [τfp,1, ..., τfp,ns ] ∈ R2ns . The cost function of the planner is
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quadratic and expressed in terms of Z and Tfp. The planning problem is

min
Z,Tfp

‖Z − Zd‖2WZ
+ ‖Tfp‖2WT

s.t. ROM continuous dynamics (Eq. (2.5b)),

ROM discrete dynamics (Eq. (5.18)),

Ckinematics(Z,Tfp) ≤ 0,

z0 = current feedback reduced-order state,

(5.19)

where WZ and WT are the weights of the norms, Zd is a stack of desired states which encourage

the robot to reach a goal location and regularize velocities, and Ckinematics ≤ 0 is the constraints on

step lengths and stepping locations relative to the CoM. After solving Eq. (5.19), we reconstruct

the desired ROM trajectory yd(t) from the optimal solution Z∗, and we construct desired swing

foot trajectories from T∗fp with cubic splines.

5.2.2. Operational Space Controller

A controller commonly used in legged robots is the quadratic-programing-based operational space

controller (QP-based OSC), which is also referred to as the QP-based whole body controller

(Sentis and Khatib, 2005; Wensing and Orin, 2013). Assume there are Ny number of outputs

yosci (q), with desired outputs yosci,d (t), where i = 1, 2, ...Ny. For each output (neglecting the sub-

script i), we can derive the commanded acceleration as the sum of the feedforward acceleration of

the desired output and a PD control law

ÿosccmd = ÿoscd +Kp(y
osc
d − yosc) +Kd(ẏ

osc
d − ẏosc).

At a high level, the OSC solves for robot inputs that minimize the output tracking errors, while

respecting the full model dynamics and constraints (essentially an MPC but with zero time horizon).
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The optimal control problem of OSC is formulated as

min
v̇,u,λ,ε

ny∑
i=1

‖ÿosci − ÿosci,cmd‖2Wi
+ ‖u‖2Wu

+ ‖ε‖2Wε
(5.20a)

s.t. ÿosci = Jiv̇ + J̇iv, i = 1, ..., Ny (5.20b)

Dynamics constraint (Eq. (2.1)) (5.20c)

ε = Jhv̇ + J̇hv (5.20d)

umin ≤ u ≤ umax (5.20e)

Contact force constraints (5.20f)

where ‖ · ‖W is the weighted 2-norm, (5.20d) contains Cassie’s four-bar-linkage constraints, fixed-

spring constraints and relaxed contact constraints (relaxed by slack variables ε), and (5.20f) includes

friction cone constraints, non-negative normal force constraints and force blending constraints for

stance leg transition.

Table 5.2 shows all trajectories tracked by the OSC and their corresponding gains and cost weights.

The trajectories of the reduced-order model, pelvis orientation and swing foot position are all 3

dimensional, while the hip yaw joint and toe joint of the swing foot are 1 dimensional. The symbols

(x,y,z) in Table 5.2 indicate the components of the tracking target. They do not necessarily mean

the physical (x, y, z) axes for the reduced-order model, since the model optimization might produce

a physically non-interpretable model embedding r.

In the existing literature of bipedal robots, robot’s floating base position (sometimes the CoM

position) and orientation are often chosen to be control targets. They have 6 degrees of freedom

(DoF) in total. In the case of fully-actuated robots (i.e. robots with flat feet), there is enough

control authority to servo both the position and orientation. For underactuated robots, the existing

approaches often give up tracking the trajectories in the transverse plane (x and y axis), because

it is not possible to instantaneously track trajectories whose dimension is higher than the number

of actuators (or we have to trade off the tracking performance). In this case, motion planning for

discrete footstep locations is used to regulate the underactuated DoF. In our control problem, we
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also face the same challenge since Cassie has line feet. The total dimension of the desired trajectories

in Table 5.2 is 11, while Cassie only has 10 actuators. Following the common approach, we choose

not to track the second element of the ROM in OSC, because it corresponds to the lateral position

of the CoM for the initial model (a competing tracking objective to the pelvis roll angle) and

maintaining a good pelvis roll tracking is crucial for stable walking. Instead, the second element of

ROM is regulated by the desired swing foot locations via the planner in Eq. (5.19), even though

the OSC does not explicitly track it.

5.2.3. Hardware Setup and Solve Time

We implement the MPC in Fig. 5.3 using the Drake toolbox (Tedrake, 2019), and the code is

publicly available in the link provided in the Introduction. In hardware experiment, the MPC

planner runs on a laptop equipped with Intel i7 11800H, and everything else (low-level controller,

state estimator, etc) on Cassie’s onboard computer. These two computers communicate via LCM

(Huang et al., 2010). A human sends walking velocity commands to Cassie with a remote controller.

Cassie is able to stably walk around with both the initial ROM and the optimal ROM (shown in

the supplementary video).

The planning horizon was set to 2 foot steps with stride duration being 0.4 seconds. With cubic

spline interpolation between knot points, we found that 4 knot points per stride was sufficient.

IPOPT (Wächter and Biegler, 2006) was used to solve the planning problem in Eq. (5.19), and the

solve time was on average around 6 milliseconds with warm-starts. We observed that this solve time

was independent of the reduced-order models (initial or optimal) in our experiments. In contrast

to the ROM, similar code required tens of seconds for the simplified Cassie model for a single foot

step. As the following sections will show, Cassie’s performance (with respect to the user-specified

cost function) with the optimal model is better than with the initial model. This demonstrates

that the use of ROM greatly increases planning speed, and that the optimized ROM improves the

performance of the robot.
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(a) Trajectory optimization, (C1). (b) Simulation, (C2).

Figure 5.4: Cost comparison between the initial model (R2) and the optimal model (R3). Each plot
shows the ratio of the optimal model’s cost to the initial model’s cost. For these examples, the ROM
reduces the cost across the entire task space. The color scheme red-to-blue illustrates the degree to
which the ROM shows improvement, with red corresponding to a minimal improvement and blue
to a 30% reduction. The scales of the axes are the same between the trajectory optimization (C1)
and the simulation (C2) for ease of comparisons.

5.3. Performance Evaluation and Comparison

In this section, we evaluate the performance of the robot (with respect to a user-specified cost

function h̃γ in Section 5.1.2) in the following ROM settings:
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(R1) without reduced-order model embedding,

(R2) with initial reduced-order model embedding,

(R3) with optimal reduced-order model embedding.

Additionally, the evaluation is done in the following cases:

(C1) trajectory optimization (open-loop),

(C2) simulation (closed-loop),

(C3) hardware experiment with real Cassie (closed-loop),

where (C1) is labeled as open-loop, while the others are considered closed-loop, because trajec-

tory optimization is an optimal control method that solves for control inputs and feasible state

trajectories simultaneously, without requiring a feedback controller. Table 5.3 lists the experiments

conducted in this section. We note that (C1) is the same as Eq. (TO) but with a different task

distribution, and that (R1) is only evaluated in (C1) because it serves as an idealized benchmark

for comparison.

