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Abstract— General robot manipulation requires the handling
of previously unseen objects. Learning a physically accurate
model at test time can provide significant benefits in data effi-
ciency, predictability, and reuse between tasks. Tactile sensing
can compliment vision with its robustness to occlusion, but
its temporal sparsity necessitates careful online exploration
to maintain data efficiency. Direct contact can also cause an
unrestrained object to move, requiring both shape and location
estimation. In this work, we propose a learning and exploration
framework that uses only tactile data to simultaneously deter-
mine the shape and location of rigid objects with minimal robot
motion. We build on recent advances in contact-rich system
identification to formulate a loss function that penalizes physical
constraint violation without introducing the numerical stiffness
inherent in rigid-body contact. Optimizing this loss, we can
learn cuboid and convex polyhedral geometries with less than
10s of randomly collected data after first contact. Our explo-
ration scheme seeks to maximize Expected Information Gain
and results in significantly faster learning in both simulated
and real-robot experiments. More information can be found
at: https://dairlab.github.io/activetactile.

I. INTRODUCTION

Robot manipulators in the wild will inevitably come

across previously unseen objects and environments. They can

benefit from building object models from the limited data

available at test time. Such models can be reused across

different tasks and systems, and they can make learned

manipulation policies more interpretable. In the building of

these models, tactile sensing can compliment visual modal-

ities like RGB and depth. Tactile data is robust to darkness,

reflections, and occlusions from clutter, the environment, and

the object itself. With the advent of inexpensive sensors

[1, 2, 3], touch is becoming a more common component

of robot manipulation systems [4].

Two challenges inherent to tactile sensing are sparsity and

disturbance. By definition, data is only collected about the

part of the object in direct physical contact with the sensor,

necessitating multiple movements to get a complete picture.

Sparsity can be addressed by active exploration, where

actions are taken to efficiently maximize some information

metric, often captured by maintaining a belief distribution

over possible object parameterizations [5, 6, 7, 8, 9, 10].

However, reasoning about information gain is complicated

by disturbance: every contact has the potential to move the

object unless it is heavy or bolted down. Propagating belief

through motion is tricky, informing our first key insight:

expected information gain (EIG), by foregoing an explicit
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Fig. 1. Only tactile data is used to find the pose and geometry of an arbitrary
convex object (e.g., parameterized as a 20-vertex polytope as shown here).
Actions are chosen to maximize Expected Information Gain, related to the
info we expect to gain from contact divided by the info previously observed.
As parts of the ground-truth object (e.g. a cuboid, shown in gray) are
contacted, the corresponding areas of the learned estimate will be assigned
a high observed info (blue → red).

belief distribution, is a particularly useful metric for active

tactile exploration.

Disturbance affects even the model-building itself, as it

necessitates learning the object’s pose trajectory in addition

to its geometry. That trajectory needs to adhere to the

physical constraints of rigid-body motion and contact, which

can lead to difficult loss landscapes with both nearly flat

and nearly discontinuous regions. Related work in geometry-

learning with a known trajectory [11, 12] has shown how a

violation-implicit loss leads to a landscape more amenable to

gradient-based optimization. Our second key insight is that

this loss works just as well with the trajectory itself as a

decision variable.

In summary, this work presents two contributions.

1) A violation-implicit loss that enables the simultaneous

leaning of rigid-body pose and geometry from purely

tactile data.

2) An active exploration scheme that seeks to maximize

EIG to enable more efficient learning with fewer robot

motions, as highlighted in Fig. 1.

The combination of these contributions yields a scheme that

can simultaneously learn the pose and cuboid or convex

polytope geometric approximations of arbitrary unknown

convex rigid bodies with under 10s of purely tactile data.

II. RELATED WORK

A. Model Building and System Identification

Visual modeling of both environment and object geometry

is a mature field with the well-studied paradigms of simulta-

neous localization and mapping (SLAM) and structure from

motion (SfM)[13]. Continuous object representations include

radiance fields [14] and Gaussian splatting [15]. Recent work

learns the geometry [16] and pose [17] of dynamic objects in

video, even in contact-rich environments [18]. For assessing

the accuracy of our tactile-only system, we compare against

ground truth estimates from FoundationPose [17].

https://dairlab.github.io/activetactile


Fig. 2. Block diagram of the interaction protocol. An estimate of object pose and geometry emerges from tactile and proprioceptive data (top left) by
minimizing a violation-implicit loss. In this example with a cuboid parameterization, the top, left, and bottom faces can be directly inferred from data while
the right face is unobserved. The expected information gain (EIG) of the next action is optimized using a Gaussian cross-entropy method: robot trajectories
are sampled, simulated forward to time horizon H , and scored. Pictured here, Dobs includes contact with left and top, leading to high observed info I

(red), so the upper sample contacting these same sides yields low EIG. The lower sample contacts the right side with low I (blue), maximizing EIG.

