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Abstract
Robotic manipulation and locomotion often entail nearly-simultaneous collisions—such as heel and toe strikes during a
foot step—with outcomes that are extremely sensitive to the order in which impacts occur. Robotic simulators commonly
lack the accuracy to predict this ordering, and instead pick one with a heuristic. This discrepancy degrades performance
when model-based controllers and policies learned in simulation are placed on a real robot. We reconcile this issue
with a set-valued rigid-body model which generates a broad set of physically reasonable outcomes of simultaneous
frictional impacts. We first extend Routh’s impact model to multiple impacts by reformulating it as a differential inclusion
(DI), and show that any solution will resolve all impacts in finite time. By considering time as a state, we embed this
model into another DI which captures the continuous-time evolution of rigid body dynamics, and guarantee existence of
solutions. We finally cast simulation of simultaneous impacts as a linear complementarity problem (LCP), and develop
a probabilistically-complete algorithm for approximating the post-impact velocity set. We demonstrate our approach on
several examples drawn from manipulation and legged locomotion.
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1 Introduction
Modern robots are fast and strong, and their capabilities often
eclipse those of humans. However, when these robots interact
with their environment, whether by manipulating objects or
traversing over uneven surfaces, they do so with far less skill
than their human counterparts. Critical challenges facing the
field lie in modeling, planning, and control of robots in these
complex, multi-contact settings, particularly for locomotion
(Wieber et al. 2016) and manipulation (Kemp et al. 2007).

Chief among the difficulties induced by frictional contact
are collisions between robots and the objects in their
environments. Even a single collision is a complex
interaction, in which object interpenetration is prevented by
material deformation. Often, this process occurs on a spatial
and temporal scale far below the resolution of practical
robotics sensors. Truly accurate capture of these effects
requires an impractically precise set of knowledge of the
constituent materials, geometries, and initial conditions, let
alone the burdensome computation to produce predictions
from such information (Chatterjee 1997). In the face of these
challenges, many robotics approaches make a rigid-body
assumption, a tractable but coarse approximation of contact
mechanics in which objects do not deform (see Stewart
(2000) or Brogliato (1999) for a detailed overview).

Deeply ingrained into robotics simulation, planning,
and control methodology is the philosophy of 1) picking
a rigid-body model for its mathematical convenience
and 2) assuming that an arbitrary prediction from the
model is unique and closely matches real-world behavior
(Posa et al. 2014; Mordatch et al. 2015; Coumans and
Erwin 2015; Hogan and Rodriguez 2016; Chavan-Dafle
and Rodriguez 2017; Salehian and Billard 2018). This

approach is sometimes reinforced by underlying models
which intentionally select unique outcomes based on a
heuristic such as maximum dissipation (Drumwright and
Shell 2010), minimum potential energy (Uchida et al. 2015),
or symmetry constraints (Kaufman et al. 2008). Popular
linear complementarity problem (LCP) formulations may
have a finite number of non-unique solutions (as opposed
to infinite realistic outcomes), but practically rely on a
numerical solver which may be biased toward a particular
solution (Anitescu and Potra 1997; Stewart and Trinkle 1996;
Halm and Posa 2018; Horak and Trinkle 2019; Remy 2017).

However, seemingly minor mathematical differences
between models can result in wildly different predictions
from identical initial conditions; in many cases, no available
model reasonably captures real-world behaviors (Fazeli
et al. 2017; Chatterjee 1999; Stoianovici and Hurmuzlu
1996; Remy 2017). These discrepancies are particularly
pronounced when multiple impacts occur so quickly that
their order cannot be practically distinguished—for instance,
heel and toe strikes in flat-footed running. The extreme
sensitivity of simultaneous impacts to their ordering has
been widely studied (Wang et al. (1992); Hurmuzlu and
Marghitu (1994); Ivanov (1995); Smith et al. (2012); Uchida
et al. (2015) and others). A ubiquitous manifestation of
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(a) Initial condition (b) Symmetric impact (c) A-then-B sequential impacts (d) B-then-A sequential impacts

Figure 1. (a) A cell phone (yellow) with velocity v is dropped onto flat ground (gray), colliding at two corners; multiple
physically-realistic results may emerge from these simultaneous impacts. (b) As the system is symmetric about the vertical axis,
one possibility is that the phone comes to rest; the model in Anitescu and Potra (1997) produces this outcome. (c) With sufficient
friction, any impact at a single corner can stick. Therefore, if point A impacts first, the resulting torque would cause the phone to
rotate counter-clockwise. This causes a second impact at point B, causing the phone to pivot about B with A lifting off the ground.
(d) If the impacts are instead ordered B-then-A, the end result by symmetry is A pivoting and B lifting off.

this phenomenon is the difficulty of predicting a billiards
break, though sensitivity to impact also occurs in far simpler
systems. Figure 1 for instance shows how qualitatively and
quantitatively distinct outcomes can results from a single,
slender object impacting flat ground.

As the motivating examples in Section 3.1 will
demonstrate, simultaneous impacts are not limited to
unlikely, pathological events; they are, in fact, regular
occurrences in robotics. Such behaviors require careful
analysis that unique-outcome models do not readily provide.
From the perspective of planning, learning, and control,
it is critical to understand the role of this non-uniqueness
(alternatively, extreme sensitivity), as some of the broad
challenges in executing dynamic, multi-contact motion likely
arise from these issues. For example, methods which use
a simulator to learn or plan a motion may, unwittingly,
be planning for an ambiguous and therefore unstable
outcome due to multi-contact. Furthermore, as the set
of these ambiguous outcomes is often non-convex, it is
insufficient to try to capture this sensitivity via simple models
of uncertainty. To address these issues, we propose the
development of set-valued rigid-body models that attempt
to generate all physically-reasonable outcomes. While some
predictions from such a model may not ultimately occur,
controllers guaranteed to stabilize the model—as well as
learned policies trained on the the model’s predictions—
are well-positioned to perform reliably in the real world. In
this work, we present a rigorously-derived, set-valued rigid
body model which captures arbitrary impact sequencing
in multi-contact scenarios. This work extends our previous
conference publication Halm and Posa (2019), in which we
first extended of Routh’s impact method to simultaneous
frictional impacts. This paper supplements the scope of this
work with the following:

• In Section 3, we provided a significantly simplified
theoretical analysis of the impact model in Halm
and Posa (2019), including guarantees on existence
of solutions (Lemma 14) and impact termination

(Theorem 23). We additionally include new motivating
examples which highlight the inconsistencies which
arise between existing models of simultaneous impact.

• In Section 4, we embed this approach into a uni-
fied rigid body dynamics model, capturing both
impacts and continuous-time evolution with a differ-
ential inclusion. We prove that our differential model
exhibits desirable physical and mathematical proper-
ties. Notably, we prove existence of solutions (Theo-
rem 28) and amortized time advancement (Theorem
31) in spite of pathological multi-contact behaviors
including Zeno’s paradox.

• In Section 5, we formulate a time-stepping simulation
of the impact model as a linear complementarity
problem (LCP). We provide probabilistic bounds on
computation time for both sampling from (Theorem
37) and global approximation of (Theorem 43) the
feasible post-impact velocity set.

• In Section 6, we apply our model to several examples
from robotic locomotion and manipulation.

2 Background
We now introduce notation for and review frictional impact
dynamics of rigid multibody systems. In the breadth of
developing both a continuous-time model and a discrete
simulator, there are several prerequisite topics to review. We
offer a thorough introduction to each, and summarize related
notation in Appendix A. For readers already well-versed in
most of these topics, it may be advisable to skip to Section 3
and use this section and the appendix as required.

We will begin with the mathematical foundations of
our models: functional analysis (2.1), sampling-based set
approximation (2.2), differential inclusions (2.3), and linear
complementarity problems (2.4). We will make use of
several set-, matrix-, and vector-valued operations and
constants; the most common of these are listed in Appendix
A, Table 2. We conclude the section with an overview
of continuous-time evolution (2.5), discrete-time simulation
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(a) (b)

Figure 2. (a) Graph of Unit(v) for n = 1. Note that Unit(v) is
continuous on v 6= 0. At 0, Unit takes the value [−1, 1], which
contains a continuous extension of v̂ from both the left (−1)
and the right (+1), so that Unit is u.s.c.. (b) Flow field (yellow)
of the solutions (blue, red) to v̇ ∈ −Unit(v) for v ∈ R2.

(2.6), and impact resolution (2.7) of rigid bodies undergoing
frictional contact; a listing of the associated system terms
is in Section 2.5, Table 1. For notational brevity, we will
frequently write a singleton set {a} without braces (e.g.
a+B is the Minkowski sum of {a} andB) and suppress the
dependence of system terms on their inputs whenever clear
(e.g.G instead ofG(q)).

2.1 Functional Analysis
The results in this work are derived using tools from measure
theory and functional analysis; for a thorough background,
see Rudin (1986, 1991). For a domain Ω ⊆ Rn, we equip Ω
with the Euclidean metric and norm, and integrate over Ω
with respect to the Lebesgue measure by default. The total
time derivative ḟ(t) of an absolutely continuous function
f(t) is taken in the Lebesgue sense (i.e. f(t) is the anti-
derivative of ḟ(t), which is defined almost everywhere
(a.e.)). Convergence of a sequence of functions fn to f
almost everywhere and uniformly are denoted fn

a.e.−−→ f and
fn

u−→ f , respectively. A key result for the derivations in this
work is the Arzelà-Ascoli Theorem (Rudin 1991):

Theorem 1. Arzelà-Ascoli. Every uniformly bounded
sequence (fn)n∈N of equicontinuous Rn-valued functions on
a compact interval [a, b] has a subsequence (fnk

)k∈N that
converges uniformly.

In particular, we will apply this theorem to sequences
of functions that are equicontinuous because they are all
Lipschitz with the same constant. We say a function f :
A→ B is Lipschitz with constant L if for each a1, a2

in A, ‖f(a1)− f(a2)‖2 ≤ L ‖a1 − a2‖2. For instance, an
absolutely continuous function f(t) has this property if∥∥∥ḟ(t)

∥∥∥
2
≤ L almost everywhere. When Lipschitz functions

are composed, the resulting function is Lipschitz as well:

Proposition 2. let f, g : A×B → A be two Lipschitz
functions with constants Lf and Lg . Then h(a, b1, b2) =
f(g(a, b1), b2) is Lipschitz with constant LfLg .

Our analysis will also make use of positive definite
functions; a function α(s) : Ω→ clR+ is positive definite if
it is positive on Ω \ {0} and α(0) = 0.

2.2 Set Approximation via Sampling
Intractable problems in robotics can often be approximately
solved with arbitrary precision via stochastic, sampling-
based methods (e.g. “probabilistic completeness” and
“asymptotic optimality” of RRT* (Karaman and Frazzoli
2011)). In Section 5, we will use random sampling to
approximate the set of possible post-impact velocities
corresponding to a pre-impact state. We will show that finite
set of samples can approximate the whole set as an ε-net:

Definition 3. For ε ≥ 0, an ε-net of a set X is a set X ′ ⊆
X such that for each x ∈ X , there exists an x′ ∈ X ′ with
‖x− x′‖2 ≤ ε.

In the spirit of probabilistic completeness, we will show
that, with sufficient samples, our simulation scheme can
approximate this set to arbitrary precision with arbitrary
confidence. We will prove this by leveraging a similar
behavior for the image of a box under a Lipschitz continuous
function:

Proposition 4. Let g(x) : Rn → Rm be Lipschitz contin-
uous with constant L. Consider a set of N uniform i.i.d.
samples X = {x1, . . . , xN} from [0, h]n. Then g(X ) is an ε-
net of g([0, h]n) with probability at least 1− (1−Ω)N

Ω , where

Ω =

⌈
hL
√
n

ε

⌉−n
. (1)

Proof. See Appendix C.1.

2.3 Differential Inclusions
The dynamics of many robots can be captured with a system
of ordinary differential equations (ODEs) ẋ = f(x,u),
which relates x, the state of the robot (typically some notion
of position and velocity), to u, a set of inputs (such as motor
torques) that can be manipulated. However, the dynamics
of rigid bodies under frictional contact present complexities
that this formulation cannot capture. Impacts between bodies
induce instantaneous jumps in velocity that in general cannot
described by an ODE (non-smooth behaviors) (Brogliato
1999). Additionally, when contact occurs at many points,
multiple frictional forces that obey Coulomb’s law of friction
may exist (non-unique behaviors) Stewart (2000). It is then
useful to define an object that, unlike ODEs, allows for the
derivative at each state to lie in a set of possible values

v̇ ∈ D(v) . (2)

As the set-valued mapD(v) associated with friction may not
be continuous, conditions for a function v(t) to be a solution
to this differential inclusion (DI) are weakened from those of
an ODE:

Definition 5. For a compact interval [a, b], v : [a, b]→ Rn
is a solution to the differential inclusion v̇ ∈ D(v) if v
is absolutely continuous and v̇(t) ∈ D(v(t)) a.e. on [a, b].
Denote the set of such solutions as SOL (D, [a, b]).

Solutions to initial value problems for (2) are defined
similarly:
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Definition 6. The set of solutions to v̇(t) ∈ D(t) with initial
condition v(a) = v0 over the interval t ∈ [a, b] are denoted
as IVP (D,v0, [a, b]).

In Figure 2, we consider an example DI

v̇ ∈ −Unit (v) , (3)

where Unit (v) is the set-valued unit direction function

Unit (v) =

{
{v̂} v 6= 0 ,

{v : ‖v‖2 ≤ 1} = cl(Ball(1)) v = 0 .
(4)

The only solution to the initial value problem starting from
v(0) = v0 has the form

v(t) = max (‖v0‖2 − t, 0) v̂0 . (5)

This solution is non-differentiable at t = ‖v0‖2 and thus
is not a solution of any ODE. In general, non-emptiness
and regularity of the initial value problem depends on the
structure of D(v); fortunately, we will later show that
solution sets for frictional dynamics are well-behaved due
to their upper semi-continuous (u.s.c.) structure:

Definition 7. A function D : A→ P (B) is upper semi-
continuous if for any input a and neighborhood B′ of D(a),
there exists a neighborhood A′ of a with B′ ⊆ D(A′).
Equivalently, if B is compact, for all convergent sequences
(an)n∈N and (bn)n∈N,

bn ∈ D(an) ,∀n =⇒ lim bn ∈ D(lim an) .