5.3.1. Experiment Motivations

Motivation for (C1)

In Section 5.1, we optimized for a reduced-order model given a task distribution. Here, one objective

is to evaluate how well the model generalizes to out-of-distribution tasks. Additionally, trajectory

optimization provides the ideal performance benchmark for the closed-loop system to compare to.

Motivation for (C2)

Trajectory optimization is used in Eq. (TO) to find the optimal model based on the open-loop

performance. (C2) evaluates how well the cost reduction in open-loop can be translated to the

closed-loop system with the MPC from Section 5.2.
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Table 5.3: Experiments conducted in Section 5.3 (marked with x)

Stride length variation < 2 cm
Side stepping variation < 3 cm
Pelvis height variation < 3 cm
Pelvis yaw variation < 0.1 rad

Window size 4 consecutive footsteps

Table 5.4: Criteria to determine periodic walking gaits

Motivation for (C3)

(C3) evaluates how well the performance improvement can be translated to hardware.

5.3.2. Experiment Setups

In all experiments in this section, we use the initial and the optimal ROM from Example 5. Addi-

tionally, for all performance evaluations, we use the cost function h̃γ from Example 5 which mainly

penalizes the joint torques.

(C1) Trajectory Optimization

We evaluate the open-loop performance by running the full-model trajectory optimization in Eq.

(TO) over a wide range of tasks (stride length, turning rate, ground incline, etc). As a special case,

(C1) combined with (R1) corresponds to Eq. (TO) without the constraint gc = 0.

(C2) Simulation

We use Drake simulation (Tedrake, 2019). The MPC horizon is set to two footsteps, and the

duration per step is fixed to 0.35 seconds which is the same as that of open-loop. Similar to (C1),

we evaluate the performance at different tasks. For each desired task, we run a simulation for 12

61



seconds and extract a periodic walking gait based on a set of criteria listed in Table 5.4. Then we

compute the cost and the actual achieved tasks (stride length, turning rate, etc) of that periodic

gait.

(C3) Hardware Experiment

Some heuristics are introduced to the MPC in order to stabilize Cassie well. For example, we add a

double-support phase to smoothly transition between two single-support phases by linearly blending

the ground forces of the two legs. This is critical for Cassie, because unloading the springs of the

support leg too fast when transitioning into swing phase can cause foot oscillation and bad swing

foot trajectory tracking. The double-support phase duration is set to 0.1 seconds, and the swing

phase duration is decreased to 0.3 seconds, compared to the nominal 0.35 seconds of stride duration

in the trajectory optimization.

The hardware setup is described in Section 5.2.3. During the experiment, we send commands to walk

Cassie around and make sure that the safety hoist does not interfere with Cassie’s motion. After

the experiment, we apply the criteria listed in Table 5.4 to extract periodic gait for performance

evaluation.

5.3.3. Turning and Sloped Walking in Simulation

The goal of this section is to evaluate model performance in simulation. We use the initial and

the optimal model from Example 5 of Section 5.1.4. The training task distribution of this model

covers various turning rates, ground inclines and positive stride lengths, shown in Table 5.1. During

performance evaluation (both (C1) and (C2)), we increase the task space size to two times of that of

training stage in order to examine the optimal model’s performance on the both seen (from training)

and unseen tasks.

To visualize the performance improvement, we compare the cost landscapes between the initial and

the optimal model. For (C1) and (C2), we first derive the cost landscapes of both models using the

cost function h̃γ and then superimpose them in terms of cost ratio (i.e. ratio of (R3)’s cost to (R2)’s

cost). The cost landscape comparisons are shown in Fig. 5.4. The red-blue color bar represents
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different levels of performance improvement in terms of h̃γ . Green color corresponds to the tasks

acquired by the optimal model (i.e. the task that the initial model cannot execute). Orange color

corresponds to the task lost by using the optimal model. We see in Fig. 5.4 that the optimal ROM

performs better than the LIP in all tasks shown in the figure (since the cost ratio is always smaller

than 1). The maximum cost reduction is 30% in trajectory optimization and 23% in simulation.

This means that Cassie is able to complete the same task with 23% less joint torque in simulation.

Besides the improvement in terms of cost ratio, we also observe in simulation that the optimal ROM

gained new task capability (indicated by the green area). For example, Cassie is capable of walking

54% faster on a slope of 0.2 radian when using the optimal ROM. Cassie also gets better in climbing

steeper hills. At 0.1m stride length, Cassie can climb up a hill with 32% steeper incline. Overall,

the task region gained is much bigger than the lost in simulation.

Comparing the cost landscape between the trajectory optimization and simulation, we can see that

the task region gained are similar5. Cassie in general can walk faster at different turning rates and

on different ground inclines. We also observed that the cost landscapes of the open- and closed-

loop share a similar profile in ground incline. Both show bigger cost reduction in walking downhill

than uphill. In contrast, the landscapes in turning rate look different between the open and closed

loop. This is partially because there is only one stride (left support phase) in trajectory optimization

while we average the cost over 4 strides in the simulation. Additionally, there is a difference in stride

lengths between the open- and closed-loop, showing a control challenge in stabilizing around high-

speed nominal trajectories. This gap can be mitigated by increasing the control gains in simulation.

However, we avoid using unrealistic high gains because they do not work on hardware.

In Fig. 5.6, the dashed-line boxes represent the training task space used in the model optimization

stage. There is not a strong correlation between the cost ratio and the training space. However, we

can observe that the performance of the optimal ROM generalizes well to the unseen task (region

outside the dashed-line box). For example, the cost reduction ratio stays around 16% at different
5In the case of (C1), there was not a clear threshold for defining the failure of a task. We picked a cost threshold

at which the robot’s motion does not look abnormal.
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Figure 5.5: A track designed to showcase the performance difference between the LIP and the opti-
mal ROM in simulation. The video of Cassie finishing the track can be found in the supplementary
materials.

LIP Optimal ROM Speed Improvement
Straight line (5m) 5.72 (s) 4.05 (s) 41%
Fast 90-degree turn 1.65 (s) 1.2 (s) 38%
Downhill (20%) 11.67 (s) 8.4 (s) 39%

S-turns 20.37 (s) 14.47 (s) 41%
Uphill (50%) failed 17.73 (s) -

Table 5.5: Completion time for some segments of the course.

turning rates in simulation.