Even without active exploration, tactile sensing has been

used in recent work to refine models of both the robot

and its environment. Non-optical contact sensors can enable

more accurate proprioception in the presence of a known

environment [19]. Optical tactile sensors create estimates of

local surface geometry that can be used to localize the robot

with respect to a known object [20] or vice versa [21].

B. Active Exploration in Robotics

Active exploration has been studied in robotics for decades

[22] and involves either the selection of data-gathering ac-

tions to maximize information or the curation of data based

on information potential. Generally, it includes: (1) some

current state of knowledge, (2) an estimate of the information

collected by a given action, and (3) an optimization metric

quantifying how useful the latter is given the former.

In Bayesian state estimation, the current state can be

represented by a belief distribution. Mutual information (MI)

[5] as a metric captures the information gained about this be-

lief distribution by observing some other (e.g. measurement

likelihood) distribution, but in dynamic environments this can

be intractable to compute exactly [6]. Explicit MI calculation

can be avoided by using uncertainty instead, e.g., probing

areas where the belief distribution has a high variance [7, 8].

One could also use a heuristic to avoid actions similar

to those previously taken [10] or a policy trained to take

informative actions [9]. For dynamic objects, propagating

belief though a dynamics model that is itself uncertain is

tricky: the result is inherently multimodal, and the number

of required parameters scales exponentially in the number

of moments. Multimodal uncertainty can be approximated

by simulating an ensemble of possible models [23].

Another approach is to drop the belief distribution and

maximize Fisher Information [14], which only requires a

point maximum-likelihood estimate (MLE) and is used ex-

tensively in optimal experimental design. Recent work uses

this approach to refine a simulator from real world data

[24] and plan informative trajectories in contact-rich environ-

ments [25]. However, maximizing Fisher information alone

does not take into account previously observed information

over multiple actions. Ergodic exploration [26, 27] can be

used to plan a sequence of actions such that, while more

time is spent in areas likely to have high information, the

entire state space is eventually explored. EIG (see Sec. V),

derived from Fisher information, explicitly quantifies how

much information an action is likely to obtain relative to

previously observed information. It has been used in visual

model building for active view selection of static objects

[14, 15]. This work takes this procedure and implements it

for tactile sensing of dynamic objects.

C. Tactile Active Exploration

Multiple works have tackled the problem of tactile active

exploration. The most common application is the modeling

of an unknown surface using poking or sliding contact from

an optical sensor [7, 28, 29], as thoroughly collated by a

recent survey [30]. It is also common to estimate the ge-

ometry of 3d static objects [8, 10]. When learning both pose

and geometry, the latter tends to be treated as a classification

problem by maintaining a discrete set of possible object

geometries [9, 31, 32]. One work simultaneously estimates

the pose and geometry of specifically planar objects [33]. To

our knowledge, ours is the first work that learns the pose

and geometry (from a continuous class of convex shapes) of

a 3D rigid body that is free to move during deployment.

III. PROBLEM FORMULATION

Consider a finite workspace with a rigid known ground

plane, unknown convex rigid object, and a robot with known

convex end-effectors located at rt, each fitted with a tactile

sensor. They report a contact boolean ct ∈ {0, 1} and a

measured contact normal direction n̂t,m ∈ S2. The goal is to

determine the current pose of the object xT and its geometry

θ in as few actions as possible. In practice, our action space

will be a a parameterized trajectory described in more detail

in Sec. VI-A. Given the possible geometric symmetries in the

object, the success metric will be the bidirectional Chamfer

distance (bCH) between the estimated S̃(x̃T , θ̃) and ground-

truth S∗(x∗T , θ
∗) surfaces.

CAB =
∑

a∈A

min
b∈B
∥a− b∥22 ; bCH = CS̃S∗ + CS∗S̃ (1)

The interaction protocol is summarized in Fig. 2.