Proposition 8. (Aubin and Cellina 1984). Let v0 ∈ Rn
and [a, b] be a compact interval. Suppose D(v) is uniformly
bounded (i.e. D(v) ⊆ Ball(c) for some c > 0). If D(v) is
u.s.c., and closed, convex, and non-empty at all v, then
IVP (D,v0, [a, b]) is non-empty and u.s.c. in v0.

Intuitively, a map is u.s.c. if its value at each v is not
significantly smaller than its value at any v′ near v. U.s.c.
functions have the useful property that they map compact
sets to closed sets, and Proposition 8 immediately and
crucially implies that SOL (D, [a, b]) and IVP (D,v0, [a, b])
are non-empty and closed under uniform convergence. The
DI in Figure 2 for example exhibits this structure.

Similar to continuous functions, there are several useful
compositional rules which preserve upper semicontinuity;
finite combination of u.s.c. functions by cartesian product,
convex hull, composition, union, and addition are all u.s.c..

2.4 Linear Complementarity Problems
We will formulate multi-impact simulation as a sequence of
linear complementarity problems (LCP’s), which have been
widely used for frictional contact simulation (e.g. Stewart
and Trinkle (1996); Anitescu and Potra (1997)). We refer the
reader to Cottle et al. (2009) for a complete description and
briefly describe some essential properties.

Definition 9. The linear complementarity problem with
parameters W ∈ Rn×n and w ∈ Rn is the constraint
satisfaction problem

find z ∈ Rn , (6)

subject to zT (Wz +w) = 0 , (7)
z ≥ 0 , (8)
Wz +w ≥ 0 , (9)

for which the set of solutions is denoted LCP(W ,w). The
complementarity constraints (7)–(9) are often abbreviated
as 0 ≤ z ⊥Wz +w ≥ 0.

For LCPs related to frictional behavior, W is often
copositive (i.e. xTWx ≥ 0 for all x ≥ 0). This property is
theoretically useful, as it provides a sufficient condition for
LCP feasibility and computability:

Proposition 10. (Cottle et al. 2009). Let w ∈ Rn, and
let W ∈ Rn×n be copositive. If wTLCP(W ,0) ≥ 0, then
LCP(W ,w) contains a solution which Lemke’s Algorithm
can find in finite time.

While uniqueness of the solution is not guaranteed,
if mapping the solution through a matrix A produces
uniqueness, it also produces Lipschitz continuity:

Proposition 11. (Facchinei and Pang 2003). For all
matrices W ∈ Rn×n, A ∈ Rm×n, if the function f(w) =
ALCP(W ,w) is unique over a convex domain Ω ⊆ Rn, it
is also Lipschitz on Ω.

2.5 Continuous-time Dynamics of Rigid
Bodies and Friction

We new describe the motion of rigid bodies undergoing
frictional contact; related mathematical terms are listed in
Table 1.

Many robots’ dynamics can be modeled as a system
of rigid bodies experiencing contact at up to m pairs of
points (for a thorough introduction, see Stewart (2000) and
Brogliato (1999)); each pair is referred to as a contact. The
state

x(t) =

[
q(t)
v(t)

]
, (10)

of such a system can be represented by a configuration
q(t) ∈ Rnq and velocity v(t) ∈ Rnv . Though v = dq

dt for
some systems, others (e.g. those representing rotations with
angular velocities and quaternions) obey the more general

dq = Γ(q)vdt , (11)

for some smooth, bounded, full-rank Γ(q).
The geometry of the contacts is represented by a Lipschitz

continuous and continuously differentiable signed-distance
function φ(q) ∈ Rm for which the ith component is positive
when the ith contact is inactive; zero if it is active; and
negative if there is interpenetration. Impactless evolution of
the system is governed by the manipulator equations

M(q)dv =([
Jn(q)
Jt(q)

]T [
λn
λt

]
+ u−C(x)−G(q)

)
dt . (12)

Here, the continuous function M(q) � 0 is the generalized
inertial matrix, and the kinetic energy K(q,v) of the system
can be calculated as

K(q,v) =
1

2
‖v‖2M(q) =

1

2
vTM(q)v . (13)

By assumption there exist c1, c2 > 0 such that c1I �M �
c2I (thus M and M−1 are bounded over configuration
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Table 1. Dynamics terms for rigid bodies undergoing frictional
contact. When clear, some terms may be written with the
dependence on their inputs suppressed.

Term Meaning

nq number of configuration variables
nv number of generalized velocities
m number of contacts
t time
q robot/environment configuration
v robot/environment velocity
x robot/environment state (10)
x̄ robot/environment time-augmented state (63)
u robot/environment input forces

Γ(q) generalized velocity jacobian (11)
M(q) generalized mass-inertia matrix
C(x) Coriolis and centrifugal effects
G(q) conservative (potential) forces
K(q,v) total kinetic energy (13)
U(q) total potential energy (14)
Jn(q) normal velocity Jacobian
Jt(q) tangential velocity Jacobian
J(q) full contact velocity Jacobian (26)
λn normal forces vector
λt frictional contact forces vector
λ full contact forces vector (27)
µi ith contact Coulomb friction coefficient

FC (q,v) Coulomb friction cone at state [q; v] (22)
JD linearized tangential velocity Jacobian (40)
λD linearized friction forces vector (39)
J̄ linearized velocity Jacobian (40)
λ̄ linearized contact forces vector (39)

LFC (q,v) linear friction cone at state [q; v] (41)
C set of all contacts

CA(q) set of active (touching) contacts at q (24)
CP (q) set of interpenetrating contacts at q (25)
QA set of active-contact configurations
QP set of penetrating-contact configurations
X̄A set of active-contact states
X̄P set of penetrating-contact states
I(q) set of impact-causing velocities at q (28)
S(q) set of separating velocities at q (29)

space). The continuous functionC(x) encompasses Coriolis
and centrifugal effects and grows at most quadratically in
x. G(q) are conservative forces, related to the system’s
potential energy U(q) as

G(q) = Γ(q)T
∂U

∂q

T

. (14)

u are external inputs, modeled as generalized forces (i.e.
motor torques). Jn = ∂φ

∂qΓ ∈ Rm×nv projects v onto the
contact normals, and thus JTn maps contact-frame normal
forces λn(t) ∈ Rm to corresponding generalized forces. To
prevent degenerate behaviors, we assume that for all active
contacts, there exists a generalized velocity for which the
contact is separating:

Assumption 12. ∀i, φi(q) = 0 =⇒ Jn,i(q) 6= 0.

Jt ∈ R2m×nv similarly maps between generalized veloc-
ities/forces and contact tangential velocities/friction forces
λt(t) ∈ R2m. For i ∈ 1, . . . ,m, we associate the sub-
matrices corresponding to the ith contact as Jn,i and Jt,i,
respectively. Jn is bounded and continuous by the properties

of φ and Γ, while Jt has the same properties by assump-
tion. These properties can be guaranteed, for instance, by
the assumption that bodies’ boundaries can be defined as
piecewise-smooth with bounded curvature. A work-energy
relationship dictates that the time evolution of the total
kinetic energy in the system is governed by

dK = vT
(
u+ JTt λt −G

)
dt , (15)

because neither normal forces nor Coriolis forces do work on
the system.

The contact forces [λn;λt] must lie within the Coulomb
friction cone; that is, for each contact i ∈ {1, . . . ,m},

λn,iφi(q) ≤ 0 , (16)
λn,iJn,iv ≤ 0 , (17)

λn,i ≥ 0 , (18)
λt,i ∈ −µiλn,iUnit (Jt,iv) , (19)

where µi > 0 is the friction coefficient for the ith contact.
(16) and (17) restrict normal forces contacts which are active
(φi ≤ 0) and non-separating (Jn,iv ≤ 0). (18) requires
that normal forces push bodies apart. (19) is a maximum
dissipation constraint, capturing the solution set of an
optimization problem which maximizes the mechanical
power lost due to friction:

min
λt,i

(λt,i) · (Jt,iv) , (20)

s.t. λt,i ∈ cl(Ball(µiλn,i)) . (21)

We denote the set of Coulomb contact forces as

FC (q,v) = {λ : ∀i, (16)–(19) hold} . (22)

We note in particular that, since Unit(v) ⊆ Unit(0),

FC (q,v) ⊆ FC (q,0) , (23)

for any q,v. Let C = {1, . . . ,m} be understood as the
collection of contacts. For an individual configuration q, we
denote the set of contacts that are active as

CA(q) = {i ∈ 1, . . . ,m : φi(q) ≤ 0} , (24)

and the set of interpenetrating contacts as

CP (q) = {i ∈ 1, . . . ,m : φi(q) < 0} . (25)

We note that because φ is continuous, CA(q) and C \
CP (q) are u.s.c. in q. From these functions we also
define QA = {q : CA(q) 6= ∅}, the set of configurations
with active contact, and QP = {q : CP (q) 6= ∅}, the set
of interpenetrating configurations. Finally, we define the
following for notational convenience:

J =

[
Jn
Jt

]
, Ji =

[
Jn,i
Jt,i

]
, (26)

λ =

[
λn
λt

]
, λi =

[
λn,i
λt,i

]
, (27)

I(q) = {v ∈ Rnv : ∃i ∈ CA(q), Jn,iv < 0} , (28)
S(q) = {v ∈ Rnv : ∀i ∈ CA(q), Jn,iv > 0} . (29)
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For a given configuration, I(q) is the set of impacting
velocities, for which an active contact is moving towards
penetration and thus causes an impact. S(q) likewise is the
set of separating velocities, where no impact can occur as all
contacting surfaces are moving away from each other. While
I(q) and S(q) are disjoint, there may be some velocities
in neither set; these situations may require impacts, as
in Painlevé’s Paradox (Stewart 2000). By Assumption 12,
when q is non-penetrating, S(q) = int (I(q)

c
) and I(q) =

int (S(q)
c
).

2.6 Discrete-time Simulation
When generating solutions to the continuous dynamics (12),
it is important to note the interplay between the dynamics,
non-penetration constraints, and friction cone. Common
ODE integration schemes are an incomplete approach to
discrete time simulation, as arbitrarily selecting contact
forces from the friction cone can cause penetration over a
time-step. Many approaches (e.g. Halm and Posa (2018);
Anitescu and Potra (1997)) resolve this issue with a
constrained semi-implicit Euler scheme. Given a state x =
[q;v], input u, the state [q+;v+] = [q + ∆q;v + ∆v] after
a time-step of duration ∆t is calculated as

∆q = Γ(q)v∆t , (30)

M(q+)∆v =(
J(q+)Tλ + u−C(x)−G(q)

)
∆t , (31)

where λ∆t is the total contact impulse over the time step.
What remains is to determine a value for λ that corresponds
to physically reasonable motion.

2.6.1 Continuous Forces Anitescu and Potra (1997)
select continuous forces for sustained contact via a natural
first-order approximation to the friction cone constraint: only
contacts that are already active (i.e. active at q) are allowed
to exert force; forces must prevent penetrating velocities at
these contacts; and the forces must lie in the friction cone at
v+:

find λ , (32)

∀i ∈ CA(q), Jn,i(q
+)v+ ≥ 0 , (33)

λ ∈ FC(q+,v+) . (34)

Stewart and Trinkle (1996) and Anitescu and Potra (1997)
both approximate the maximal dissipation constraint (19)
embedded in this problem into an LCP. Given a set
of unit vectors d1, . . . ,dk, the cone constraint in the
maximum dissipation formulation (21) is approximated by
the polygonal constraint

λt,i ∈ µiλn,ico ({d1, . . .dk}) . (35)

Via the definition of convex hull, by packing these vectors
into the matrix D = [d1, . . . ,dk], we can equivalently
search for a coefficient vector λD,i, that solves

min
λD,i

λTD,iD
TJt,i(q

+)v+ , (36)

s.t. λD,i ≥ 0 ,

‖λD,i‖1 ≤ µiλn,i ,

and then reconstruct λt,i = DλD,i. The solution set to this
problem can be represented explicitly with a slack variable
γi as the complementarity constraints

0 ≤ λD,i ⊥ JD,i(q
+)v+ + 1γi ≥ 0 , (37)

0 ≤ γi ⊥ µiλn,i − 1TλD,i ≥ 0 , (38)

where JD,i = DTJt,i. For convenience, we define the
lumped terms

λD =

λD,1...
λD,m

 , λ̄ =

[
λn
λD

]
, (39)

JD =

JD,1...
JD,m

 , J̄ =

[
Jn
JD

]
. (40)

Accordingly, we say that the contact forces λ̄ are contained
in the linear friction cone if they comply with (16)–(18) and
a γ exists such that (37)–(38) are satisfied:

LFC
(
q,v+

)
={

λ̄ : ∃γ,∀i, (16)–(18), (37)–(38) hold
}
. (41)

In particular, we note that when v+ = 0, any frictional
force is maximally dissipating (as the objective of (36) is
identically 0). Furthermore, we note that linearized cone is
an inner approximation of the true Coulomb friction cone
constraint ‖λt,i‖2 ≤ µiλn,i, and therefore

LFC
(
q,v+

)
⊆ LFC (q,0) , (42)

J̄
T

LFC (q,0) ⊆ JTFC (q,0) . (43)

More details on the linear friction cone and its embedding
into LCP-based simulation can be found in Stewart and
Trinkle (1996).

2.6.2 Event-based Simulation through Impact The above
process is incomplete for simulating a system through time,
as it assumes that no new contacts activate within a time-step.
There are multiple resolutions to this issue, but we will focus
on event-based formulations, which attempt to determine the
sub-time-step instant timp at which a new contact is activated
and resolve an instantaneous impact then via a subroutine
ImpactLaw(q,v), if necessary. Anitescu and Potra (1997)
present pseudocode for such an implementation, which is
reproduced in our notation in Algorithm 1.