Lastly, we designed a track shown in Fig. 5.5 for Cassie to finish as fast as possible to showcase the

capability of the optimal ROM. The track includes various segments requiring Cassie to turn by

different angles and walk on different sloped grounds. To enable Cassie to race through the track, we
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Figure 5.6: Cost comparison between the initial model (R2) and the optimal model (R3). The cost
h̃γ is the cost function in Eq. (TO). For trajectory optimization and simulation, we densely sampled
the tasks and interpolated the costs. For the hardware experiment, we plot the costs of collected
data points directly in the figure without interpolation. To collect the data on hardware, we used a
remote control to walk Cassie around, and we applied a moving window of 4 foot steps to extract
periodic gaits according to Table 5.4. We note that there was about 2 cm of height variation in the
hardware experiment, but we normalized every extracted data point to the same height using the
height-cost relationship from the trajectory optimization to make fair comparisons.

implemented a high-level path following controller that sends commands (such as walking velocity)

to the MPC. We tune the controller parameters so that Cassie can finish many segments as fast as

possible without falling off the track. We can see in Table 5.5 that the Cassie on average can walk

about 40% faster with the optimal ROM. This speed improvement reflected the periodic-walking

result shown in the cost landscape plots in Fig. 5.4. Additionally, we observed that for the task of

50% ground incline Cassie with LIP exhibited many stop-and-go motions and eventually fell, while

Cassie with the optimal ROM was able to complete the incline steadily.

5.3.4. Straight-line Walking on Hardware
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(a) Initial model (R2). 2D slice at CoM position = 0m
in y axis (when the CoM is right above the stance foot).

(b) Optimal model (R3). 2D slice at CoM position =
0m
in y axis (when the CoM is right above the stance foot).

(c) Optimal model (R3). 2D slice at CoM position =
-0.2m in y axis (when the CoM is to the right of the
left stance foot, for example).

Figure 5.7: The vector fields of the ROM dynamics g over the CoM x and z position. In this
example, the dynamics is the acceleration of the CoM, which is a function of the CoM position
and velocity defined in Eq. (2.5b). The first plot is the initial model’s dynamics, while the latter
two are that of the optimal model at two different slices of CoM y position. In all plots, the CoM
velocity is 0. We note that the size of the vectors only reflects the relative magnitude. The absolute
magnitude of the vectors for the first two plots are shown in Fig. 5.8, although the scales of the x
axis are different.

In this section, we aim to evaluate the model performance on the real robot. We evaluate the cost

for different stride lengths while fixing the pelvis height (0.95 m), and then plot the costs of both

the initial and the optimal model directly in Fig. 5.6. We also conducted the same experiment

but in trajectory optimization and simulation for comparison. Additionally, in order to maximize

the controller robustness for the hardware experiment, we constrained the center of pressure (CoP)

close to the foot center during the model optimization stage, although this limits the potential
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(a) Initial model (R2). 2D slice at CoM position = 0m in y axis (when
the CoM is right above the stance foot).

(b) Optimal model (R3). 2D slice at CoM position = 0m in y axis (when
the CoM is right above the stance foot).

Figure 5.8: The magnitude of ROM dynamics g over the CoM x and z position. The settings of
Fig. 5.8a and 5.8b are the same as Fig. 5.7a and 5.7b, respectively. The magnitude plots show that
the optimal model has smaller CoM accelerations, which implies smaller ground reaction forces,
particularly in the x axis (implied by the vector fields in Fig. 5.7). We observed in the experiments
that these force vectors align more closely with the normal direction of the ground.
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performance gain of the optimal ROM.

In Fig. 5.6, we can see that the performance of the optimal ROM (evaluated by Cassie’s joint

torque squared in this case) is better than that of the initial ROM. On hardware, the performance

improvement is around 10% for low-speed and medium-speed walking. As a comparison, the cost

improves by up to 8% in open-loop and improves by up to 14% in simulation using the same

optimal ROM. We can also observe that the hardware costs are higher than those of open-loop and

simulation, which might result from additional torques required to track the desired trajectories

due to sim-to-real modeling errors. Nonetheless, the improvement percentages are fairly similar

across the board. This demonstrates that the model performance was successfully transferred to

the hardware via the MPC, despite the modeling error in the full-order model.

5.3.5. Optimal Robot Behaviors

In order to understand the source of the performance improvement, we look at the motion of the

robot and the center of mass dynamics (the ROM dynamics g). The discussions in this section are

based on the straight-line walking experiments in Section 5.3.4.

We observe in the full-model trajectory optimization that the average center of pressure (CoP) stays

at the center of the support polygon when we use LIP on Cassie (R2). In contrast, the CoP moves

toward the rear end of the support polygon where there is no ROM embedding (R1). Interestingly,

this CoP shift emerges when using the optimal model (R3) in the open-loop trajectory, and we

observe the same behavior in both simulation and hardware experiment. On hardware, we confirm

this by visualizing the projected CoM on the ground when Cassie walks in place. The projected

CoM is close to CoP, since there is little centroidal angular momentum for walking in place. The

projected CoM of the hardware data indeed shifts towards the back of the support polygon when

using the optimal model.

To understand why the projected CoM moves backward, we plot the ROM dynamic function g in

Fig. 5.7 for both the initial model and the optimal model. In the case of the initial model (LIP),

we know that the dynamics should be symmetrical about the z axis, specifically the acceleration
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should be 0 at x = 0 (Fig. 5.7a). This vector field profile, however, looks different in the case of the

optimal model. As we can see from Fig. 5.7b, the area with near-zero acceleration shifts towards

the -x direction (i.e. to the back of the support polygon), and interestingly it also slightly correlates

to the height of the CoM. The higher the CoM is, the further back the region of zero acceleration is.

Additionally, we know that the LIP dynamics in the x-z plane is independent of the CoM y position.

That is, no matter which slice of the x-z plane we take, the vector field should look identical. For

the optimal model, the dynamics in the x-z plane is a function of the CoM y position. The further

away the CoM is from the stance foot (bigger foot spread), the further back the zero acceleration

region is.

Aside from the vector field plots of the CoM dynamics, we also visualize the absolute value of the

vectors in Fig. 5.8. We can see that the magnitude of the CoM acceleration in general becomes

smaller when using the optimal model. This implies that the total ground reaction force is smaller

with the optimal model, even if the robot walks at the same speed. Given the same walking

speed, the robot decelerates and accelerates less in the x axis when using the optimal model (i.e.,

the average speed is the same, but the speed fluctuation becomes smaller after using the optimal

model). We hypothesize that the decrease in ground force magnitude partially contributes to the

decrease in the joint torque in the case of Cassie walking. The fact that there is less work done on

the CoM during walking with the optimal ROM might have led to the decrease in torque squared

which is a proxy for energy consumption.

The experiments in Section 5.3 demonstrate two things. First, the optimal behavior and the per-

formance are transferred from the open-loop training (left side of Fig. 5.1) to a closed-loop system

(right side of Fig. 5.1). Second, the optimal reduced-order model improves the real Cassie’s perfor-

mance, while the low dimensionality permits a real time planning application.

5.4. MPC for General ROMs

Sections 5.2 and 5.3 limit the ROMs to a predefined embedding function r which simplifies the

planner and enables real time planning results. In this section, we present an MPC formulation

for a general ROM, where full-order states at swing foot touchdown events were used to provide
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physical meaning to the resulting plan. Given an ongoing steady improvement in computational

and algorithmic speed, we believe this general MPC will soon be solvable in real time on hardware.