1) Learning: (Sec. IV) At current time T , given some ob-

served dataset Dobs =
⋃

t∈[0,T ]{rt, ct, n̂t,m}, produce

some estimate of the object pose and shape. In practice,

this will be the minimum of some loss function L.

θ̃, x̃T = argmin
θ,xT

L(θ, xT ,Dobs) (2)

2) Evaluate bCH

3) Exploration: (Sec. V) Given some known horizon

H > T , choose a trajectory rT ···H and collect new

data Dacq =
⋃

t∈[T,H]{rt, ct, n̂t,m}.
4) Repeat with Dobs ← Dobs ∪ Dacq

A. Sensor Model

We model a discrete logistic likelihood for ct, where the

logit φt(θ, xt, rt) is the signed distance between the robot

and the object and α is an uncertainty hyperparameter. For

a given value of ct, this likelihood approximates stepwise

behavior about φt = 0 with a sigmoid logistic function.

p(ct|θ, xt, rt) =
ct + (1− ct)eαφt

1 + eαφt
(3)

If ct = 1, we model our measured normal n̂t,m with a

Gaussian1 likelihood with respect to the expected contact

normal n̂t(θ, xt, rt) with covariance hyperparameter Σn.

p(n̂t,m|θ, xt, rt) =
ct exp(−0.5 ∥n̂t,m − n̂t(θ, xt, rt)∥2Σ−

n 1)

(2π)3/2
√
detΣn

+ (1− ct)δ(n̂t,m)
(4)

While the second term with the Dirac delta function δ is

included here for completeness, it does not involve any object

or action parameters and will be omitted going forward.

IV. LEARNING WITH A VIOLATION-IMPLICIT LOSS

A natural step is to seek to minimize the negative log-

likelihood of our sensor model. We take the log of the

product of Eq. 3 and 4, bringing the discrete selectors ct and

(1−ct) out of the logarithm and dropping additive constants.

Lt =
ct
2
∥n̂t,m − n̂t∥2Σ−1 +

[

(ct − 1)αφt + log(1 + eαφt)
]

(5)

However, via n̂ and φ, Lt depends on the object state xt, so

the sum over the trajectory must be optimized under physical

constraints.

θ̃, x̃T =argmin
θ,xT

∑

t

Lt s.t. xt+1 = fθ(xt, rt, λt)

λt = argmin
λ
gθ(xt, rt, λ) s.t. λ ∈ FC

(6)

Where fθ are the discrete-time dynamics as a function of

contact impulses λt. These can themselves be written as the

minimizer of a function gθ [34] representing other physical

constraints (e.g. non-penetration) discussed in more detail

1While a more appropriate likelihood in S2 may be a univariate Gaussian
about the dot product 1−n̂m,t ·n̂t with variance σ2, the two are equivalent
for diagonal covariance Σn = σ2

∗ I , though the gradients differ in R
3

before normalization. The 2-norm enables the easy calculation of Eq. 14
that is independent of n̂m,t.

below. Under the assumption of Coulomb friction, impulses

are constrained to the friction cone FC = {∥λft ∥2 ≤ µλnt },
where the total frictional impulse ∥λft ∥2 is bounded by

a constant multiple of the normal impulse λnt , sliding in

equality and sticking otherwise.

One could optimize this loss function through shooting and

differentiable simulation. With parameter x0, compute xt =
(fθ)

t(x0) and perform gradient descent through (fθ)
t to find

x̃0. Then x̃T = (fθ)
T (x̃0). As discussed in related work [12],

this approach can produce gradients that are near-0 in some

regions and near-infinite in others. This is especially true with

rigid contact dynamics, longer trajectories, and simulations

with a small timestep ∆t.
Intuitively, this procedure is analogous to fitting a Heav-

iside step function y = Hs(x − θ) using the square-error

loss
∑

D
∥yD − Hs(xD − θ)∥22, capturing error in the y-

direction, which has a gradient of 0 almost everywhere and is

discontinuous when data lies at the estimate of the parameter

θ. An alternative is to minimize the distance between data

and the closest point on the function, or “graph distance”
∑

D
minx ∥(xD, yD) − (x,Hs(x − θ))∥22. At the cost of a

(potentially expensive) inner optimization, the loss gradient

is now a finite value (or bounded set) everywhere.