There are many choices for ImpactLaw (e.g. Anitescu and
Potra (1997); Bhatt and Koechling (1995); Chatterjee and
Ruina (1998); Seghete and Murphey (2014); Routh (1891);
Drumwright and Shell (2010); Stronge (1990) and others),
each with its own limitation. In this work, we will develop
a tractable LCP-based simulation scheme that can be used
to generate a suitable, individual output for ImpactLaw, as
well to approximate the set of all such outputs for a given
pre-impact state.

2.7 Resolving Inelastic Impacts
We focus on inelastic impulsive impacts, during which
velocities change instantaneously and configurations remain
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Algorithm 1: Event-Based Rigid Body Simulation
Input: Time-step h, initial state x0, input callback

u(x, t)
Output: Final state x

1 t← 0;
2 x← x0;
3 u← u(x, t);
4 while t < T do
5 ∆t← min(h, T − t);
6 Calculate λ, q+,v+ via (30)–(34);
7 if a new contact is penetrating at q+ then
8 Estimate timp, moment at which first new

contact activates;
9 ∆t← timp − t;

10 Calculate λ, q+,v+ via (30)–(34);
11 v+ ← ImpactLaw(q+,v+);
12 end
13 t← t+ ∆t;
14 x← [q+;v+];
15 u← u(x, t);
16 end

constant. Denoting Λ = λ∆t and taking the limit of the
discrete-time dynamics (31) as ∆t→ 0 requires the pre- and
post-impact velocities v and v+ to obey

v+(Λ) = v +M(q)−1J(q)TΛ . (44)

Models often select Λ via an impulsive analog to Coulomb’s
friction law (e.g. Routh (1891); Anitescu and Potra
(1997)). We will later combine and generalize ideas from
two categories of these laws: algebraic and differential
(Chatterjee 1997).

2.7.1 Algebraic impact resolution Several methods (e.g.
Anitescu and Potra (1997); Hurmuzlu and Marghitu (1994);
Glocker and Pfeiffer (1995)) calculate Λ as the solution to a
system of algebraic equations. In some of these models, all
impacts are resolved simultaneously. For instance, Glocker
and Pfeiffer (1995) and Anitescu and Potra (1997) solve for
an impulse Λ which both prevents penetration and satisfies
the (linear) Coulomb friction cone constraint only at the end
of them impact; this is equivalent to the continuous time
evolution (30)–(34) for ∆t = 0. We particularly note that a
velocity-based complementarity condition is enforced by this
approach:

0 ≤ Λn,i ⊥ Jn,iv+(Λ) ≥ 0, ∀i ∈ CA(q) . (45)

This behavior is often violated in real systems (Chatterjee
1999); for the system in Figure 1, this formulation can
only generate the symmetric result. An alternative approach
observed in several algebraic models (e.g. Ivanov (1995);
Smith et al. (2012); Seghete and Murphey (2014)) is to
consider multi-impact as a finite sequence of individual
impacts; to summarize this technique,

1. Pick a single active contact i ∈ CA(q).
2. Generate an impulse Λi, by resolving a single impact

at contact i, ignoring all other contacts.
3. Increment v ← v +M−1JTi Λi.

4. Terminate and take v+ = v if it is non-impacting (v 6∈
I(q)); otherwise, return to 1.

Various methods differ in their choice of contact ordering as
will as single-impact resolution methodology; furthermore,
some methods are only able to guarantee that the process
terminates under significant assumptions, e.g. two or less
contacts (Seghete and Murphey 2014). We will compare our
method to sequences of single impacts resolved using the
method of Anitescu and Potra (1997).

2.7.2 Differential impact resolution As opposed to alge-
braic approaches, differential approaches consider continu-
ous evolution of velocity from pre- to post-impact velocity,
in which the total derivative satisfies a friction law in some
form. We will now describe one of the oldest differential
models for a single impact (Routh 1891), which we will
later extend to the multi-contact case. For a single con-
tact CA(q) = {i}, Routh (1891) proposed a method which
satisfies Coulomb friction differentially. To summarize this
technique,

1. Increase the normal impulse Λn,i with slope λi = 1.
2. Increment the tangential impulse with slope λt,i,

satisfying to Coulomb friction, identical to (19) for
the mid-impact velocity v̄ = v +M−1JTi Λi, the
velocity after net impulse Λi.

3. Terminate when the normal contact velocity vanishes∗

(i.e. Jn,iv̄ = 0) and take v+ = v̄.

As observed in Posa et al. (2016), this process is equivalent
to a u.s.c. differential inclusion:

v̇ ∈ Fq,i(v) , (46)

where Fq,i(v) is equal to the net increment in velocity due
to the “force” applied in steps 1) and 2) of Routh’s method:

Fq,i (v) = M−1
(
JTn,i − µJTt,iUnit (Jt,iv)

)
. (47)

For any v̇ ∈ Fq,i(v), we can associate a set of forces λi such
that

v̇ = M−1JTi λi , (48)
λn,i = 1 , (49)
λi ∈ FC(q,v) . (50)

Note that for a frictionless contact (µ = 0), this simplifies to

Fq,i (v) =
{
M−1JTn,i

}
. (51)

A diagram depicting the resolution of a planar impact
with this method is shown in Figure 3. Solutions may
transition between sliding and sticking, and the direction of
slip may even reverse as a result of each impact. While the
path is piecewise linear in the planar case, this is not true
in three dimensions. We additionally note that due to the
definition of Fq,i, (46) would predict “forces” even when
v is a separating velocity (i.e. v ∈ S(q)). However, Routh’s
method is intended to be used for velocity trajectories that

∗To permit resolutions to Painlevé’s Paradox, terminate only when
consistency no longer requires an instantaneous change in velocity.
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Figure 3. Velocity throughout an impact resolution by Routh’s
method (image adapted from Posa et al. (2016)). At the initial
state, the velocity-projected extreme rays of the friction cone are
shown as solid red arrows. The contact begins in a sliding
regime. When v, shown in the yellow dotted line, intersects
Jtv = 0, the contact transitions to sticking and the impact
terminates when Jnv = 0.

start in I(q) only until the first moment that a feasible post-
impact velocity is achieved (i.e. v 6∈ I(q)), and therefore this
non-physical behavior will never be encountered under the
intended use of the system.

From this point forward, we will take s to be the variable
of integration (i.e. “simulation time”) during the resolution
of an impact event; we note that evolution of s does
not correspond to evolution of time, but rather measures
the accumulation of impact impulse over an instantaneous
collision. In a slight abuse of notation, we will consider total
derivatives such as v̇(s) to be taken with respect to s. We will
also denote the impulse (i.e. the integrated force) on a contact
i over a sub-interval [s1, s2] of an impact resolution as
Λi (s1, s2). Implicit in Routh’s method is an assumption that
the terminal condition in step 3) will eventually be reached
by any valid choice of increment on Λi; if it is possible to
get “stuck” with Jn,iv < 0, then Routh’s method would be
ill-defined and not predict a post impact state. This does not
happen in the frictionless case, as Jn,iv has constant positive
derivative Jn,iv̇ = ‖Jn,i‖2M−1 . The frictional case requires
more careful treatment. Intuitively, the added effect of the
frictional impulse will be to dissipate kinetic energy quickly.
One may conclude that termination happens eventually as
zero velocity is a valid post-impact state:

Lemma 13. Let q 6∈ QP be a non-penetrating configu-
ration, and i ∈ CA(q) be an active contact at q. Then
there exists S(q) > 0 such that for any solution v(s) ∈
SOL (Fq,i, [0, ‖v(0)‖2 S(q)]) of the single frictional contact
system defined in (46) and (47), v(s) exits the impact at some
s∗ ∈ [0, ‖v(0)‖2 S(q)]; i.e., Jn,iv(s∗) ≥ 0.

Proof. See Appendix C.2.

The implication of Lemma 13 is that a priori, one can
determine an S > 0 proportional to the pre-impact speed
‖v‖2 such that any solution to the DI (46) on [0, S] can be
used to construct the post-impact velocity v+. We will see,
however, that the extension of this methodology to multiple
concurrent impacts is non-trivial, and that physical systems
associated with these models often exhibit a high degree of
indeterminacy.

3 Simultaneous Impact Model

(a) Initial condition

(b) Simultaneous algebraic impacts

Figure 4. (a) A compass gait walker, consisting of two legs
attached with a hinge joint at the hip, takes a step with hip
velocity v and excites non-uniqueness in the model of Anitescu
and Potra (1997). (b) A single impact at that the leading foot
(point A) can cause the trailing foot (point B) to lift off the
ground. Alternatively, impacts at both feet can cause the trailing
foot to slide or come to rest.

We have seen in Figure 1 that two contacts impacting
simultaneously can excite significant disagreement between
models derived from seemingly similar principles. It is
worth noting that making two points coming into contact
at exactly the same is difficult in real life, and a measure-
zero event in analytical models. However, when multiple
bodies are in sustained contact, even a single impact is
enough to generate non-uniqueness. In this section, we first
offer two such common robotics examples—one related to
legged locomotion and the other to manipulation—and show
that simultaneous or sequenced impacts exhibit meaningful
uncertainty; further details can be found in Appendix B.
We then describe the principles, construction, and properties
of our extension of Routh’s method to arbitrarily-ordered
multiple impacts.

3.1 Motivating Examples
One of the simplest models of bipedal walking is the
compass gait walker, which consists of two rods (legs)
connected with a revolute joint at the hip. A fundamental
behavior of bipedal walking is to step with a leading foot
while a trailing foot rests on the ground, as shown in
Figure 4. As observed by Remy (2017), if a very wide step
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(a) Initial condition (b) Simultaneous algebraic impact (c) B-then-A sequential algebraic impact

Figure 5. Two subtly different solutions for a box sliding into a wall with velocity v (a) are shown. (b) When a simultaneous impact is
generated via Anitescu and Potra (1997), the box comes to rest. (c) When point B has an individual impact before point A, a
different outcome results; point A continues sliding, while point B lifts off the wall.

(156◦ between the legs) is taken by the model, then the
simultaneous method of Anitescu and Potra (1997) results
in three categorically different solutions. In one case, there is
only an impact at the leading foot, and the trailing foot lifts
of the ground. In two others, impacts at both feet can result
in the trailing foot sliding or coming to rest.

In the second example, motivated by non-prehensile
pushing of an object, we consider a box which slides on
one corner on a floor before impacting a wall (Figure 5).
If a single impact occurs between the box and the wall, it
will trigger a second impact against the floor. Due to the
position of the center of mass of the box, both impacts add
counter-clockwise rotational momentum to the box, causing
the contact with the wall to lift off. Alternatively, if both of
these impacts are resolved simultaneously, the box will come
to rest under sufficient friction.

3.2 Impact Model Construction
As post-impact velocity is sensitive to the ordering of
individual impact resolutions, a model that captures all
reasonable post-impact velocities is a useful tool for formal
analysis of such behaviors. We will construct such a model
by using as relaxed notion of impact resolutions as possible.
A similar model, without theoretical results or a detailed
understanding, was proposed by Posa et al. (2016) where
it proved useful for stability analysis of robots undergoing
simultaneous impact. We consider a formulation in which at
any given instant during the resolution process, the impacts
are allowed to concurrently resolve at any relative rate:

1. Monotonically increase the normal impulse on each
non-separating contact i at rate λn,i ≥ 0 such that

λn,i = 0, ∀i 6∈ CA(q) , (52)∑
i

λn,i = ‖λn‖1 = 1 . (53)

2. Increment the tangential impulse for each contact at
rate λt,i such that λ ∈ FC(q,v) .

3. Terminate when v 6∈ I(q).

We can understand the constraint (53) on λ as choosing a net
force that comes from a convex combination of the forces
that Routh’s method might select for any of the individual
contacts i ∈ CA(q). As in the single contact case, we might
instead think of the selection of a λ as picking an element
of a set of admissible values for v̇. As before, we construct a

u.s.c. differential inclusion to capture this behavior:

v̇ ∈ Dq(v) = co

 ⋃
i∈Cq(v)

Fq,i(v)

 , (54)

Cq(v) =

{
{i ∈ CA(q) : Jn,iv ≤ 0} v ∈ clI(q) ,

arg mini∈CA(q) Jn,iv otherwise .
(55)

Similar to the single contact case, the behavior on int (I(q)
c
)

(equivalently S(q) for q 6∈ QP ) has been chosen to
preserve upper semi-continuity, and is not encountered when
resolving impacts. We denote total impulse over an interval
[s1, s2], Λ (s1, s2), as before. Similar to (50), one can extract
λ(s) from a solution v(s) contained in clI(q) such that

v̇ = M−1JTλ , (56)
‖λn‖1 = 1 , (57)

λ ∈ FC(q,v) . (58)

3.3 Properties
The construction of (54) is similar to that of the single
contact system (46); it is furthermore equivalent when CA
is a singleton. We now detail properties of the multi-contact
system that are useful for analyzing its solution set.

3.3.1 Existence and Closure For any configuration q ∈
QA, Dq(v) is non-empty, closed, uniformly bounded, and
convex as it is constructed from the convex hull of a
closed and non-empty set of bounded vectors. Therefore by
Proposition 8, we obtain the following:

Lemma 14. For all configurations q ∈ QA, velocities
v0, and compact intervals [a, b], SOL (Dq, [a, b]) and
IVP (Dq,v0, [a, b]) are non-empty and closed under uniform
convergence.

Proof. See Appendix D.1.

3.3.2 Homogeneity As the set of allowable contact forces
are only dependent on the direction of v, Dq(v) is positively
homogeneous in v. That is to say, ∀k > 0,v ∈ Rnv ,
Dq(v) = Dq(kv). Positive homogeneity induces a similar
property on the solution set to the differential inclusion:

Lemma 15. Solution Homogeneity. For all q, k > 0, and
compact intervals [a, b], if v(s) ∈ SOL (Dq, [a, b]), kv( sk ) ∈
SOL (Dq, [ka, kb]).