5.4.1. Hybrid Nature of the Robot Dynamics

Shown in Eq. (2.2), the dynamics of the full model is hybrid – it contains both the continuous-time

dynamics and discrete-time dynamics due to the foot collision. In contrast, many existing reduced-

order models assume zero ground impacts at foot touchdown. This is partially due to the fact that

the exact embedding of a reduced-order discrete dynamics does not always exist. For example, we

could have two pre-impact states x of the full model that correspond to the same reduced-order

states, but the post-impact states of the full model map to two different reduced-order states. In this

case, the reduced-order discrete dynamics is not an ordinary (single-valued) function. Therefore, in

order to capture the exact full impact dynamics in the planner, it is necessary to mix the reduced-

order model with the discrete dynamics from the full-order model. We note that the traditional

approaches to reduced-order planning and embedding must also grapple with approximations of the

impact event.

In addition to the issue above, the mix of reduced- and full-order models also seems necessary if

we do not retain the physical interpretability of the embedding r when planning for the optimal

footstep locations in the planner. This results in a low-dimensional trajectory optimization problem,

a search for yj(t) and τj(t), with additional decision variables x−,j , x+,j , representing the pre- and

post-impact full-order states. The index j refers to the j-th stride. The constraints relating the

reduced-order state to the full-order model and the impact dynamics are

yj(tj) = r(q−,j ; θe), ẏj(tj) =
∂r(q−,j ; θe)

∂q−,j
q̇−,j ,

yj+1(tj) = r(q+,j ; θe), ẏj+1(tj) =
∂r(q+,j ; θe)

∂q+,j
q̇+,j ,

and Chybrid(x−,j , x+,j ,Λj) ≤ 0,

(5.21)

where tj is the impact time (ending the j-th stride), Chybrid represents the hybrid guard S and the

impact mapping ∆ without left-right leg alternation6 (Westervelt et al., 2003).
6The impact mapping ∆ can be simplified to identity if we assume no impact (i.e. swing foot touchdown velocity
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5.4.2. Planning with ROM and Full-order Impact Dynamics

Similar to Section 5.2, we formulate a reduced-order trajectory optimization problem to walk ns

strides. However, we replace the discrete footstep inputs Tfp with the full robot states x−,j and

x+,j . The key difference between the planning problems in Section 5.2 and this section is that here

we introduce new variables

• full-order states x−,j , x+,j and ground impulses Λj (to capture the exact full-order impact

dynamics), and

• the ROM’s continuous-time input τ .

To improve readability, we stack decision variables into bigger vectors T = [τ1, ..., τn] ∈ Rnτn and

X = [x−,1, ..., x−,ns , x+,1, ..., x+,ns ] ∈ R2nxns .

Costs are nominally expressed in terms of [y, ẏ] and τ , though the pre- and post-impact full-order

states can also be used to represent goal locations. In addition to the constraints in Eq. (5.21), we

impose constraints Ckinematics(X) ≤ 0 on the full model’s kinematics such that the solution obeys

joint limits, stance foot stays fixed during the stance phase, and legs do not collide with each other.

The planning problem with the general ROM is

min
w

‖T‖2WT
+ ‖Z − Zreg‖2WZ

+ ‖X −Xreg‖2WX

s.t. Reduced-order dynamics (Eq. (2.5b)),

Hybrid constraints (Eq. (5.21)),

Ckinematics(X) ≤ 0,

x0 = current feedback full-order state,

(5.22)

where w = [Z,T, x0, X,Λ1, ...,Λns ] ∈ Rnw , WT , WZ and WX are the weights of the norms, Zreg is

the regularization state for the reduced model, and Xreg is the regularization state for the full state

and contains the goal location of the robot. After solving Eq. (5.22), we reconstruct the desired

is 0 in the vertical axis).
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Figure 5.9: An example of the real time planner in Eq. (5.22). Given a task of covering two meters
in four steps starting from a standing pose, we rapidly plan a trajectory for the reduced-order model.
The high-dimensional model is used to capture the hybrid event at stepping, as illustrated in the
diagram.

ROM trajectory yd(t) from the optimal solution Z∗. Different from Section 5.2, the optimal solution

w∗ here also contains the desired full-order states X∗ at impact events, from which we derive not

only the desired swing foot stepping locations but also the desired trajectories for joints such as

swing hip yaw and swing toe joint. Additionally, since there are full states in the planner, we can

send the turning rate command directly to the ROM planner.

Fig. 5.9 visualizes the pre-impact states in the case where the robot walks two meters with four

strides, connected by the hybrid events and continuous low-dimensional trajectories yj(t). Although

there is no guarantee that the planned trajectories yj(t) are feasible for the full model except those at

the hybrid events, we were able to retrieve q(t) from yj(t) through inverse kinematics, meaning the

embedding existed empirically. We note that classical models like LIP also provide no guarantees

(Iqbal et al., 2022). For instance, there is no constraint on leg lengths in the ROM which could lead

to kinematic infeasibility. The formulation in Eq. (5.22) preserves an exact representation of the

hybrid dynamics, but results in a significantly reduced optimization problem.

72



5.4.3. Implementation and Experiments

We implement the MPC using Eq. (5.22) for both simulation and hardware experiments (the

hardware setup is the same as Section 5.2.3). In simulation, we were able to transfer the open-

loop performance to closed-loop performance with this new MPC. However, on hardware, the off-

the-shelf solvers IPOPT and SNOPT were not capable of solving the planning problem in Eq.

(5.22) fast enough or well enough to enable a high-performance real time MPC. With IPOPT,

the planner simply did not run fast enough. With SNOPT, even though the solve time can be

decreased down to 30ms with loose optimality tolerance and constraint tolerance, we sacrificed the

solution quality too much to achieve big stride length on Cassie. Nonetheless, we believe that the

general MPC will soon be solvable within reasonable time constraints on hardware, as computer

technology advances steadily. Additionally, a well-engineered custom solver can also help enable

real time planning. Boston Dynamics has shown their success in the nonlinear MPC solver with the

centroidal momentum model and full model configurations7 (Bos).

5.5. Discussion

5.5.1. Model Parameterization

Trade-off between planning speed and performance

A fundamental trade-off exists between planning speed and model performance. As the model (the

functions r and g) becomes more expressive, we see slower planning speeds and better performances.

This trade-off has been shown by existing works (Li et al., 2021; Norby et al., 2022). Additionally,

we found that, for some choice of task space, a linear model performs close to a full model. This linear

reduced-order dynamics transforms the MPC in Eq. (5.19) into a quadratic optimization problem,

allowing for rapid planning. This linear model also renders a closed-form solution and makes it

suitable for existing techniques in robust control design and stability analysis. For challenging or

complex task spaces, linear basis functions sacrifice significant performance when compared with

those of higher degree. We emphasize that our method can be used to optimize models of any
7The centroidal momentum model (Orin and Goswami, 2008; Wensing and Orin, 2016) describes the actual dy-

namics without imposing constraints on the full model. However, this momentum model lacks positional representa-
tions, thus requiring the incorporation of full model configurations in planning.
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chosen degree, and leave such selection to the practitioner.