Approximately minimizing graph distance is the essence

of the violation-implicit loss, and has been used in geometry

learning given a known object trajectory [11]. The analogous

procedure in our setting is to bring the near-discontinuous

dynamics and physical constraints into the loss function as

penalties, and the inner optimization happens over the contact

impulses λ.

Lv(θ, xt,D) =
∑

t

min
λt

Lt + ∥xt+1 − fθ(xt, λt, rt)∥22

+ gθ(xt, λt, rt) s.t. λt ∈ FC
(7)

Without dynamics as a hard constraint, the entire trajec-

tory xt can be treated as decision variables, reducing the

instability of differentiating through a large T at the cost of

introducing non-physical local minima in the optimization.

In practice, we mitigate the latter using multiple trajectory

initializations for the gradient descent. Following [11], our

physical loss terms gθ include the following.

1) Complementarity: λnt φt, i.e., contact force only hap-

pens when objects touch.

2) Maximum Power Dissipation: ∥vst ∥22λnt +(vst )
Tλft , i.e.,

friction force opposes the contact sliding velocity vst
on the boundary of FC

3) Non-Penetration: min(0, φt)
2

4) Inelasticity (new in this work): λnt max(vnt , 0), i.e.,

the normal force opposes the normal velocity vnt and

cannot return energy to the object

While [11] was agnostic to elasticity given the known

trajectory, since we are estimating an unknown trajectory,

we found it useful to assume that all of our collisions would

be nearly inelastic. With the above loss terms, our inner

optimization loop in λ was a quadratic program (QP) with

a second-order cone constraint that could be solved quickly



in Cvxpylayers [35]. Note that, by the envelope theorem,

explicitly differentiating through the minλ is unnecessary,

further speeding up the backwards pass.

V. MAXIMIZING EXPECTED INFORMATION GAIN (EIG)

In Sec. V-A, we first review EIG as a popular metric for

general active exploration [14, 15, 36]. In Sec. V-B, we

detail the specific formulation for our setting: active tactile

exploration with a dynamic unknown object and a violation-

implicit loss (Sec. IV).

A. Preliminaries

As described in Sec. II-B, active exploration requires some

estimate of the information present in observed data Dobs,

some expectation of information that may be available in

future data Dacq , and a scalar metric quantifying the utility

of that information. A natural step is to consider belief prior

p(ω|Dobs) and posterior p(ω|Dobs,Dacq) distributions over

model parameters ω = {θ, xT }. In particular, a common

approach is to look at the entropy H of these distributions.

H[ω|D] := Ep[− log p(ω|D)] (8)

A chief difficulty is estimating the entropy of the posterior,

as the acquired data itself is a random variable sampled from

a likelihood distribution p(Dacq|ω, rt).
For a Gaussian, the entropy can be expressed in terms

of the log-determinant of the covariance: H[N (µ,Σ)] =
1/2 log detΣ + const. This is why it is common to use the

(co)variance of the belief as a heuristic for high-information

regions. But for dynamic objects, propagating a Gaussian

prior through time to get that covariance is difficult. The

result is fundamentally multi-modal, and just fitting a Gaus-

sian can be completely non-physical. However, it is possible

to fit a Gaussian to a second-order approximation of an

arbitrary distribution about any modal peak. In that case,

the effective covariance is equal to the Hessian of the log of

the distribution about that peak ([36], Prop. 3.5).

H[ω|D] ≈ 1

2
log det∇2

ω(− log(p(ω|D)))
∣

∣

ω̃
+ c (9)

We now have a local approximation of entropy that only

requires a local maximum a posteriori (MAP) estimate ω̃
of the model parameters. Given an uninformative prior (i.e.

Cov(ω|∅)−1 → 0), the Hessian of the posterior equals the

Hessian of the likelihood, and ω̃ becomes a local MLE.

(9) =
1

2
log det∇2

ω(− log(p(D|ω)))
∣

∣

ω̃
+ c

:=
1

2
log det I(D, ω̃) + c

(10)

The Hessian of the negative log-likelihood about an MLE is

called observed information. Fisher information F(D, ω̃) =
Ep(D)I(D, ω̃) is defined as the expected value of the ob-

served information from future data. EIG, which is defined

to be the difference in entropy between the belief prior

and the belief posterior, can be computed without explicitly

maintaining either of those distributions by using Fisher and

observed information.