Proof. See Appendix D.2.
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3.3.3 Energy Dissipation An essential behavior of inelas-
tic impacts is that they dissipate kinetic energy. We now
examine the dissipative properties of the model, which func-
tion both as a physical realism sanity check and as a device
to prove critical theoretical properties. On inspection of (56)-
(58), the kinetic energy K(q,v(s)) must be non-increasing
during impact (i.e. when v(s) ∈ clI(q)) as the definition
of the friction cone FC(q,v) constraints both normal and
frictional forces to be dissipative:

Lemma 16. Dissipation. Let q ∈ QA, and let [a, b] be a
compact interval. If v(s) ∈ SOL (Dq, [a, b]) and v([a, b]) ⊆
clI(q), then ‖v(s)‖M is non-increasing.

Proof. See Appendix D.3.

K has total derivative

K̇ = vTJTλ , (59)

and furthermore it will strictly decrease unless the velocity is
constant:

Theorem 17. Let q ∈ QA, and let [a, b] be a compact
interval. If v(s) ∈ SOL (Dq, [a, b]) and v ([a, b]) ⊆ clI(q),
‖v(s)‖M constant implies v(s) constant.

Proof. See Appendix D.4.

One might then wonder if K is strictly decreasing
during impact; certainly, this would not be the case if v(s)
could stay constant. Therefore, solutions to the differential
inclusion must not be permitted to select v̇ = 0, i.e., 0 6∈
Dq(v∗) for every v∗ ∈ clI(q); we will therefore assume it to
hold globally over valid (i.e. non-penetrating) configurations
for the remainder of this work:

Assumption 18. ∀q ∈ QA \ QP , 0 6∈ Dq(clI(q)). As 0 ∈
clI(q), in particular,

λ ∈ FC (q,0) ∧ λn 6= 0 =⇒ JTλ 6= 0 . (60)

Critically, Assumption 18 covers most situations in
robotics, including grasping and locomotion, with the
notable exception being jamming between immovable
surfaces. Furthermore, it guarantees strict dissipation during
the impact process:

Theorem 19. Strict Dissipation. Let q ∈ QA \ QP and
[a, b] be a compact interval. If v(s) ∈ SOL (Dq, [a, b]) and
v([a, b]) ⊆ clI(q), ‖v(s)‖M is strictly decreasing.

Proof. Given that v is never constant on clI(q) via
Assumption 18, ‖v(s)‖M is non-constant by Theorem 17
and thus strictly decreasing by Lemma 16:

3.4 Linear Impact Termination
While solutions to the underlying differential inclusion are
guaranteed to exist in the simultaneous impact model, we
have yet to prove that they terminate the impact process, as in
Routh’s single-contact method. Termination proofs for other
simultaneous impact models (e.g. Anitescu and Potra (1997);
Drumwright and Shell (2010); Seghete and Murphey (2014)
and others) exist, but these approaches rely on comparatively
limited impulsive behaviors, and thus cannot generate the

essential non-unique post-impact velocities highlighted in
Section 3.1. We now show that our model exhibits what we
understand to be the most permissive guaranteed termination
behavior:

Proposition 20. Finite Termination. For any configuration
q ∈ QA \ QP and pre-impact velocity v(0), the differential
inclusion (54) will resolve the impact by some S(q)
proportional to ‖v(0)‖M .

We will prove this claim as a consequence of kinetic
energy decreasing fast enough to force termination—a
significant expansion of Theorem 19. Even though K must
always decrease, Theorem 19 does not forbid d

dsK → 0.
In fact, it is not possible to create an instantaneous bound
d
dsK ≤ −ε < 0. For example, consider a 2 DoF system with
2 frictionless, axis-aligned contacts such that Jn = I2. For
every ε > 0, we can pick a velocity an corresponding impulse
increment which satisfy K̇ > −2ε:

vε = (1 + ε)

[
−1
−ε

]
∈ clI(q) , (61)

v̇ε = JTn

[
ε
1

]
1

1 + ε
=

[
ε
1

]
1

1 + ε
∈ Dq(vε) , (62)

However as we take ε→ 0, vε converges to a non-impacting
velcoity; therefore, K̇ only remains small for a short
duration before impact termination. It remains possible that
the aggregate energy dissipation over an interval of fixed
nonzero length can be bounded away from zero. We define
this quality as α(s)-dissipativity:

Definition 21. α(s)-dissipativity. For a positive definite
function α(s) : clR+ → [0, 1], the system v̇ ∈ Dq(v) is
said to be α(s)-dissipative if for all s > 0, for all v ∈
SOL (Dq, [0, s]) s.t. v ([0, s]) ⊆ clI(q), if ‖v(0)‖M = 1,
‖v(s)‖M ≤ 1− α(s).

Intuitively, if K > 0 on clI(q) and K decreases at a
sufficient rate, any trajectory v(s) of the multi-contact
system will exit clI(q) in finite time. The particular rate
imposed by α(s)-dissipativity implies that the exit time can
be bounded linearly in ‖v(0)‖M :

Lemma 22. Aggregate Dissipation. Let q ∈ QA and
let v̇ ∈ Dq(v) be αq(s)-dissipative. Then if v(s) ∈
SOL (Dq, [0, S]) and v([0, S]) ⊆ clI(q),

S ≤ inf
s>0

s ‖v(0)‖M
αq(s)

.

Proof. See Appendix D.5.

Proposition 20 arises from this behavior: every q ∈ QA \
QP exhibits α(s)-dissipativity. Without α(s)-dissipativity,
solutions that dissipate arbitrarily little would exist, and by
closure of the solution set (Lemma 14), a non-dissipating
solution v(s) would exist as well, violating Assumption 18:

Theorem 23. For every configuration q ∈ QA \ QP there
exists an αq(s) such that v̇ ∈ Dq(v) is αq(s)-dissipative.

Proof. See Appendix D.6.

The u.s.c. structure of Dq has the additional useful
implication that locally, there exists a uniform dissipation
rate α(s) that holds regardless of the impact configuration:
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Corollary 24. Uniform Dissipation. For compact Q ⊆
QA \ QP , there exists a single αQ(s) such that v̇ ∈ Dq(v)
is αQ(s)-dissipative for all q ∈ Q.

Proof. See Appendix D.7.

4 Continuous-Time Dynamics Model
We now describe how the simultaneous impact system can be
embedded seamlessly into a full, continuous time dynamics
model. As the impact model relies on integration over a
variable other than time, rather than switching between
integration spaces, we define time advancement t as a
variable in an augmented state x̄(s):

x̄(s) =

[
x(s)
t(s)

]
=

q(s)
v(s)
t(s)

 ∈ Rnq+nv+1 . (63)

For any state x̄(s) we can extract the relevant configuration,
velocity, and time as by selecting the appropriate indices, e.g.
as q(x̄(s)). For notational compactness, whenever clear, we
will write this construction in the shortened form q(s). We
will also frequently make use of the sets

X̄A = {x̄ : q(x̄) ∈ QA} , (64)
X̄P = {x̄ : q(x̄) ∈ QP } . (65)

4.1 Model Construction
We now construct the dynamics model as a differential
inclusion d

ds x̄(s) ∈ D(x̄(s)). Under this formulation, the
velocity v(s) is continuous with respect to s, but can be
discontinuous with respect to time t(s) in the sense that v
can evolve while t is held constant. To make the system
autonomous, we represent the external forces u as set-
valued, time-varying full-state feedback U(x̄). In order for
the system to be well-behaved, we assume that the convex-
compact u.s.c. properties exploited in the impact dynamics
carry over into the continuous time case, because U itself
holds these properties:

Assumption 25. U(x̄) is convex-compact u.s.c. in x̄.

We identify three distinct behaviors that d
ds x̄ ∈ D(x̄)

should comply with:

4.1.1 No Contact Forces Whenever all active contacts
have separating velocities (including scenarios where no
contacts are active), i.e.

x̄(s) ∈ X̄S = {x̄ : v(x̄) ∈ S(q(x̄))} , (66)

x̄(s) should evolve according to the manipulator equations
(12) with no contact forces (λ = 0), in the sense that

M(q)dv ∈ (U(x̄)−C(x)−G(q)) ds , (67)
dt = ds . (68)

these equations can be packaged into the differential
inclusion form as

˙̄x ∈ DS(x̄) =

 Γv
M−1(U −C −G)

1

 . (69)

4.1.2 Impact Whenever v(s) is a penetrating velocity over
some interval [a, b], i.e.

x̄([a, b]) ⊆ X̄I = {x̄ : v(x̄) ∈ I(q(x̄))} , (70)

time and configuration should be frozen, and v should evolve
according to our simultaneous impact model:

˙̄x ∈ DI(x̄) =

 0
Dq(v)

0

 . (71)

4.1.3 Sustained Contact In addition to impacts, the
model must capture continuous state evolution with respect
to time under finite contact forces, as in the manipulator
equations (12). At the same time, proving that our differential
inclusion model is well behaved via (8) will require that the
right hand side D(x̄(s)) be convex-valued. A key concept
in this model is that these sustained contact behaviors can
be represented as an convex combination of contactless and
impact dynamics:

˙̄x(s) ∈ co (DS(x̄) ∪DI(x̄)) . (72)

To demonstrate this property, we consider that the
manipulator equations (12), the evolution of the state q, v
under sustained contact obeys

dq = Γvdt , (73)

Mdv ∈
(
JTλ + U −C −G

)
dt , (74)

for some finite, non-zero contact forces λ = [λn; λt] ∈
FC(q,v). One major difference between the contact force
λ and those occuring within the impact inclusion is
that ‖λn‖1 6= 1 in general. We therefore must restate the
dynamics in terms of λ̃ = λ

‖λn‖1
∈ FC(q,v).

We free ourselves to do so by including t as a state in
our formulation; it therefore has differential dt = ṫds. By
selecting ṫ = 1

1+‖λn‖1
∈ (0, 1), we rewrite (73)–(74) as

dq = ((1− ṫ)0 + ṫΓv)ds , (75)

Mdv ∈
(

(1− ṫ)JT λ̃ + ṫ (U −C −G)
)

ds , (76)

dt = ((1− ṫ)0 + ṫ1)ds , (77)

As λ̃ is also in the friction cone, the convex combination
differential inclusion (72) can generate sustained contact
with this choice of ṫ. As a result, t(s) neither evolves directly
with s nor remains constant; effectively, simulation via (72)
slows down time by a factor of (1 + ‖λn‖1). We will see in a
later section that the averge slow-down factor does not grow
arbitrarily large under mild assumptions.

We now combine these three modes of behavior into a
single differential inclusion. While we might easily chose
the contactless mode when x̄ ∈ X̄S , arbitrating between
impact and sustained contact when the velocity is non-
seperating is less obvious. First, even if there exists
an admissible, finite force λ ∈ FC(q,v) which would
enforce φ̇ ≥ 0 under sustained contact, (73)–(74), Painlevé’s
Paradox (see Stewart (2000) for details) might require
impact dynamics to prevent penetration due to higher-order
effects (e.g. φ̈ < 0). Furthermore, almost all selections of ˙̄x
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from co (DS(x̄) ∪DI(x̄)) will correspond to non-physical
behavior; a particular ˙̄x must be chosen to maintain contact
by exactly counteracting forces such that inter-body distance
is identically zero during contact.

We resolve these issues in an implicit manner in the full
differential inclusion

˙̄x ∈ D(x̄) =


DS(x̄) x̄ ∈ X̄S ,
DI(x̄) x̄ ∈ int(X̄I) ,

co (DS(x̄) ∪DI(x̄)) otherwise .
(78)

We will show that in this model, φ(q) = 0 is effectively a
barrier: solutions beginning at a non-penetrating configura-
tion are forced to never penetrate.

4.2 Properties
4.2.1 Existence and Closure While proofs for existence
of solutions for impact models and discrete-time simulation
are commonplace (Stewart and Trinkle 1996; Anitescu
and Potra 1997; Drumwright and Shell 2010), guarantees
for continuous-time evolution through impact have thus
far been limited. For example, Burden et al. (2016)
studied discontinuous vector fields, with strong results and
applications to robot impacts, but are restricted to frictionless
contact; and Johnson et al. (2016) treated a limited form of
friction, but assumed that contact occurs only at massless
limbs. By contrast, our modeling philosophy of including a
wide set of behaviors will allow us to guarantee existence of
solutions via Proposition 8 only using bounded energy and
input assumptions (Assumptions 26 and 27).

The continuous-time DI (78) already exhibits many of
the properties required for application of Proposition 8. For
any q and separating velocity v ∈ S(q), we can pick an
open neighborhood Q× V of [q; v] which also consists
solely of separating velocities by continuity of φ and Jn.
Therefore, the set of separating-velocity states X̄S is open.
D(x̄) must then be u.s.c., because it is constructed from two
u.s.c. functions on disjoint open sets, and their convex hull
on the remainder of the space. Furthermore, for any state
x̄, D(x̄) is non-empty, compact, and convex. As C(x) can
grow quadratically, D is not uniformly bounded; therefore
Proposition 8 cannot be directly used to prove existence of
solutions. However, nearly identical properties of the initial
value problems can still be established in the following
manner. Suppose first that terms that might contribute to
growth of kinetic energy, U and G, can only input power
at a bounded rate:

Assumption 26. ∃c > 0, vT (U −G) ≤ c ‖v‖M .

This condition is widely satisfied by many robotic
systems, including those with globally bounded controllers
and potential gradients (such as gravity). Assumption 26
implies that x̄ cannot diverge to infinity over a finite horizon.
Furthermore, we will assume that if x̄ is bounded, ˙̄x is
bounded as well:

Assumption 27. Over any compact set X̄ , U −G is
bounded, and therefore D(X̄ ) is compact.

In conjunction, Assumptions 26 and 27 imply that over a
finite interval, the solutions x̄(s) beginning from a compact
set X̄ have bounded derivative and therefore inherit the

key existence, closure, and u.s.c. structure for differential
inclusions where the derivative is bounded everywhere:

Theorem 28. Let X̄ be a compact set and [a, b] be a
compact interval. Then IVP

(
D, X̄ , [a, b]

)
is compact and

IVP (D, x̄, [a, b]) is non-empty, closed, convex, and u.s.c. in
x̄ over X̄ .