Alternative basis functions

Beside different orders of monomials, we also experimented with trigonometric monomials (e.g.

sina(x)cosb(x) where a, b ∈ N). However, we found no notable difference with this basis set. Since

quadratic basis approaches optimal performance in model optimization in Section 5.1.4, we leave a

broader exploration of choices of basis functions as a possible future work.

Physical Interpretability of ROMs

Classical ROMs often maintain some level of physical interperability, because they are built from

mechanical components like springs and masses. Our approach, which uses more general represen-

tations, does sacrifice this connection to human intuition. However, we have found it beneficial to

manually select the embedding function r. This has the benefit of ensuring that the reduced-order

state remains human interpretable, which is useful for specifying objectives for planning and control

in Section 5.2. One might also imagine restricting the space of reduced-order dynamics functions g

to maintain physical connections (e.g. specifying nonlinear or velocity-dependent springs, inspired

by human studies (Pequera et al., 2023)), though we leave this to future work.

5.5.2. Performance Gap Between Open-loop and Closed-loop

The proposed approach to model optimization uses full-model trajectory optimization. This has a

few advantages. First, it allows us to embed the reduced-order model into the full model exactly via

constraints. Second, it is more sample efficient than the approaches in reinforcement learning (such

as (Pandala et al., 2022)). However, using trajectory optimization leaves a potential performance

gap between the offline training and online deployment, because trajectory optimization is an open-

loop optimal control method which does not consider any controller heuristics by default. For

instance, our walking controller constructs the swing foot trajectory with cubic splines, and we

found the open-loop performance can be transferred to the closed-loop better after we add this

cubic spline heuristic as a constraint in the trajectory optimization problem.

While we have seen the performance of the robot improve, we also observed that the solver would
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exploit any degree of freedom of the input and state variables during the model training stage. For

example, the center of pressure turned out to play an important role in improving the performance

(reducing joint torques) of Cassie in Section 5.3. If we had not regularized the CoP (or the CoM

motion) during the model optimization stage, the solver would have moved the CoP all the way to

the edge of the support polygon. Although this exploitation can potentially lead to a much bigger

cost improvement, it also hurts the robustness of the model. Under hardware noise and model

uncertainty, tracking the planned trajectories of this optimal model cannot stabilize the robot well,

and thus the performance cannot be transferred to the hardware. One principled way of fixing

this issue is to optimize the robustness of the trajectory alongside the user-specified cost function

(Dai and Tedrake, 2012a; Zhu et al., 2022).

For the general optimal ROM MPC in Section 5.4, one place where the performance gap can enter

is the choice of the cost function in Eq. (5.22). In our past experiments, we simply ran a full model

trajectory optimization and used this optimal trajectory for the regularization term in Eq. (5.22).

It worked well, although there was a slight improvement drop. To mitigate the gap, one could try

inverse optimal control to learn the MPC cost function given data from the full model trajectory

optimization.

Since our robot has one-DOF underactuation caused by line feet design, it is not trivial to track

the desired trajectory of the reduced-order model within the continuous phase of hybrid dynamics.

We noticed in the experiment that there was a noticeable performance difference between whether

or not we tracked the first element of the desired ROM trajectory. Therefore, we conjecture that

if we use a robot with a finite size of feet, we could translate the open-loop performance to the

closed-loop performance better and more easily.

Lastly, we found that empirically it is easier to transfer model performance from open-loop to closed-

loop when we fix the embedding function r, although the open-loop performance improvement is

usually much bigger (sometimes near full-model’s performance) when we optimize both the embed-

ding function r and dynamics g. As a concrete example, in some model optimization instances the

optimal ROM position y can be insensitive to the change of CoM position, which makes it difficult
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to servo the CoM height. In the worst case, this insensitivity could lead to substantial CoM height

movement and instability of the closed-loop system.

5.5.3. Limitations of Our Framework

In our bilevel optimization approach, the initial ROM must be feasible for the inner-level trajectory

optimization to obtain a meaningful gradient for the outer-level optimization. This means that we

must initialize the ROM to one capable of walking, potentially limiting our ability to use stochastic

initialization to explore the entire ROM space. Despite this potential drawback, we note that random

task sampling in Algorithm 2 can help escape certain local minima (effectiveness depends on the

cost landscape of the model optimization). Future work could explore the role of this initialization,

for instance by evaluating performance when starting from multiple existing hand-designed ROMs.

Our approach requires the user to determine the dimension of the ROM. Increasing the dimension

theoretically strictly improves model performance, at the cost of MPC computational speed. As a

result, this defines a Pareto optimal front, without a simple way to automatically determine the

dimension. That said, there are recent works which attempt to select between models of varying

complexity (Li et al., 2021; Khazoom et al., 2023; Norby et al., 2022), which we believe might be

applied to our framework.

5.5.4. Generality of Our Framework

This chapter focuses on applying the optimal ROMs to the hardware Cassie, but throughout the

project we observe that LIP performs reasonable well for Cassie, particularly over relatively simple

task domains such as straight-line walking. We hypothesize that this is due, in part, to the fact

that Cassie’s legs are relatively light. As an experiment, we investigated the effect of foot weight

on the performance improvement. When increasing the foot’s mass to 4kg (the robot weighs 40kg

in total), we observed that the LIP cost relative to the full model’s increased from 1.3 to 1.8 and

offered a greater room for improvement, resulting in 40% torque cost reduction for tasks similar to

Example 1’s. Beside this investigation, we also saw more than 75% of cost reduction for the five-link

planar robot in our prior work (Chen and Posa, 2020).
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Furthermore, the proposed framework is agnostic to types of robots and tasks (e.g. quadrupeds and

dexterous manipulators). This has implications all over robotics, given the need for computational

efficiency and the prevalence of reduced-order models in locomotion and manipulation.

5.6. Conclusion

In this chapter, we directly optimized the reduced-order models which can be used in an online

planner that achieved performance higher than that of the traditional physical models. We for-

mulated a bilevel optimization problem and presented an efficient algorithm that leverages the

problem structure. Examples showed improvements up to 38% depending on the task difficulty and

the performance metric. The optimal reduced-order models are more permissive and capable of

higher performance, while remaining low dimensional. We also designed two MPCs for the opti-

mal reduced-order models which enable Cassie to accomplish tasks with better performance. In the

hardware experiment, the optimal ROM showed 10% of improvement on Cassie, and we investigated

the source of performance gains for this particular model. We demonstrated that the use of ROM

greatly reduces planning time, and that the optimized ROM improves the performance of the robot

beyond the traditional ROMs.