EIG := H[ω|Dobs]−H[ω|Dobs ∪ Dacq]

∝ log det(F(Dacq)I(Dobs)
−1 + I)

(11)

For a full derivation we direct the reader to [36], Sec. 3-5.

B. Computing EIG

In our setting, the negative log-likelihood is our loss

− log p(ω|D) = Lt (Eq. 5), therefore, we can calculate ob-

served information as our loss Hessian at the MLE θ̃, x̃0···T
computed by our learning scheme.

I(Dobs) = ∇2
θ,xT

T
∑

t=0

Lt(θ̃, x̃t, rt) (12)

Dividing Lt into two components (n̂m,t and ct), the result

for each is a term proportional to the Hessian of the logit

(∇2
ω(φt, n̂t)) and a term proportional to the outer product of

the gradient of the logit (∇ω(φt, n̂t)∇ω(φt, n̂t)
T ). The for-

mer can be difficult to calculate. Fortunately, its multiplicand

depends on the measurements and is 0 in expectation (noting

that E[n̂m,t] = n̂t and E[ct] = (1 + eαφt)−1).

En̂m,t
[∇2

ω(n̂t · (n̂m,t − n̂t))] = ∇2
ωn̂t ·

�
�

�
�
�
�
��:

0
E[(n̂m,t − n̂t))]

∇2
ω(φt)Ect [(ct − 1) + eαφt(1 + eαφt)−1] = 0 (identically)

(13)

While observed information is not taken in expectation, we

omit the above terms, assuming that their contribution will

tend towards negligibility as more data is collected.

I(Dobs) ≈
T
∑

t=0

α2

(

∇wφt

(

eαφt

(1 + eαφt)2

)

∇wφ
T
t

)

+ ct∇ωn̂tΣ
−1
n ∇ωn̂

T
t

(14)

While the gradients can be evaluated at the MLE trajectory

x̃0···T , they must be taken with respect to the parameters

we actually care about: θ̃, x̃T . Frustratingly, this necessi-

tates quantifying the sensitivity of past measurements to

the current state. Even with a differentiable simulation,

contact dynamics cannot in general be simulated backwards

(multiple starting states can lead to the same end state).

One could consider taking the dynamics Jacobian dxt

dxt−1

and

directly inverting it to try and approximate this sensitivity, but

in our experience this leads to severe numerical instability.

For this work, we found success computing the sensitivity at

each time step with respect to only that time step’s state

and summing the results, e.g.,
∑

t∇xt
φt∇xt

φTt . This is

equivalent to assuming dxt

dxt−1

= I. While sufficient for the

sliding object trajectories that emerged in our experiments,

we do not believe this approach is likely to work for more

chaotic disturbances, which is an avenue for future work.

Fisher information can be similarly calculated. For a given

action rT ···H , we can simulate forward to compute x̃T ···H .

We note that this future trajectory will be, by construction,

a local MLE. The results of simulation will perfectly obey



physical constraints and simulated measurements are identi-

cal to their modeled counterparts, so ∇xT ···H
LT ···H = 0.

F(Dacq) = Ect,n̂m,t

[

∇2
ω

H
∑

t=T

Lt(θ̃, x̃t, rt)

]

(15)

The computation is identical to Eq. 14, with the approxima-

tion becoming equality as Fisher information is taken in ex-

pectation. The same note from the previous paragraph applies

for gradient computation with respect to x̃T . Differentiable

calculation of φ and n̂ (itself a QP) were implemented with

Jaxopt [37]. With both Fisher and observed information, we

can directly compute EIG with Eq. 11.

VI. EXPERIMENT SETUP

A. Action Space

As mentioned in Sec. III, our action space is a parameter-

ized robot trajectory. For each of our robot’s 2 end-effectors,

we execute a 1s straight line trajectory that approaches

our guess of the object’s centroid from a fixed radius. To

avoid sensor collisions, each finger is restricted to the +X

or -X half-space (bounded from below by the ground).