Proof. See Appendix E.1.

(a) 1D ball-ground system (b) 1D system phase portrait

Figure 6. A simple, 1D system of a non-rotating ball falling
under gravity with configuration q = z = φ(z) is shown (a). (b)
A phase plot demonstrates why the structure of our differential
inclusion prevents penetration; an example trajectory is shown
in white. Penetration on this plot corresponds to crossing from
the right-half- to the left-half-plane. This cross cannot happen
on the top half of the vertical axis (φ = 0, ż >= 0), as the flow
of the system here by definition points rightward. The cross also
cannot happen on the bottom half of the axis, as the third
quadrant is constrained to purely-vertical flow (φ̇ = żdt = 0).

4.2.2 Non-Penetration While there is no structure in
D(x̄) that explicitly prevents penetration, φ(q) ≥ 0 is
naturally, implicitly preserved; for each contact i, φi(q(s))
crossing from positive to negative along a solution would
require 2 contradicting conditions:

• φ̇i < 0 on int
(
X̄I
)

because the zero crossing forces
x̄ to enter int

(
X̄I
)
.

• φ̇i = 0 on int
(
X̄I
)

because D(x̄) requires q̇ = 0 on
int
(
X̄I
)
.

An alternative, graphical argument is given for a 1D system
in Figure 6.

Theorem 29. Non-Penetration. Let x̄0 6∈ X̄P be a non-
penetrating state, let [a, b] be a compact interval, and
let x̄(s) ∈ IVP (D, x̄0, [a, b]). Then x̄(s) 6∈ X̄P for all s ∈
[a, b].

Proof. See Appendix E.2.

4.2.3 Correct Mode Selection Our requirements dictate
that solutions x̄(s) containing only separating velocities
(x̄ ∈ X̄S ) should comply with contactless dynamics, and
likewise with impact dynamics when x̄(s) contains only
impacting velocities and non-penetrating configurations
(x̄ ∈ X̄I \ X̄P ). The former is a trivial result of the
construction of D, but the latter is only similarly trivial
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when x̄ ⊆ int(X̄I) \ X̄P . However, all states x̄ ⊆ X̄I have
penetrating velocity, and thus any contactless dynamics
component in ˙̄xwould by definition cause x̄ to penetrate (i.e.
enter X̄P ), allowing a proof by contradiction:

Theorem 30. Impact Dynamics. Let [a, b] be a compact
interval and x̄(s) ∈ SOL (D, [a, b]) with x̄([a, b]) ⊆ X̄I \
X̄P . Then x̄(s) ∈ SOL (DI , [a, b]).

Proof. See Appendix E.3.

4.3 Linear Time Advancement
While Theorem 28 guarantees existence of solutions over
any interval of s, practical application often requires
reasoning about solution sets over intervals in time (over
t(s)). To do so, solutions of the model must significantly
advance time—i.e. for any T , all solutions of the model have
t(S)− t(0) > T for large enough S.

For small enough T , this property is only requires the
solution to exit the impact dynamics regime, which by
Theorem 23 cannot continue indefinitely:

Theorem 31. Let X̄ be a compact set containing no
configurations in QP . Then there exists S(X̄ ), T (X̄ ) > 0,
such that for all S′ > S(X̄ ), if x̄(s) ∈ IVP

(
D, X̄ , [0, S′]

)
,

we must have t(S′)− t(0) > T (X̄ ).

Proof. See Appendix E.4.

If t(S)− t(0) > T is guaranteed over a particular set
X̄ , then t(s) must at least advance linearly at rate T

S over
arbitrarily long horizons:

Corollary 32. Let X̄ be a compact set containing no
configurations in QP , such that

X̄ (S′) =
{
x̄(s) ∈ IVP

(
D, X̄ , [0, S]

)
: x̄([0, S]) ⊆ X̄

}
,

(79)
is non-empty for all S′ > 0. Define S(X̄ ), T (X̄ ) > 0 as in
Theorem 31, and let

T ′(S′) = min
x̄(s)∈X̄ (S′)

t(x̄(S′))− t(x̄(0)) . (80)

Then lim infS′→∞
T ′(S′)
S′ ≥

T (X̄ )
S(X̄ )

.

Proof. See Appendix E.5.

5 Discrete Impact Integration
Sections 3 and 4 provide a rigorous theoretical framework
yielding guaranteed existence of well-behaved solutions to
our rigid body dynamics model; in this section, we develop
a method to compute numerical approximations of these
solutions. Given pre-impact condition x0 = [q0; v0], we
will show how one can develop an implicit, LCP-based
integration scheme for our impact differential inclusion
(54). We will bound the number of LCP solves required
in two important scenarios: simulation and reachable-set
approximation.

5.1 Model Construction
Just as forward Euler integration can cause penetration in
continuous-time simulators (see Section 2.6), it can also
cause impulses to act on separated contacts if applied
to the impact differential inclusion (54). To rectify this
issue, we develop an approximate, implicit, and discrete
integration scheme. Our method seeks to find a contact
impulse increment λ̄, such that

v′(λ̄) = v +M−1J̄
T
λ̄ , (81)

λ̄ ∈ LFC(q,v′(λ̄)) , (82)

where λ̄ and J̄ are defined as in (39)–(40), and the
dependence of M and J̄ on q = q0 is supressed.
Compared to the differential inclusion (54) which finds v̇ ∈
M−1J̄

T
FC(q,v), this method approximates the derivative

with a finite difference; enforces the friction cone constraint
(82) at the incremented velocity v′; and replaces the
quadratic friction cone with the linear approximation. Our
method may technically be described as algebraic, but
it differs from most algebraic methods. While common
methods do not attempt to capture any behavior between
the beginning and end of the impact process (e.g. Glocker
and Pfeiffer (1995); Anitescu and Potra (1997)), our
method behaves differently because it is a direct numerical
approximation of a differential process. For instance, these
methods enforce complementarity between post-impact
velocity and total impulse (45), a constraint which real
systems do not satisfy (Chatterjee 1999). Our method
circumvents this issue by instead enforcing complementarity
between intermediate velocities and impulse increments.
Despite these conceptual differences, the linear cone
constraint in particular allows us to draw significant
computational similarities to these methods by casting our
method as a sequence of LCP’s.

Algorithm 2: Sim(h,x0, N)

Input: step size h, initial state x0 = [q0;v0], max
iteration count N

Output: final velocity v
1 v ← v0;
2 i← 0;
3 while v ∈ I(q0) and i ≤ N do
4 λn,max ∼ hp(λn) ;
5 Select z = [β; λ̄;γ] from

LCP(Wq0 ,wq0(v,λn,max)) ;
6 v ← v +M(q0)−1J̄(q0)T λ̄;
7 i← i+ 1;
8 end

As our model by construction can generate a set realistic
outcomes, we frame resolving an impact as sampling from
that set. We parameterize the sampling process with a
normal impulse distribution p(λn) over the unit box; step
size h > 0; and (possibly infinite) max iteration count N .
While our theoretical results extend to any finite-density
p(λn), we assume in this section that p(λn) is the uniform
distribution for simplicity. We compute samples from our
discrete approximation of Routh’s method (Algorithm 2) as
follows:
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1. Generate a non-zero, maximum normal impulse
increment λn,max ∼ hp(λn).

2. Find a set of forces λ̄ with normal component λn ≤
λn,max that solves (81)–(82).

3. Increment v ← v +M−1JT λ̄.
4. Terminate and take v+ = v if it is non-impacting (v 6∈
I(q)); otherwise, return to 1.

To satisfy the friction cone constraint (82), we recall
that the linear friction cone is defined in (41) as linear
complementarity constraints (16)–(18) and (37)–(38) with
slack variables γ. If some contacts are inactive, we may
simply remove the associated elements from λ̄ and J̄;
therefore, without loss of generality,φ(q) = 0, and thus (16)
is satisfied. To satisfy (17) and (18), we define slack variables
β ∈ Rm and enforce the following constraint:

0 ≤ β ⊥ λn,max − λn ≥ 0 , (83)
0 ≤ λn ⊥ Jnv′(λ̄) + β ≥ 0 . (84)

Together, these constraints enforce 0 ≤ λn ≤ λn,max;
furthermore, for each contact, λn,i = λn,maxi

or the contact
has terminated.

We can then find a impulse increment λ̄ which satisfies
the constraints (83), (84), (37), and (38) by solving for z ∈
LCP(Wq,wq(v,λn,max)):

z =

βλ̄
γ

 , wq(v,λn,max) =

λn,maxJ̄v
0

 , (85)

Wq =


0 −I 0 0
I JnM

−1Jn JnM
−1JD 0

0 JDM
−1Jn JDM

−1JD E
0 µ −ET 0

 , (86)

where q is the configuration of the impacting state. We
note in particular that by eliminating the columns and rows
associated with β from this construction, we exactly recover
the impact LCP from Anitescu and Potra (1997).

5.2 Properties
5.2.1 Existence The most essential property of our
integration step is that, because Wq is copositive, we can
leverage Proposition 10 to show that the constituent LCP has
a solution:

Theorem 33. LCP(Wq,wq(v,λn,max)) is non-empty for
all states [q; v], and normal impulse λn,max ≥ 0.

Proof. See Appendix E.6.

5.2.2 Dissipation As discussed in Section 3.3.3, an
essential property of inelastic impacts is energy dissipation;
because solutions to our model approximate the differential
inclusion, the integration step (81)–(82) cannot increase
kinetic energy:

Theorem 34. Let [q; v] be any state with active
contact, and let λn,max ≥ 0 be a normal impulse. Then
all impulses λ̄ generated by the impact constraints
(LCP(Wq,wq(v,λn,max))) dissipate kinetic energy:

K(q,v′(λ̄)) ≤ K(q,v) . (87)

Proof. See Appendix E.7.

5.2.3 Impulse Advancement If λn = 0 were allowed in
the LCP solution at a penetrating velocity v ∈ I(q), then
v = v′ could be selected in an infinite loop, and Algorithm 2
might never terminate. The structure of the normal impulse
constraints (83) and (84) prevents this behavior by design for
λn,max > 0:

Lemma 35. Let [q; v] be an impacting state (v ∈ I(q)),
and λn,max > 0. Let λ̄ = [λn; λD] be an impulse gener-
ated by the impact constraints LCP(Wq,wq(v,λn,max)).
Then either some contact i activates fully (λn,i = λn,maxi

),
or all contacts terminate (Jnv′(λ̄) ≥ 0).

Proof. See Appendix F.1 .

However, preventing the infinite loop also requires the
stricter condition that the net impulse J̄T λ̄ be non-zero.
Assumption 18 in fact yields a stricter condition: the
magnitude of the change in velocity M−1J̄

T
λ̄ grows

linearly in ‖λn‖1.

Lemma 36. Consider a configuration q ∈ QA \ QP . There
exists a nonzero vector r(q) ∈ Rnv , such that for each
non-separating velocity v ∈ clI(q) and contact force λ̄ ∈
LFC (q,v),

r(q) ·M−1J̄(q)T λ̄ ≥ ‖λn‖1 . (88)

Proof. See Appendix F.2.

Furthermore, we now show that r(q) can be computed as
a linear program (LP). We first observe that, for an individual
contact i, the net impulse imparted is a convex combination
of the extreme rays of the linear friction cone, i.e. the kth
element of λD,i is equal to µiλn,i and all other elements
of λ̄ are zero. The net impulse imparted in this case when
λn,i = 1 is

Fi,k = JTn,i + JTt,i (µidk) . (89)

Any force in the linear friction cone with ‖λn‖1 can
therefore be expressed as a convex combination of these
forces:

λ̄ ∈ LFC (q,0) ∧ ‖λn‖1 = 1 ⇐⇒

λ̄ ∈ co

⋃
i,k

{Fi,k}

 . (90)

The condition (88) must then be satisfied by any solution to
the following LP:

min
r

‖r‖1 , (91)

s.t. M−1Fi,k · r ≥ 1, ∀i, k . (92)

5.3 Linear Impact Termination
In order to construct a continuous time simulation
environment capable of generating non-unique impacts, we
now show that Algorithm 2 can be used as an efficient
implementation of the impact subroutine in Algorithm 1:

ImpactLaw(q,v)← Sim(h, [q; v],∞) . (93)
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Let the random variable Z(h, q0,v0) be the number of LCP
solves required for Sim(h, [q0; v0],∞) to terminate. Given
that multiple impacts might occur in a single time-step, it is
crucial that Z(h, q0,v0) be as small as possible. Consider
that Lemma 36 implies that the velocity takes large steps in
the r direction with high probability, yet total movement in
any direction is bounded by 2 ‖v0‖M as kinetic energy is
non-increasing (Lemma 35). We can therefore show that with
high probability, Z grows linearly with ‖v0‖M :

Theorem 37. Let q0 ∈ QA \ QP be a pre-impact configu-
ration, let σ be the minimum singular value of M(q0), let
h > 0 be a step-size, and let

c = 4

⌈
(m+ 1) ‖r(q0)‖2

h
√
σ

⌉
, (94)

where r(q0) is defined from Lemma 36 and m is the number
of contacts. Then for all k ∈ Z+, and pre-impact velocities
v0 ∈ I(q0),

P (Z(h, q0,v0) > c d‖v0‖Me+ k) ≤

exp

(
− k

(m+ 1)2

)
. (95)

Proof. See Appendix F.3.

As the probability density of Z exponentially decays, it
has finite moments (including its mean and variance).

5.4 Post-Impact Set Approximation
In order to generate robust robot locomotion and manipula-
tion, planning methods must be capable of reasoning about
the uncertainty that contact introduces. We now describe
a probabilistically complete method to approximate the
uncertainty—that is, non-uniqueness—induced by the simul-
taneous impact behaviors modeled in our differential inclu-
sion (54). First, we will examine a condition under which the
full set of reachable post-impact velocities from Algorithm 2
is well-defined; then, we will reduce the problem of densely
sampling this set to Proposition 4.