Although the model optimization approach presented in this chapter has the advantage of optimizing

models agnostic to low-level controllers, it does not guarantee that the performance improvements

from these optimal models can be transferred to the robot via a feedback controller as discussed in

Section 5.5.2. In an attempt to fix the this issue, Chapter 6 optimizes the model in a closed-loop

fashion, so that the model optimization accounts for the controller heuristics and maintains the

closed-loop stability. This would also potentially ease the process of realizing the optimal model

performance on hardware. Additionally, discussed in Section 5.4.1, an approximation is necessary if

we were to find a low dimensional representation of the full-order impact dynamics. In this chapter,

we only circumvented the hybrid problem by either using a physically-interpretable ROM or mixing

the full impact dynamics with the ROM. Finding an optimal low-dimensional discrete dynamics for

a robot still remains an open question.
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CHAPTER 6

REINFORCEMENT LEARNING FOR REDUCED-ORDER MODELS OF LEGGED

LOCOMOTION

This chapter improves upon Chapter 5. Similar to Chapter 5, we optimize a ROM given a user-

specified task distribution and objective function, but different from Chapter 5 we also take into

account the feedback controller used with the ROM. Specifically, we cast the ROM optimization

problem as a model-based reinforcement learning problem. All videos and code are available at

https://sites.google.com/view/ymchen/research/rl-for-roms.

Additionally, the work in this chapter also provides an avenue to bridge classical model-based control

and model-free RL for bipedal robots, as outlined in Section 3.3.
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Figure 6.1: The diagram of our reinforcement learning framework for reduced-order models (ROMs) of legged locomotion. We
learn a ROM in simulation where the robot is controlled via a real time MPC presented in Section 5.2. The MPC follows a
high-level command (task) and operates based on a time-based finite state machine (FSM), governing footstep timing in left-
support, right-support, or double-support state. The MPC contains two trajectory generators – a reduced-order model planner
and a regularization trajectory generator to fill out the joint redundancy of the robot. All desired trajectories are converted to
desired acceleration command via PD feedback control before being sent to the Operational Space Controller (OSC), a quadratic-
programming-based inverse-dynamics controller (Sentis and Khatib, 2005; Wensing and Orin, 2013). In this learning framework,
the ROM planner is the policy, while everything else in the closed-loop system, such as the simulation and OSC, constitutes the
environment. We parameterize the policy using ROM parameters, specifically the parameters of ROM dynamics. The optimizer
collects data from simulation rollouts and updates the model (policy) parameters according to a user-specified reward function. To
ensure that the optimizer collects data at a consistent rate, we maintain a fixed update rate of 20Hz for the ROM planner, and we
downsample the environment state (which operates at 1000Hz) to match this 20Hz rate.
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6.1. Problem Statement

Our goal is to find the optimal model parameters that maximize the performance of the robot given

a task distribution Γ. In this study, Γ is a uniform distribution over a range of stride length, turning

rate and ground incline. Let u(θ) be a model-based control policy (i.e. a controller) that guides

the robot to follow the trajectories of a ROM parameterized by θ. From another viewpoint, this

same policy u(θ) also constrains the robot to behave like the ROM. Let {(xt, ut) | t = 1, 2, ..., T}

be the state and input trajectories of the robot completing a task γ ∼ Γ under the policy u(θ). We

evaluate the performance for this task γ and policy u(θ) using a cost function h(x, u) accumulated

over the trajectories:

Hγ,u(θ) =

T∑
t=1

h (xt, ut) . (6.1)

Given this evaluation metric, an optimization problem for finding the model can be formulated as

min
θ

Eγ∼Γ min
u(θ)

[
Hγ,u(θ)

]
, (6.2)

where the inner-level optimization minimizes the cost Hγ,u(θ) over all possible controllers u(θ) that

constrain the robot to behave like a ROM parameterized by θ, and the outer-level optimization

minimizes the expectation of inner-level cost over a task distribution. Eq. (6.2) was proven to be

solvable by Chapter 5 with successful results. However, the optimal policy u(θ) of (6.2) is not com-

putable online in real time, necessitating an alternative policy uo(θ) for online model deployment.

Thus, while solving (6.2) leads to a ROM capable of maximal performance, this performance is not

necessarily realizable via real time control, leading to reduced closed-loop performance. To improve

this, in this chapter, we find the model parameters θ while using the control policy uo(θ) during

offline training:

min
θ

Eγ∼Γ

[
Hγ,uo(θ)

]
. (6.3)

Specifically, this control policy uo(θ) is the model predictive control shown in Fig. 6.1. This

seemingly simple change necessitates a significant shift in algorithmic approach, which we detail in

Section 6.2.
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6.2. ROM Optimization via Reinforcement Learning

In this section, we cast the model optimization problem in Eq. (6.3) as a model-based reinforcement

learning problem.

6.2.1. Reinforcement Learning Structure

In reinforcement learning, the system comprises a policy and an environment. The policy takes the

current environment state s and outputs an action a. Given the current state s and the action a, the

environment transitions to the next state s′. Each pair of state and action (s, a) results in a reward

r. In this work, the policy is the ROM planner, and the environment includes everything else in

the closed-loop system (Fig. 6.1). Given this choice, the state of the environment s includes the

robot’s state and input (x, u), task γ, and finite state machine information (including the phase of

the current state). The policy action a are the CoM states and the foot step locations (the solution

of the ROM trajectory optimization). Additionally, we limit the policy’s update rate to 20Hz, so

that the state and action pairs are collected at a fixed rate.

6.2.2. Policy Parameterization

Reduced-order models for legged locomotion commonly describe the CoM motion, while each model

imposes different constraints on the robot to derive its own CoM dynamics (Kajita and Tani, 1991;

Blickhan, 1989). Inspired by this, we search for an optimal CoM dynamics g, while using the same

embedding function r, the CoM position relative to the stance foot, as LIP and SLIP.

We parameterize the ROM with monomials of the state of the ROM, with linear weights. That is,

ÿ = gθ(y, ẏ, τ) = Θφ(y, ẏ), (6.4)

where gθ is the ROM dynamics parameterized by θ, Θ ∈ Rny×nφ is the matrix form of θ, and φ is

the feature vector containing the monomials. Even though we use monomials here, any function

approximator (e.g. a neural network) can be used to parameterize the ROM dynamics in Eq. (6.4).

We note that the ROM parameters θ are the policy parameters, as the ROM planner is the policy

in our RL framework (Fig. 6.1).
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In this chapter, we initialize the ROM to an LIP, because the LIP is effective for simple walking tasks,

and this initialization speeds up the learning process. To implement this initialization, we augment

the feature vector φ with the terms in the LIP dynamics function. Additionally, we use monomials

of order up to 2. That is, φ includes elements such as y1, y2
0 and y0ẏ1, where the subscripts denote

the indices of each element in y. Given this, θ is of dimension 90. The parameterization choice in

Eq. (6.4) preserves physical interpretability, since the learned model describes the CoM dynamics.