Therefore, our final space is composed of 2, 2D approach

angles (S2 ⊗ S2). In practice, we use the “right-ascension”

(a rotation about +Z from the +/-X-axis) and “declination”

(a rotation towards the +Z axis). On the real robot, both

rotations are limited to [−π/4, π/4] such that all collisions

are likely to happen with the tactile sensor’s surface, though

in simulation we relax the bounds to [−2π/5, 2π/5].
EIG is optimized using an iterative Gaussian cross-entropy

method. Initially, a set of nsamp actions are sampled uni-

formly. We the construct a new sampling distribution by

sorting the actions by EIG and taking a Gaussian fit of only

the best nbest < nsamp. After the last iteration, the final

action is chosen uniformly randomly from the final nbest.
For the computation of bCH for evaluation only, Founda-

tionPose [17] visually computes the ground-truth object pose

at 30Hz. As we do not have any size prior for the object,

we ignore the initial uniform sweep of the workspace and

only begin counting actions at the moment of first contact.

In practice, this means randomly selecting an action for one

finger centered on the ground truth position.

B. Hardware Setup

Our hardware setup is summarized in Fig. 3. We utilize

a Trifinger robot [38] modified into a dual-finger configura-

tion 180-degrees apart. Each finger is instrumented with a

Densetact [3], which streams sensor images at 30Hz. Tactile

data acquisition leveraged the correlation between observed

fingertip motion primitives from each frame and applied

forces (normal, shear, and torsional). Contact motion was

computed using the optical flow algorithm [39] between the

current frame and a reference frame with no contact. We

perform a Helmholtz-Hodge decomposition [40] of the re-

sulting vector field to separate out the irrotational component.

Empirically, we find the surface deformation to be correlated

with the scalar potential ψ(u, v) of this field. The center-

of-pressure (CoP) can be measured by taking a weighted

Fig. 3. Hardware setup: a Trifinger [38] modified to have 2 fingers
directly opposing each other, each instrumented with a Densetact [3] sensor.
Densetact images (green) can be used to locate the center-of-pressure
(yellow), which in turn can be projected onto the nominal model to compute
the measured normal vector n̂m,t (pink). A single RealSense running
FoundationPose (red) is used for evaluation only to calculate bCH.

average
∑

u,v ψ(u, v) · (u, v), and the contact normal can be

imputed from a model of the sensor’s surface. For the contact

boolean, we place a threshold on ψ near the CoP.

C. Object Parameterization

The object pose in SE(3) is parameterized as a quaternion

and a displacement. Since the former is normalized before

every computation, for the calculation of Fisher and observed

information we omit the scalar component.

In this work we consider 2 convex object parameteri-

zations. The cuboid is parameterized in R
3
>0 by its side

lengths. The convex polytope is parameterized by the convex

hull of its vertices in R
3×nv , where in our experiments

nv = 20. One benefit of EIG is that the object can be re-

parameterized at any time. During gradient descent, if any

point moves internally, off of the convex hull, it becomes

effectively invisible to both the loss function and the final

bCH calculation, permanently reducing the expressiveness of

the polytope parameterization. To avoid this, we can replace

it with a random point on the convex hull. We also add

a regularizer that encourages the polytope to have at least

3 vertices on the ground at the end of the trajectory, as the

violation-implicit loss otherwise does not penalize instability.

VII. RESULTS

A. Simulation Results

We first evaluated our method in a Drake [41] simulation

running at 1kHz (with data still reported at 30Hz). For the

cuboid parameterization, our ground truth was a box with

a randomized shape between 3 and 6cm, with our initial

guess randomly sized between 1 and 3cm (in practice, a

smaller initial guess lead to more stable learning). For the

polytope parameterization, we used Platonic solids of fixed

size (2cm bounding radius) as the ground-truth, and our



Fig. 4. bCH between the ground truth and estimated shapes for cuboid
(top) and convex polytope (bottom) parameterizations in simulation. Shaded
region is the 95% confidence interval for the mean of a normal distribution
(N = 10). One outlier trial for random (marked with ×) does not factor
into pictured 95% CI.

initial guess was always 20 random vertices sampled from

the 1cm sphere. Each trial, we initialized both the ground

truth and our initial guess to a random pose within 2cm of the

center of the workspace. After the initial random action that

made contact with the ground truth, we took 5 (for cuboid)

or 8 (for polytope) subsequent actions, recording bCH after

each one. The results are summarized in Fig. 4.