In order for computation of the set of possible outcomes
of Algorithm 2 to be well-posed, we must consider a key
practical ramification of the LCP solve on Line 5: numerical
LCP solvers typically only find a single solution, and may
be systematically biased in their selection among multiple
solutions. For all claims in Section 5.4, we therefore make
the additional assumption that this selection process does not
affect the outcome of an individual integration step:

Assumption 38. Consider a configuration with active con-
tact q ∈ QA \ QP . For each velocity v ∈ Rnv and normal
impulse increment λn,max ≥ 0, every λ̄ generated from
LCP(Wq,wq(v,λn,max)) results in the same incremented
velocity v′. Equivalently, there exists a function fq : Rnv ×
cl(Rm+)→ Rnv , such that

v′ = v +M−1J̄
T
λ̄ = fq(v,λn,max) . (96)

Critically the time-step outcome fq(v,λn,max) under
Assumption 38 is only unique given λn,max; different post-
impact velocities can be generated by selecting different
λn,max. However, it is worth noting that Assumption 38 is
violated in the rare cases when Anitescu and Potra (1997)
produces multiple outcomes, including the compass gait
and RAMone examples in Section 6. One can verify that
the assumption holds for a particular scenario by solving a
convex Semidefinite Program (Aydinoglu et al. 2020).

Under its limitations, Assumption 38 bestows several
useful properties upon the impact simulation algorithm,
including Lipschitz continuity of the single-step map:

Lemma 39. For each non-penetrating configuration with
active contact q ∈ QA \ QP , fq(v,λn,max) is Lipschitz
continuous.

Proof. We first note that because v′ is unique, we must have
that

J̄
T
λ̄ =

[
0 J̄

T
0
]

LCP(Wq,wq(v,λn,max)) , (97)

is a singleton over the convex domain wq(Rnv , cl(Rm+)).
Therefore by direct application of Proposition 11, fq is
Lipschitz continuous.

Furthermore, the integration step LCP will select zero
impulse in these scenarios:

Lemma 40. Consider a configuration with active contact
q ∈ QA \ QP and λn,max ≥ 0. Then if either Jnv ≥ 0 or
λn,max = 0,

v = fq(v,λn,max) . (98)

Proof. Observe that if either λn,max = 0 or if v is
not impacting (Jnv ≥ 0), we can select zero normal
impulse (λn = 0 and thus v′ = v) and satisfy the normal
complementary equations (83) and (84). Setting the frictional
impulses to zero and the slack variables β to the negative part
of Jnv constitutes a full solution to the LCP.

The continuity of fq allows for significant expansion of
the Jnv ≥ 0 case; if v is almost terminated, then only a
single simulation step with a small λn,max is required to end
the impact:

Lemma 41. For all configurations q ∈ QA \ QP , veloci-
ties v ∈ Rnv , and ε > 0, there exists a δ(ε,v0), such that
for any velocity v̄ which is almost non-impacting (Jnv̄ ≥
−δ) and sufficiently small (‖v̄‖M ≤ ‖v‖M ), we have that
fq(v̄, ε1) 6∈ I(q).

Proof. See Appendix F.4.

We now iteratively define the reachable set of Algorithm
2. Let VN (x0, h) be the set of possible outputs of
Sim(h,x0, N). Then we have that

V0(x0, h) = {v0} , (99)
VN (x0, h) = fq(VN−1(x0, h), [0, h]m) , (100)
VN (x0, h) ⊇ VN−1(x0, h) . (101)

Here, we’ve used the Jnv ≥ 0 condition in Lemma 40
to ignore early termination (i.e. Jnv ≥ 0 before N loop
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Figure 7. Evolution of the compass gait step. The center plot compares the normal velocities of the two contacts, while the left and
right show velocities of points A and B, respectively. Our model produces the three outcomes in Figure 4b, as well as all reasonable
intermediate velocities of point B. Furthermore, oscillation of impact between the feet allows point A to slide or lift off, while point B
maintains contact.

iterations) in (100), and the λn,max = 0 condition to
establish the monotonic growth in (101). We can then
construct the entire set of velocities reachable as

V∞(x0, h) =
⋃
N∈N
VN (x0, N) . (102)

VN (x0, N) can approximate V∞(x0, h) with arbitrary
precision:

Lemma 42. Consider an initial configuration q0 ∈ QA \
QP , initial velocity v0 ∈ Rnv , and step-size h ≥ 0. Then for
each ε > 0, there exists an N , such that VN ([q0; v0], h) is
an ε-net of V∞([q0; v0], h).

Proof. VN ([q0; v0], h) is a monotonic (101) and uniformly
bounded (via Theorem 34) sequence, and therefore it
is convergent in the ε-net sense to some limiting set.
V∞([q0; v0], h) is by definition the limit of this sequence.

Similarly, the post-impact reachable set is simply the
reachable velocities which are non-penetrating:

Sim(h,x0,∞) ∈ V∞(x0, h) \ I(q0) . (103)

Algorithm 3: Approximate(h,x0, ε,N,M)

Input: step size h, initial state x0 = [q0; v0],
approximation 0 < ε < h, trajectory length
N , trajectory count M

Output: post-impact set approximation Ṽ+

1 Ṽ+ ← {};
2 ψ ← σmax

(
M−1J̄

T
)
m(1 + maxi µi) + 1 ;

3 for i = 1 to M do
4 v ← Sim(h,x0, N);

5 Ṽ+ ← Ṽ+ ∪
{
fq0

(v, ε
3ψ1m)

}
;

6 end
7 Ṽ+ ← Ṽ+ \ I(q0);

We can finally use the above derived properties to
construct a method, Algorithm 3, for approximating the post-
impact set. Lemma 42 and Proposition 4 together show that

M samples from Sim(h,x0, N) well-approximate V∞, and
can be forced to terminate with only a small additional
step (Lemma 41). Therefore, Algorithm 3 is approximately
complete:

Theorem 43. Consider an initial configuration
q0 ∈ QA \ QP , initial velocity v0 ∈ Rnv , and step-size
h > 0. For all ε, δ > 0, there exists N,M > 0, such
that Approximate(h,x0, ε,N,M) returns an ε-net of
V∞(x0, h) \ I(q0) with probability at least 1− δ.

Proof. See Appendix F.5

6 Numerical Examples
We now show several examples of the post-impact velocity
sets that can be generated by our model. The MATLAB code
is available online1, and LCP’s were solved via the PATH
solver (Dirkse and Ferris 1995). We begin by analyzing
the three examples shown thus far: the phone drop (Fig.
1); compass gait step (Fig. 4); and box-wall impact (Fig.
5). We additionally discuss two further examples which
highlight the applicability of our model to more complex
systems. For each system, we provide plots of the evolution
evolution of the velocity through the impact process with
lines, projected onto the contact frames. Our method is
shown in gray; simultaneous resolution via Anitescu and
Potra (1997) is shown in blue; and sequential resolutions
are shown in red and yellow. Samples of the post-impact
velocity sets were generated using Algorithm 3, and are
shown as circles; for visual clarity, the gray circles associated
with are method are darkened. Sampling from the impulse
distribution p is conducted with a Sobol quasi-random
sequence, a method for reliably generating uniform-density
ε-nets of unit hypercubes (Sobol 1967). For some examples,
axes of symmetry were used to duplicate samples.

6.1 Phone Drop
We revisit the example of dropping a narrow, rectangular
object onto the ground (Fig. 1), which may either result in
the object coming to rest or pivoting on a corner. As shown
in Figure 9, our method produces each of these symmetric
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Figure 8. Evolution of the box-wall impact. The center plot compares the normal velocities of the two contacts, while the left and
right show velocities of points A and B, respectively. Our model produces both the simultaneous and sequential outcome in Figure
5, as well as all reasonable intermediate velocities where A still slides and B lifts off. Furthermore, results are also generated where
B slides instead of sticking or lifting off.

and sequential outcomes. During the entire impact process,
our LCP always selects stiction at both contacts. Our model
has the additional capability to temporarily reduce only the
vertical component of v by evenly applying impulse at each
contact. As a result, it can additionally generate scaled-down
versions of the sequential outcomes (i.e., rolling on one foot
with a smaller angular velocity).

Figure 9. Evolution of the phone-drop impact. The left plot
compares the normal velocities of the two contacts, while the
right shows both normal and tangential velocity of point A. Point
B’s trajectory is omitted, as system symmetry makes it identical
to that of point A. Our method generates the three outcomes
depicted in Figure 1, as well as intermediate velocities between
the symmetric and sequential impacts.

6.2 Compass Gait

We now analyze the outcomes of the compass gait walker
model taking a wide step, as originally described in Figure
4. Previously, we shoed that the model of Anitescu and Potra
(1997) always predicts that the leading foot sticks (point A),
while the trailing foot (point B) could slide, stick, or lift off.
As shown in Figure 7, for the compass gait step, our method
generates each of these outcomes, as well as various convex
combinations of these results. However, the model is also
capable of generating oscillatory behavior where impulses at
points A and B alternate during the impact process. This can
potentially cause A to lift off, and B to remain on the ground
instead.

6.3 Box and Wall
We examine our model’s predictions on the scenario
described in Figure 5, where a box impacts a wall (at point
B) while sliding along flat ground (at point A). The model
of Anitescu and Potra (1997) predicted an outcome where
the box came to rest, and another where A continues sliding
and B lifts off. As in the previous examples, our model
reproduces both behaviors, as well as convex combinations
of them (Figure 8). Additionally, some sequences allow A
to slide even faster, while others allow B to slide instead of
lifting or sticking.

6.4 RAMone
In this example, we examine a footfall event on a
considerably more complex walking robot: a 5-link model of
RAMone, the parameters of which are described in detail in
Remy (2017). As shown in Figure 10, much like the compass
gait example, Anitescu and Potra (1997) always predicts that
the leading foot sticks, while the trailing foot can stick, slide,
or lift. Our model reproduces the same results, as well as
ones where the final contact velocities are scaled down.

6.5 Disk Stacking
In this example, we demonstrate our ability to generate
non-unique results in a multi-object scenario motivated by
manipulation: stacking disks. A tower of 3 discs (Figure 11)
is created by dropping a disk on two others, which rest on
the ground. The only prediction offered for this 5-contact
collision offered by Anitescu and Potra (1997) is the entire
tower coming to rest. While we cannot be sure that the
numerical results cover all possible outputs of our model,
we are able to generate various outcomes in which the tower
falls apart. Figure 11b shows how the post-impact normal
velocities compare in the left and right sides of the tower.
The top ball always maintains contact with at least one of the
left or right balls, and one of those balls always stays on the
ground. The contacts that are maintained may slide, while the
ball on the opposite side may even lift off the ground (Figure
11c).
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(a) RAMone initial condition (b) Footfall impact resolution process

Figure 10. Evolution of a footfall (a) of the RAMone robot. (b) Similar to the compass gait example, Anitescu and Potra (1997)
predicts that the leading foot, point A, comes to rest, while point B may come to rest, slide, or lift off. All results from our model
produce intermediate outcomes between these three results, and point A remains in stiction for the entire duration of the impact.

(a) Disk stack initial condition (b) Normal impact resolution process comparing left and right sides

(c) Impact resolution process at individual contact points

Figure 11. Evolution of a stack of discs (a) as the top disk fall on the bottom two. Anitescu and Potra (1997) only predicts that the
entire system comes to rest. (b) Our method additional predicts several scenarios where the top disk remains in contact with only
one of the bottom two disks, while the other may roll away or even lift off the ground slightly. (c) various states of rolling, sliding, and
lifting contact are shown for points A, C, and E; plots for B and D are omitted as they are symmetric with A and C, respectively.

7 Conclusion

Non-unique behavior is a pervasive complexity that is
present in both real-world robotic systems and common
models capturing frictional impacts between rigid bodies—
and thus accurate incorporation of such phenomena is
an essential component of robust planning, control, and
estimation algorithms. Our model presents a state-of-the-
art theoretical foundation for capturing these set-valued

outcomes. Despite the high versatility of allowing impacts
to resolve at arbitrary relative rates, both the continuous-
time formulation and simulation method have termination
guarantees.

Future development of our model will focus on capturing
a wider array of contact-driven behaviors; improved
theoretical guarantees; and more efficient computational
approaches. For instance, while may models in robotics
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assume impacts are inelastic, capturing restitution would
increase the accuracy of our model for some robotic systems.
Additionally, while approximation of the post-impact set is
probabilistically complete, there is currently no available
method to compute the necessary bounds. Furthermore,
in practice, the bounds were not tight enough to inform
tractable computation in our examples. Future research
could develop outer approximations of the post-impact
set via Lyapunov-based reachability and sum-of-squares
programming (Posa et al. 2016).
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A Notation
Here, we include a summary of the notation used in this
paper in Table 2.

Table 2. Frequently-used constants and operations on sets
A,Ai, A

′, B, scalars c, vectors v,w, matrices M ,N , and
functions f : A→ B, g(t) : R→ Rn, D : A→ P (B). For
notational brevity, we frequently write a singleton set {a}
without braces.