6.2.3. Rewards and the RL Problem Statement

Instead of minimizing the cost in Eq. (6.3), our RL formulation maximizes the return (i.e. accumu-

lated rewards) R =
∑T

t=1 rt, where rt is the reward at time t. Therefore, to encourage minimizing

the cost h(x, u) and achieving a desired task γ, we design the reward function

r = exp(−w · h) + 0.5 exp (−‖γ − γfb‖W ) , (6.5)

where w and W are constant weights, γ is the desired task value, and γfb is the achieved task value

(a function of the robot’s state). We note that this reward is a function of the environment state s.

Furthermore, the accumulated reward structure already incentivizes the robot to finish the entire

episode, eliminating the need for penalty terms in case of early simulation termination (e.g. the

robot falls). In this chapter, we choose h = uTu (quadratic cost on motor torques), and the horizon

T = 100 which is equivalent to 5 seconds of simulation time. Additionally, the user-specified h is

ultimately the metric for model performance evaluation.

The objective of our RL problem is to maximize the expected return over the task distribution:

max
θ

Eγ∼Γ [R] . (6.6)

There are several algorithms for solving Eq. (6.6), such as policy gradient and evolutionary strategy.

In this work8, we choose Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) (Hansen,

2006). The advantage of this approach includes easy parallelization (Salimans et al., 2017) and easy
8Proximal Policy Gradient (PPO) also resulted in successful model training in our experiment, but it required

more hyperparameter tuning.
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Algorithm 3 Evaluation of return R̂ (θ, {γj})
Input: model parameters θ and sampled tasks {γj}
1: for j = 1, . . . , Nγ do
2: Roll out an episode with the MPC in Section 5.2
3: Compute the return Rγj =

∑T
t=1 rt of this rollout

4: end for
5: return 1

Nγ

∑Nγ
j=1Rγj

Algorithm 4 CMA-ES with curriculum learning

Input: initial mean θ0 and variance σ2
0 for the parameter distribution pθ, and initial task set Γd

1: for iter = 1, 2, . . . do
2: if mod(iter, Nc) = 0 then
3: Grow the task set Γd (Section 6.2.4)
4: end if
5: Randomly draw Nγ tasks {γj} from Γd
6: Sample Nθ parameters {θi} ∼ pθ
7: for each sampled θi do
8: Compute return R̂ (θi, {γj})
9: end for

10: Update the mean and covariance of pθ (CMA-ES)
11: end for

hyperparameter tuning (partially due to the absence of value approximation). We use the package

Optuna (Akiba et al., 2019) for the CMA-ES optimizer.

Let pθ be the probability distribution over θ in the CMA-ES algorithm. The exact problem that

CMA-ES solves is

max
pθ

Eθ∼pθ [Eγ∼Γ [R]] . (6.7)

The difference between Eq. (6.7) and (6.3), besides the cost-reward difference, is the stochasticity

of parameters θ needed for the exploration of CMA-ES.

6.2.4. Curriculum Learning

We observe that learning a policy for a large task space is difficult, so we implement a curriculum

learning similar to (Margolis et al., 2022) to facilitate the learning process. Our method discretizes

the continuous task domain of Γ into a set Γd. This set Γd starts small and expands every Nc

iterations by including the adjacent tasks of successful tasks during learning.
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To evaluate the inner expected value in Eq. (6.7), we approximate it by randomly drawing Nγ

number of tasks from the set Γd and averaging the returns of these tasks. Let R̂ be this approximate

expected return given model parameters θ. The evaluation of R̂ is shown in Algorithm 3. As a part

of the curriculum learning, we also adjust the number of tasks Nγ , as the size of Γd grows larger.

Specifically, Nγ = floor (ργ |Γd|) , where ργ is the sampling percentage and | · | counts the number of

elements in a set.

The algorithm for solving Eq. (6.7) with curriculum learning is outlined in Algorithm 4. In every

iteration, CMA-ES samples a few model parameters θ’s according to pθ, and evaluates the value

(return R̂ in this case) for each sampled θ. Given these values, CMA-ES updates the mean and the

covariance matrix of the parameter distribution pθ.

6.3. Experimental Result

We learn a ROM in simulation using Drake (Tedrake, 2019) offline, and deploy it to the same

simulation environment for detailed evaluation comparison between the initial model and the optimal

model. We also compare this optimal model to the one derived using the prior approach (Chen et al.,

2023a). Lastly, we showcase the flexibility in task space reparameterization in Section 6.3.4.

6.3.1. Hyperparameters

The hyperparameters for the RL are shown in Table 6.1. The number of parameters sampled per

iteration Nθ is adaptively chosen by the CMA-ES optimizer according to the parameter dimension.

The sample density ργ is chosen to be 0.1 which has the benefit of speeding up the learning process

compared to evaluating all discretized task samples (i.e. ργ = 1). The initial standard deviation

σ0 of the parameters is set to a relatively small number, since the initial ROM already works for

simple tasks. Moreover, we observe that using a larger standard deviation σ0 does not show better

performance in our experiments, and it has a drawback of potentially diverging from the optimal

parameters from time to time. For the curriculum learning, we set the initial task space to be

straight-line walking with stride lengths between -0.1 m and 0.2 m. The task space is discretized by

0.1 m, 0.1 rad and 0.45 rad/s in stride length, ground incline and turning rate, respectively. Lastly,

we only expand the task space every 30 iterations to learn a model gradually.
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(a) Comparison against LIP (initial model) (b) Comparison against the optimal model of Chapter 5

Figure 6.2: Cost landscape comparisons. Fig. 6.2a compares the optimal model to the initial
model. Fig. 6.2b compares the optimal models between this chapter and Chapter 5. For each
model comparison, we create landscapes in two sets of experiments – one involving turning rate and
stride length (with a constant ground incline of 0 rad), and the other involving ground incline and
stride length (with a constant turning rate of 0 rad/s). Each plot shows the ratio of the optimal
model’s cost to the compared model’s cost. The color scheme red-to-blue illustrates the degree to
which the optimal ROM shows improvement. Ratio below 1 means the optimal ROM performs
better than the compared model, and vice versa. Green color shows the task regions gained by the
optimal model, and orange color shows the task regions lost by the optimal model.

6.3.2. Comparing the Optimal Model to LIP (Initial Model)

We compare the performance of the initial model θ0 and the optimal model from the learning

result. To evaluate the model performance, we run the simulation for a wide range of stride lengths,

ground inclines and turning rates. We then extract the periodic walking gaits according to the

85



criteria shown in Table 5.4 which ensure variations over foot steps fall below specific thresholds.

Given these periodic trajectories, we compute the cost Hγ,u(θ) and plot the landscape of the cost

ratio of the optimal model to the initial model, shown in Fig. 6.2a. The color scheme red-to-blue

illustrates the degree to which the ROM shows improvement, with red corresponding to a minimal

improvement and blue to a 20% cost reduction. In addition to the ratio, we also visualize the task

region where either the initial model or the optimal model fails to complete, visualized by green and

orange. Green corresponds to the task regions that the optimal model gains, and orange corresponds

to the regions that the optimal model loses.