For the cuboid parameterization, Fig. 6 (top) shows an

example 5-action learning trajectory. Observed information

tends to jump quickly, as with only 3 geometry parameters

a single action with low-variance data hitting the corners

is sufficient to learn all of them with high certainty. While

uniform random exploration does reach 5mm within 5

actions (5s of data), EIG exploration consistently reaches

< 4mm in the same time. At time step 5 this represents a

significant improvement (two-tailed t-test with independent

samples, p < 0.05 with a Bonferroni correction of 5 for all

time steps, N = 10).

For the polytope parameterization, Fig. 6 (middle) shows

5 actions (excluding actions 3, 6, and 7 for brevity) of an

example 8-action learning trajectory. Both EIG and Random

exploration reach a bCH of 5mm consistently within 8

actions (8s of data). While not rising to the same statistical

significance, a clear difference can still be seen between EIG

and Random, with the latter requiring 3 extra actions for

the 95% confidence interval to drop below 1cm. Note that

this interval for Random already omits a catastrophic outlier,

where the centroid of the guess was completely outside

of the ground truth object, leading to 2 actions without

contact before they re-aligned. Combined with an observable

reduction in the variance of bCH across all actions, we can

confidently say that the data supports the claim that EIG-

Fig. 5. bCH between the ground truth and estimated shapes on the real
robot. Shaded region is the 95% confidence interval for the mean of a normal
distribution (N = 6).

Fig. 6. Example learning trajectories for (from top to bottom): a simulated
cuboid ground truth with a cuboid parameterization, a simulated regular
octahedron ground truth with a 20-vertex polytope parameterization, and a
real cuboid ground truth with a cuboid parameterization. Colors represent
per-vertex (for the polytope) or total observed information log det I(Dobs).
Each image is re-centered on the ground truth, which moved 1-2cm over
the course of the trial.

maximizing exploration provides a more consistent learning

trajectory. At the same time, even Random exploration still

achieved consistent results with 5-8s of tactile data.

B. Real Robot Results

On our real Trifinger and Densetact setup, we used a

cuboid ground truth and parameterization. The ground truth

object had dimensions 5.8 × 4.9 × 5.3cm and weighing

∼ 0.5kg. The object generally moved 1 − 2cm from its

starting pose during each trial. Initialization was randomized

as in simulation, with 5 actions performed after first contact.

Fig. 6(bottom) shows an example 5-action learning trajectory.

The results are summarized in Fig. 5. While the overall

absolute bCH is worse than simulation, a large portion can

be attributed to 3-5mm of proprioceptive error in each end-

effector. We do still see a significant improvement in EIG

over Random exploration at time step 5 (two-tailed t-test with

independent samples, p < 0.05 with a Bonferroni correction

of 5 for all time steps, N = 6).

VIII. DISCUSSION

We have demonstrated that we can identify the geome-

try and pose of a continuous class of unknown dynamic

convex rigid bodies with only 5-8s of tactile contact data.

Furthermore, we have shown that our active exploration



procedure, by maximizing expected information gain, can

lead to significantly faster and more consistent performance.

This procedure is not without limitations. Further hardware

improvements can increase performance, e.g., the Densetact

struggled to detect light touches, thus limiting our exper-

iments to moderately heavy objects. More generally, EIG

as a local metric can perform poorly if the MLE is a non-

optimal local minimum. Our action space, which relied on

the estimated object pose, was similarly vulnerable. This

required multiple initializations to mitigate, which on top of

the increasing dataset size over the course of the experiment

slowed down training. Also, as discussed in Sec. V-B,

computing EIG with respect to xT requires quantifying the

sensitivity of past measurements to future states, which is

unavoidably poorly posed for stiff contact dynamics. Subject

to Coulomb friction, no amount of smoothing can change

the fact that, if the object is at rest (zT = 0), it could have

always been there or just arrived. While an identity dynamics

Jacobian was sufficient for this work, further investigation

into this issue is necessary.

With that said, this success can still be expanded to more

fully demonstrate the model-building capability of tactile

sensing. For example, while the current approach requires

a convex object and end-effector to define a unique collision

point, it should be possible to model non-convex objects as

a union of convex shapes, further extending the space of

possible geometry representations. Additionally, this work

can be combined with a vision-based model-building solution

[14, 18] to create a robust multi-modal system. This is a step

towards the goal of a robot that can use all of the sensors at

its disposal to model previously-unseen arbitrary objects in

its environment throughout its entire deployment lifetime.
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