Expression Meaning

Ac complement of A
int(A) interior of A
cl(A) closure of A
co(A) convex hull of A
P (A) power set of A
MA scaled set, {Ma : a ∈ A}
−A (−1)A
A+B Minkowski sum of A and B
A−B Minkowski sum of A and −B

[A1; . . . Ak] Cartesian product A1 × · · · ×Ak

f(A′) image of A′ ⊆ A, ∪a′∈A′ {f(a′)} ⊆ B
D(A′) image of A′ ⊆ A, ∪a′∈A′D(a′) ⊆ B
ġ(t) total (Lebesgue) derivative of g
Mi ith row of M
vi ith element of v

σmax(M) maximum singular value of M
σmin(M) minimum singular value of M
M �N M −N is positive definite
M �N M −N is positive semi-definite
v > w vi > wi for each i
v ≥ w vi ≥ wi for each i
A > 0 each element of A is positive
A ≥ 0 each element of A is non-negative
‖A‖F Frobenius norm of A
‖v‖p lp norm of v for p > 0

‖v‖M norm,
√
vTMv, induced by M � 0

v̂ unit direction, v
‖v‖2

, of v 6= 0

Ball(c) c-radius open ball,
{
v : ‖v‖2 < c

}
1 matrix/vector kl; m,of all 1’s
0 matrix/vector of all 0’s

Rn+ n-dimensional positive vectors

B Example Details
Here, we list relevant details on the examples in Section
6. The code may be run by downloading the MATLAB
codebase† and running Results(). To run the results, the
PATH LCP solver (Dirkse and Ferris 1995) must be installed,
and pathlcp.mmust be available from the MATLAB path.
All geometric, inertial, and simulation quantities necessary
for construction of the examples are listed in Tables 3–7,
and the listed symbols match the variable names used int he
codebase. For the RAMone example, we refer the reader to
Remy (2017) for a full description of the system’s inertial
and geometric properties. Unless otherwise stated, all objects
have uniform density and zero mass.

C Background Proofs

C.1 Proof of Proposition 4
Let g(x) : Rn → Rm be Lipschitz continuous with constant
L and let h > 0. Let X = {x1, . . . , xN} be a set of N
uniform i.i.d. samples from [0, h]n. We first note that that

Table 3. Geometric, inertial, and simulation parameters for the
phone drop example

Parameter Symbol Value

Phone width a 7.444 cm
Phone height b 16.094 cm
Phone mass m 190 g
Init. downward velocity v0 14.01 cm s−1

Friction coefficient µ 1
Step size h 0.3 N s
Trajectory length N 10
Number of trajectories M 214

Table 4. Geometric, inertial, and simulation parameters for the
compass gait example

Parameter Symbol Value

Leg length l 1 m
Mass-to-foot length s‖ 0.5 m
Leg mass m 1 kg
Trailing leg pitch ϕtr 78◦

Leading leg pitch ϕle −78◦

Trailing leg init. angular velocity ϕ̇tr,0 0.5 rad s−1

Leading leg init. angular velocity ϕ̇le,0 0.5 rad s−1

Friction coefficient µ 5
Step size h 1 N s
Trajectory Length N 5
Number of Trajectories M 220

Table 5. Geometric, inertial, and simulation parameters for the
box and wall example

Parameter Symbol Value

Box side length w 1 m
Box mass m 1 kg
Angle box and ground θ 10◦

Init. horizontal velocity v0 1 m s−1

Friction coefficient µ 1
Step size h 2 N s
Trajectory Length N 5
Number of Trajectories M 218

Table 6. Geometric, inertial, and simulation parameters for the
RAMone example

Parameter Symbol Value

Trunk pitch Φ 16◦

Leading hip angle αle −70◦

Trailing hip angle αtr 70◦

Leading knee angle βle −2◦

Trailing knee angle βtr −92.48◦

Trunk init. horizontal velocity ẋ0 −0.4114 m s−1

Trunk init. vertical velocity ẏ0 −0.2105 m s−1

Trunk init. angular velocity Φ̇0 1 rad s−1

Leading hip init. velocity α̇le,0 0◦

Trailing hip init. velocity α̇tr,0 0◦

Leading knee init. velocity β̇le,0 0◦

Trailing knee init. velocity β̇tr,0 0◦

Friction coefficient µ 105

Step size h 1 N s
Trajectory Length N 10
Number of Trajectories M 220

†https://github.com/mshalm/routh-multi-impact
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Table 7. Geometric, inertial, and simulation parameters for the
disk stacking example

Parameter Symbol Value

Disk radius R 1 m
Disk mass m 1 kg
Initial vertical velocity v0 −1 m s−1

Friction coefficient µ
√

3
Step size h 1 N s
Trajectory Length N 10
Number of Trajectories M 220

‖g(x)− g(x′)‖2 ≤ L ‖x− x′‖2. Therefore, g(X ) is a ε-net
of g([0, h]n) if X is an ε

L -net of [0, h]n; we will bound
probability on the latter.

Consider the following set, a regularly-spaced grid of
cardinality Mn:

X ′ =

{
h

2M
,

3h

2M
, . . . ,

(2M − 1)h

2M

}n
. (104)

X ′ is by construction a h
√
n

2M -net of [0, h]nd. Thus, setting

M =
⌈
hL
√
n

ε

⌉
, X ′ is an ε

2L -net of [0, h]n. Consider the case
where X contained a close approximation of the entire grid;
that is, for each x ∈ X ′, X contains an xi with

xi ∈ x+

[
− h

2M
,
h

2M

]n
⊆ [0, h]n , (105)

and thus ‖xi − x‖2 ≤
ε

2L . Then by triangle inequality, X is
an ε

L -net of [0, h]n when (105) holds for each xi. For a single
x ∈ X ′, as the elements of X are chosen uniform i.i.d, the
probability of (105) not holding is

(1−M−n)N . (106)

Then by union bound, the probability of (105) holding for
every x is at least

1−Mn(1−M−n)N . (107)

The proof holds as M−n = Ω.

C.2 Proof of Lemma 13
We may assume WLOG that M = I by applying a
coordinate transformation of M

1
2 to v. Let R be a

matrix with columns that constitute an orthogonal basis of
Range

(
JTi
)
. By equivalence of norms there exists ε > 0

such that

‖Jn,iv‖+ ‖Jt,iv‖2 ≥ ε
∥∥RTv

∥∥
2
. (108)

We will show that S = (εmin (µi, 1))
−1 satisfies the claim.

Let V (s) =
∥∥RTv(s)

∥∥2

2
. Assume WLOG that v(s) is an

impacting velocity (i.e. v(s) ∈ I(q)) at least until s∗ =∥∥RTv(0)
∥∥

2
S ≤ ‖v(0)‖2 S. Then, on the interval [0, s∗),

V̇ = 2v̇TRRTv , (109)

∈ 2
(
Jn,i − µiUnit (Jt,iv)

T
Jt,i

)
RRTv , (110)

= −2 ‖Jn,iv‖ − 2µi ‖Jt,iv‖2 , (111)

≤ −2εmin (µi, 1)
√
V , (112)

≤ − 2

S

√
V . (113)

The unique solution to the IVP ẋ = − 2
S

√
x,

x(s) =
(√

x(0)− s

S

)2

, (114)

therefore bounds V from above on [0, s∗). Thus,

V (s∗) ≤
(√

V (0)− s∗

S

)2

, (115)

=

(∥∥RTv(s∗)
∥∥

2
−
S
∥∥RTv(s∗)

∥∥
2

S

)2

, (116)

= 0 . (117)

Therefore RTv(s∗) = 0, Jn,iv (s∗) = 0, and v (s∗) 6∈
I(q).

D Impact Model Proofs

D.1 Proof of Lemma 14
The final claim may be reached via direct application of
Theorem 1, as long as Dq(v) is non-empty, uniformly
bounded, closed-valued, convex-valued, and u.s.c. We will
demonstrate that each of these properties hold.

We first observe that the set of contacts Cq(v), used
in the construction of Dq(v) in (54), is non-empty by
construction. Furthermore, Cq(v) is u.s.c. in v, because it
is constructed from non-strict inequalities of linear functions
of v. Next, we note that for each i, Fq,i(v) is non-empty,
uniformly bounded, closed-valued, and u.s.c. as it is an
affine transformation of Unit(·). Finally, we characterize
Dq(v). Dq(v) is non-empty, uniformly bounded, and close-
convex valued, because it is constructed from the convex hull
of a non-zero number of the sets Fq,i(v). Now, consider
an arbitrary velocity v0 and neighborhood V̇0 ⊃ Dq(v0).
As Cq(v) is u.s.c., we can select a neighborhood V with
Cq(V) ⊆ Cq(v0). Therefore on V ,

Dq(v) ⊆ D0(v) = co
(
∪i∈Cq(v0)Fq,i(v)

)
. (118)

D0(v) is u.s.c. by its construction from a convex hull of u.s.c.
functions, and furthermore Dq(v0) = D0(v0). Therefore by
definition of u.s.c. there exists a neighborhood V0 of v0 such
that

Dq(V0) ⊆ D0(V0) ⊆ V̇0 . (119)

Dq(V) is therefore by definition u.s.c. and the claim is
satified.

D.2 Proof of Lemma 15
Consider a configuration q ∈ Rnq and compact interval
[a, b].

We first demonstrate that the impact differential inclusion
mapping Dq(v) is positively homogeneous in v. Consider a
velocity v and k > 0. As the function Unit(·) is positively
homogeneous, by its definition (47), Fq,i(v) is positively
homogeneous:

Fq,i(v) = M−1
(
JTn,i − µJTt,iUnit (Jt,iv)

)
(120)

= M−1
(
JTn,i − µJTt,iUnit (Jt,ikv)

)
(121)

= Fq,i(kv) . (122)
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Furthermore, we observe that the set of contacts Cq(v),
used in the construction of Dq(v) in (54), is also
positively homogeneous in v. Therefore, Dq(v) is positively
homogeneous.

We now prove the final claim. Consider a solution v(s)
to the impact DI v̇ ∈ Dq(v) over [a, b], and k > 0. The
function kv( sk ) is well-defined and absolutely continuous
over the interval [ka, kb], and has derivative equal to v̇( sk )
a.e. on [ka, kb]. Then v̇( sk ) ∈ Dq(v( sk )) = Dq(kv( sk )) a.e.,
and kv( sk ) ∈ SOL (Dq, [ka, kb]).

D.3 Proof of Lemma 16
Let q ∈ QA, and let [a, b] be a compact interval. Consider
a solution of the impact DI v(s) ∈ SOL (Dq, [a, b]) with
impact velocity (v([a, b]) ⊆ clI(q)). We will show that
‖v(s)‖M is non-increasing by proving that K̇(q,v(s)) is
non-positive almost everywhere. Pick any s ∈ [a, b] where
v̇(s) ∈ Dq(v(s)). By construction of Dq(v) (54) and the
definition of the convex hull, there exists coefficients ci ∈
[0, 1] for each impacting contact such that

v̇(s) ∈
∑

i:Jn,iv(s)≤0

ciFq,i(v(s)) . (123)

We observe that

K̇(q,v(s)) ∈ ∑
i:Jn,iv(s)≤0

civ(s)TM(q)Fq,i(v(s)) , (124)

K̇ is then non-positive as each term in this sum is non-
positive by construction of Fq,i(v):

v(s)TM(q)Fq,i(v(s)) =

v(s)TJTn,i − µi ‖Jt,iv(s)‖2 . (125)

D.4 Proof of Theorem 17
Let q ∈ QA be a configuration with active contact, and
v(s) ∈ SOL (Dq, [a, b]) a solution to the associated impact
differential inclusion. We additionally assume that v(s) is
non-constant, and that it remains in clI(q), the closure of the
impacting velocities over the entire interval [a, b]. Let λ(s)
be the associated vector of force variables.

We now prove the claim by showing that ‖v(b)‖M <
‖v(a)‖M ; such behavior occurs because any change in
v(s) must result from a strictly dissipative contact. As
v(s) is continuous, we may select a < s∗ < b such that
∀δ > 0, v(s) is non-constant on [s∗, s∗ + δ]. Let A =
{i ∈ CA(q) : Jn,iv(s∗) ≤ 0} be the set of non-separating
contacts at s = s∗. Let B be the set of contacts b ∈ A with
zero contact velocity (Jbv(s∗) = 0). As v(s) is continuous,
∃δε > 0 and ε > 0 such that ∀s ∈ [s∗, s∗ + δε] ⊆ [a, b],

• All contacts not in A are separating (Jn,iv(s) >
ε ,∀i ∈ CA \A)

• All contacts i ∈ A \B are moving, with Jn,iv(s) <
−ε or ‖Jt,iv(s)‖2 >

1
µi
ε.

Select an s from [s∗, s∗ + δε] with v(s) 6= v(s∗). By Lemma
16,

0 ≥ 1

2
‖v(s)‖2M −

1

2
‖v(s∗)‖2M , (126)

= v(s∗)TM (v(s)− v(s∗)) +
1

2
‖v(s)− v(s∗)‖2M ,

(127)

= (Jv(s∗))
T

Λ(s∗, s) +
1

2
‖v(s)− v(s∗)‖2M . (128)

Therefore, there must exist a contact a ∈ A \B that
generates nonzero impulse ‖Λa(s∗, s)‖1 > 0 as (128) is
non-positive. Finally,

K(v(s)) = K(v(s∗)) +

∫ s

s∗
(Jv(τ))Tλc(τ)dτ , (129)

≤ K(v(s∗))− ε||Λa(s∗, s)||1 , (130)
< K(v(s∗)) . (131)

Therefore ‖v‖M is non-constant.

D.5 Proof of Lemma 22
Suppose not, so there exists a configuration q ∈ QA,
dissipation rate αq(s) such that v̇ ∈ Dq(v) is αq(s)-
dissipative, s > 0 and S > ‖v(0)‖M

s
αq(s) , and v(s) ∈

SOL (Dq, [0, S]) with v([0, S]) ⊆ clI(q). Assume WLOG
by Lemma 15 that ‖v(0)‖M = 1. As v̇ ∈ Dq(v) is αq(s)-
dissipative, ∃s1 ∈ [0, s] such that ‖v (s1)‖M ≤ 1− αq(s).
A sequence (sk)k∈N can be iteratively constructed by
Lemma 15 such that

sk ∈ sk−1 +
[
0, s (1− αq(s))

k−1
]
⊆
[
0,

s

αq(s)

]
, (132)

‖v (sk)‖M
‖v (sk−1)‖M

≤ (1− αq(s)) . (133)

Therefore ∃s∞ ∈
[
0, s

αC(s)

]
with sn → s∞ < S and by

continuity of v, v (s∞) = 0 ∈ clI(q). But then by Theorem
19 ‖v(s)‖M must decrease below 0 on [s∞, S], a
contradiction.