In this example, the optimal ROM reduces the cost across almost the entire task space (up to 21%

cost reduction). For flat ground walking tasks, the optimal model shows the largest improvement

in the region of small stride lengths. For inclined walking, the optimal model achieves higher

performance improvement in downhill tasks than uphill tasks. Additionally, the optimal model

increases the task region size by 49% for inclined walking. For example, at an incline of -0.2 rad,

the maximum stride length increases from 0.2 m to 0.37m.

6.3.3. Comparison against Chapter 5

We also conducted a set of experiments similar to Section 6.3.2. Instead of comparing against the

initial model, we compare the optimal model from Algorithm 4 to the one from Algorithm 2. The

cost landscape comparison for this is shown in Fig. 6.2b.

Compared to the prior approach, the optimal model of this chapter shows up to 28% increase in

task space along with an average 2.7% cost improvement. For the flat ground walking tasks, the

model yields a 22% larger viable task region than that of the prior approach. For the inclined

walking tasks, it is 28% larger. We hypothesize that this improvement comes from the fact that in

the RL framework we are able to use a Cassie model of high fidelity during training, while the prior

approach was limited to a simplified Cassie model for ease of solving the inner-level optimization in

Eq. (6.2).

We note that, besides the above numerical comparisons, the RL approach in this chapter is easier
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initial standard deviation σ0 1e-3
number of sampled parameters per iteration Nθ 17

sample density ργ 0.1
number of iterations for task space expansion Nc 30

stride length discretization 0.1 m
turning rate discretization 0.45 rad/s
ground incline discretization 0.1 rad

Table 6.1: Hyperparameters for the model learning

to implement than that in Chapter 5, since it does not require a careful implementation of of-

fline trajectory optimization (inner-level optimization in Eq. (6.2)) in conjunction with the online

control policy (uo(θ) in Section 6.1) for reducing the gap between the open-loop and closed-loop

performances.

6.3.4. Generalization to New Task Space Parameterization

One advantage of using a model-based approach is the flexibility in specifying new tasks, as moti-

vated in Section 3.3. During the training stage of our experiment shown above, we train the model

using common tasks including stride length, turning rate and ground incline. We demonstrate that

the model can be easily extended to achieve unseen tasks by modifying the MPC diagram in Fig.

6.1. For example, we might want to ensure that a body-mounted sensor is oriented at a target of

interest, or we might want a robot to collaboratively carry a table with a human, which requires the

robot facing a different direction than the walking direction. To mimic these scenarios for Cassie,

we turn Cassie’s pelvis to the side while walking forward. We achieve this by simply changing the

desired value of the pelvis yaw angle for the regularization trajectory generator in Fig. 6.1. In the

accompanying video, we can see that the robot achieves this task without any more offline training.

6.4. Conclusion and Future Work

We formulate a model-based reinforcement learning problem for reduced-order models of legged loco-

motion. This provides an avenue to bridge the gap between the well-established model-based control

and the emerging field of reinforcement learning for legged robots, combining the performance-

maximizing capability of RL with the physical interpretability and the task specification flexibility
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of model-based approaches. The experiments show that the optimal model reduces the torque cost

by up to 21% and improves the viable task region size by up to 49% over the traditional models like

LIP. We also compare this work to Chapter 5 which uses full model trajectory optimization during

the ROM optimization, and the results show an up to 28% improvement in the viable task region

size along with a mild improvement in torque cost.

In this chapter, we solve the RL problem using CMA-ES, but theoretically any reinforcement learn-

ing optimizer can be applied to our RL framework in Fig. 6.1, since our policy (ROM planner)

is differentiable (Amos et al., 2018). Future work includes exploring more optimizers to find one

that results in the highest performance improvement. Additionally, we observed in Chapter 5 that

parametrizing the embedding function r along with the ROM dynamics function g (i.e. both Eq.

(2.5a) and (2.5b)) lead to higher performance improvement than parameterizing only g. In this

chapter, we simplified the problem and the RL formulation by limiting r to a CoM kinematic func-

tion, so one future direction is to parameterize both r and g, and learn the model in a similar

pipeline.
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CHAPTER 7

CONCLUSION

In this thesis, we formulate problems to find optimal reduced-order models, provide algorithms to

solve these model optimization problems, and deploye the optimal models to the robots.

In Chapter 4, we look at a specific case of ROM optimization where our goal is to find an orien-

tation coordinate that minimizes the error of the centroidal angular momentum predicted by this

coordinate. We found the prediction error was low despite the non-integrability of the angular

momentum, and we applied this coordinate in humanoid walking and biped running, resulting in a

smaller momentum variation throughout the motions.

In Chapter 5, we formulate the problem such that we can find a model that is optimal with respect

to any objective function and task distribution. We optimized models for the bipedal robot Cassie

and saw up to 23%, 32% and 53% improvements in torque cost, ground incline and walking speed

in simulation, and saw on average a 10% cost improvement on hardware. The model optimization

results showed a bigger benefit in hard tasks (or a big set of tasks) and in robots with heavy legs.

In Chapter 6, we improve upon Chapter 5 to further include the feedback controller into the model

optimization, which eases the implementation process and reduces the performance gap between the

training and model deployment. The results showed an improvement over the approach in Chapter

5 with a bigger viable task region and a lower torque cost.

This work introduces a avenue for advancing the control of legged locomotion, providing a framework

for optimizing ROMs and ultimately improving the performance of legged robots across diverse tasks

and scenarios. As the framework is general, it has implications that extend beyond the field of legged

locomotion and into the broader realm of robotics.
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7.1. Future work

Our definition of a ROM in this thesis considers only the continuous time dynamics without the

discrete mapping from the ground impact event. This implicitly assumes zero ground impacts at

the contact event. This assumption simplifies the design of the MPC, but also at the same time

restricts the scope of the explored ROM, resulting in a potential lost in performance. One future

direction is to find a high-performance hybrid ROM which captures both the continuous time and

discrete time dynamics of the robot.

In some of our experiments, we found that linear models perform surprisingly well in specific sets of

tasks. A linear model renders a convex MPC which can be solved with a guaranteed global optimality

and demands significantly less computational resources than a nonlinear MPC. This is potentially

useful for the ongoing humanoid development, particularly when there is limited onboard computing

power or a thermal restriction for the computing unit. Exploring the space of linear ROMs under

different sets of tasks space (including more dynamical motions) is another interesting direction.

In this thesis, we improve the robustness of ROMs with heuristics such as restricting the center

of pressure near the center of the foot. There are principled ways to design a robust policy such

as using offline robust trajectory optimization (Dai and Tedrake, 2012b; Kong et al., 2021), sums

of squares (Posa et al., 2017b), and domain randomization (Xie et al., 2020). Additionally, we can

apply existing model-based methods that provide stability or safety guarantees (Ames et al., 2019;

Nguyen et al., 2016; Khazoom et al., 2022) to the high-performance model derived from our model

optimization algorithm. These guarantees can facilitate deploying robots into the real world.
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