D.6 Proof of Theorem 23
Suppose not. Then there exists a q ∈ QA \ QP , an S >
0 and a corresponding sequence of solutions

(
vj(s)

)
j∈N,

vj(s) ∈ SOL (Dq, [0, S]), all starting with kinetic energy
1
2 (i.e.

∥∥vj(0)
∥∥
M

= 1) and never exiting clI(q), which
dissipate less and less energy:

lim
j→∞

∥∥vj(S)
∥∥
M

= 1 . (134)

As Dq is bounded and each solution vj(s) never exceeds
kinetic energy 1

2 (by Lemma 16), the sequence is
equicontinuous and bounded. By Theorem 1, a subsequence
of vj(s) converges uniformly to a function v∞(s), and
because kinetic energy is non-increasing, Lemma 16 implies
‖v∞(s)‖M = 1 for all s ∈ [0, S]. By Lemma 14 v∞(s) is a
solution to the differential inclusion v̇ ∈ Dq(v). Therefore
as v∞(s) does not dissipate kinetic energy, it is constant
by Theorem 17, and thus 0 ∈ Dq(v∞(s)). But as each
vj(s) ∈ clI(q), we must also have v∞(s) ∈ clI(q), which
contradicts Assumption 18.
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D.7 Proof of Corollary 24
Let Q ⊆ QA \ QP be compact set of non-penetrating
configurations with active contact. Let S > 0. Define the
differential inclusion[

q̇
v̇

]
= ẋ ∈ D′(x) =

[
0

Dq(v)

]
. (135)

As CA is u.s.c. and M ,φ,J are continuous, D′ is compact-
convex, uniformly bounded, and u.s.c.. Now consider the sets

X0 =

{[
q0

v0

]
: q0 ∈ Q ∧ ‖v0‖M(q0) = 1

}
, (136)

XS = {x(S) : x(s) ∈ IVP (D′,X0, [0, S])} . (137)

X0 represents all initial conditions with configurations in
Q and initial kinetic energy 1

2 , and XS is set of states
reachable from X0 via solutions to the dynamics (135)
for a duration S. As X0 is compact, IVP (D′,X0, [0, S])
and therefore XS is closed and non-empty by Proposition
8. Any solution [q(s); v(s)] ∈ IVP (D′,X0, [0, S]) must
have constant q(s) = q(0) ∈ Q, because the inclusion (135)
prescribes q̇ = 0. Therefore, v(s) must be a solution to
the associated impact differential inclusion v̇ ∈ Dq(0)(v).
Therefore, by Theorem 23,

αQ(S) = 1− max
[qS ; vS ]∈XS

‖vS‖M(qS) ∈ (0, 1] . (138)

SettingαQ(0) = 0 and selecting an arbitrary configuration
q ∈ Q, we now show that v̇ ∈ Dq(v) is αQ(s)-dissipative.
Let S > 0, ‖v0‖M(q) = 1, and v(s) ∈ IVP (Dq,v0, [0, S]).
By Definition 5, x(s) = [q; v(s)] ∈ IVP (D′,X0, [0, S])
and thus ‖v(s)‖M(q) ≤ 1− αQ(s) < 1 for all s ∈ [0, S].

E Continuous-time Model Proofs

E.1 Proof of Theorem 28
Let [a, b] and X̄ be compact. As D(x̄) neither depends on
t(x̄) nor s, WLOG [a, b] = [0, S] and t(x̄) = 0 for each
x̄ ∈ X̄ . We will prove that IVP (D, x̄, [0, S]) has the claimed
properties in the following manner:

1. We will bound kinetic energy growth (via Assumption
26), which will guarantee that solutions starting in X̄
remain in a larger compact set, X̄ ′.

2. We will show that, restricted to X̄ ′, ˙̄x ∈ D(x̄) is
equivalent to another differential inclusion, ˙̄x ∈ D̃(x̄),
which complies with the requirements of Theorem 1.

First, we construct a suitable X̄ ′. As X̄ is compact,
we may pick c > 0 such that X̄ ⊆ Ballc. Let x̄(s) ∈
IVP

(
D, X̄ , [0, S]

)
. We begin by establishing a bound

on v(x̄(s)) over [0, S]. Let K(x̄) = K(q(x̄),v(x̄)). By
Assumption 26 and (15), ∃cK > 0 such that for all x̄,

∂K

∂x̄
DC(x̄) = vT (U −G) ≤

√
2cK ‖v‖M . (139)

As the impact dynamics dissipate energy (Lemma 16),
∂K
∂x̄DI(x̄) ≤ 0 and thus

K̇(x̄(s)) ∈ ∂K

∂x̄
D(x̄) ≤ 2cK

√
K(x̄) . (140)

Similar to the argument in Appendix C.2, we can compare
(140) to the differential equation ẋ = 2cK

√
x, and upper

bound K as

K(q(s),v(s)) ≤
(√

K(q(0),v(0)) + cKs
)2

. (141)

The growth of ‖v(s)‖2 can be similarly bounded; picking
cM such that c−1

M ‖v‖M ≤
√

2 ‖v‖2 ≤ cM ‖v‖M ,

‖v(s)‖2 ≤ cM
√
K(q(s),v(s)) , (142)

≤ cM
(√

K(q(0),v(0)) + cKs
)
, (143)

≤ c2M ‖v(0)‖2 + cMcKs . (144)

Now, we bound q(x̄(s)). Given that ‖q̇‖2 ≤ ‖Γ‖F ‖v‖2,
‖q(s)‖2 can be bounded by selecting cΓ = supq ‖Γ‖F , and
applying the triangle inequality:

‖q(s)‖2 ≤ ‖q(0)‖2 + cΓs max
s′∈[0,s]

‖v(s′)‖2 . (145)

Finally, we bound ‖t(s)‖ ≤ s from ṫ ≤ 1. As ‖x̄(0)‖2 < c,

‖x̄(s)‖2 ≤ ‖q(s)‖2 + ‖v(s)‖2 + ‖t(s)‖ , (146)

≤ c+ (cΓs+ 1)
(
c2Mc+ cMcKs

)
+ s . (147)

Therefore, x̄(s) does not exit X̄ ′ = clBallc′ , where

c′ = c+ (cΓS + 1)
(
c2Mc+ cMcKS

)
+ S . (148)

By Assumption 27 and element-wise application of
Theorem 1 of Askoura (2008), there exists a bounded, non-
empty, compact-convex valued u.s.c. function D̃(x̄) defined
over Rn such that D̃|X̄ ′ = D|X̄ ′ . Therefore, by Theorem
1, IVP

(
D̃, x̄, [0, S]

)
is non-empty, closed under uniform

convergence, and u.s.c. on X̄ . As D and D̃ are locally
equivalent, any solution x̄(s) to ˙̄x ∈ D̃(x̄) that is fully
contained in X̄ ′ is also a solution to ˙̄x ∈ D(x̄), and vice
versa. As all solutions beginning on X̄ remain in X̄ ′ over
[0, S], IVP

(
D̃, x̄, [0, S]

)
= IVP (D, x̄, [0, S]) on X̄ and

the claim is proven.

E.2 Proof of Theorem 29
Suppose not. Then there exists a non-penetrating initial
state x̄0 = [q0; v0; t0] 6∈ X̄P , compact interval [0, S],
and corresponding solution x̄(s) = [q(s);v(s); t(s)] ∈
IVP (D, x̄0, [0, S]) that penetrates at some sP ∈ [0, S]
(x̄(sP ) ∈ X̄P ). Thus some contact i ∈ C penetrates at sP
(φi(q(sP )) < 0). Let k(s) = ṫ(s) ∈ [0, 1]; a.e. on [0, S],

˙̄x ∈ (1− k(s))DI(x̄(s)) + k(s)DS(x̄(s)) . (149)

By the intermediate value theorem, we may select sA ∈
[0, sP ] such that φi(q(sP )) < φi(q(sA)) < 0 and contact
i penetrates on the entire interval [sA, sP ]. In order for φi
to decrease, there must exist a non-zero mesure set S ⊆
[sA, sP ] with

φ̇i =
∂φi
∂q

q̇ = Jn,iv(s)k(s) < 0 , (150)

on S. But then both φi and φ̇i are strictly negative on S, and
thus x̄(S) ⊆ int

(
X̄I
)
. Therefore only impact dynamics are

active on S , i.e. k(s) = 0 a.e. on S. But then φ̇i = 0 a.e. on
S, a contradiction.
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E.3 Proof of Theorem 30
Suppose not. Then there exists a compact interval
[a, b]; solution x̄(s) ∈ SOL (D, [a, b]) with x̄(s) impacting
but not penetrating, x̄([a, b]) ⊆ X̄I \ X̄P ; and set S ={
s : ˙̄x(s) ∈ D(x̄(s)) \DI(x̄(s))

}
with positive measure.

Furthermore, ṫ(s)|S > 0 and q̇(s) = Γ(q(s))v(s)ṫ(s).
We will now show that allowing ṫ(s)|S > 0 must lead

to penetration and therefore a contradiction. By Lebesgue’s
density theorem, we may select a point of density a < s1 <
b, i.e., for all δ > 0, [s1, s1 + δ] ∩ S has non-zero measure.
As x̄(s) remains in X̄I , by continuity of J(q) and x̄(s) we
may select δ > 0 and a contact i that is active φi(q(s)) = 0
with negative time derivative Jn,iv(s) < 0 on [s1, s1 + δ] ⊆
[a, b]. Let φ̇max = maxs∈[s1,s1+δ] Jn,iv(s) < 0. Then

φi(s1 + δ) =

∫
[s1,s1+δ]

Jn,iv(s)ṫ(s)ds , (151)

≤ φ̇max

∫
[s1,s1+δ]∩S

ṫ(s)ds , (152)

< 0 , (153)

and thus x̄(s1 + δ) ∈ X̄P , a contradiction.

E.4 Proof of Theorem 31
Let X̄ be compact containing no penetrating states (X̄ ∩
X̄P = ∅). By Corollary 24 there exists a dissipation rate
αX̄ (s) such that the impact differential inclusion v̇ ∈ Dq(v)
for each configuration q ∈ q(X̄ ) is αX̄ (s)-dissipative. Let
K̄ = maxX̄ ‖v‖M(q).

Suppose the claim is not true. Then, for some S′ >
S(X̄ ) = K̄

αX̄(1) , there must exist a sequence of solutions
(x̄j(s))j∈N, x̄j(s) ∈ IVP

(
D, X̄ , [0, S′]

)
, for which the

elaped times grows arbitrarily small: tj(S′)− tj(0)→ 0. By
Theorem 28, IVP

(
D, X̄ , [0, S′]

)
is compact, and therefore

by Assumption 27, the derivatives ˙̄xj(s) are uniformly
bounded. Therefore (x̄j(s))j∈N is equicontinuous. Thus
by Theorem 1, a subsequence of x̄j(s) converges
uniformly to some x̄∞(s) with t∞([0, S′]) = t∞(0). As
IVP

(
D, X̄ , [0, S′]

)
is closed (Theorem 28), x̄∞(s) must

also be a solution to the initial value problem.
We now show that a contradiction arises because x̄∞(s)

follows impact dynamics longer than K̄
αX̄(1) . Furthermore, as

t∞(s) is constant, ṫ∞(s) = 0, and thus x̄∞(s) must follow
only impact dynamics, x̄∞(s) ∈ IVP

(
DI , X̄ , [0, S′]

)
. In

order for ˙̄x∞(s) to be selected from DI , we must
have x̄∞(s) 6∈ X̄S a.e., and thus v∞(s) 6∈ S(q∞(s)) a.e.
Additionally, as x̄∞(s) only follows impact dynamics, the
configuration is constant, i.e. q∞([0, S′]) = q∞(0) = q∞.
Therefore v∞(s) is a solution of v̇ ∈ Dq∞(v), and v∞(s) ∈
clI(q∞). Therefore I(q∞) is non-empty and therefore has
active contact (q∞ ∈ QA). Furthermore, as X̄ contains no
penetrating states, q∞ 6∈ QP (via Theorem 29), and thus
v̇ ∈ Dq∞(v) is αX̄ (s)-dissipative. Finally, by Lemma 22,
S′ <

‖v∞(0)‖M
αX̄ (1) ≤ S(X̄ ), a contradiction.

E.5 Proof of Corollary 32
As X̄ (S′) is non-empty and compact for all S′ > 0, T ′(S′)
is well-defined. Then, lim infS′→∞

T ′(S′)
S′ ∈ [0, 1] as the

impact DI (78) enforces ṫ(s) ∈ [0, 1]. Consider a particular
S′ > 0, and let x̄(s) ∈ IVP

(
D, X̄ , [0, S′]

)
. By Theorem 31,

t(s) increases by T (X̄ ) over each interval of length S(X̄ ),
bounding

t(S′) ≥ T (X̄ )

⌊
S′

S(X̄ )

⌋
≥ S′T (X̄ )

S(X̄ )
− T (X̄ ) . (154)

Therefore, lim infS′→∞
T ′(S′)
S′ ≥

T (X̄ )
S(X̄ )

.

E.6 Proof of Theorem 33
Consider some state [q; v] and normal impulse λn,max ≥ 0.
Let

z =

βλ̄
γ

 ≥ 0 . (155)

Then we have

zTWqz =
1

2
zT
(
Wq +W T

q

)
z , (156)

=
∥∥∥J̄T λ̄∥∥∥2

M−1
+ λTnµγ , (157)

≥ 0 , (158)

where the final inequality holds because µ has positive
entries andM � 0. Therefore,Mq is copositive.

Suppose further thatz ∈ LCP(Wq,0), thus Wqz ≥ 0
and zTWqz = 0.Wqz ≥ 0 implies by construction that

λn ≤ 0 , (159)

ETλD ≤ µλn ≤ 0 . (160)

Therefore as λn,λD ≥ 0, λn = 0 and λD = 0. Finally, as
λn,max and β are non-negative,

zTwq(v,λn,max) = βTλn,max ≥ 0 . (161)

Therefore by Proposition 10, LCP(Wq,wq(v,λn,max)) is
non-empty.

E.7 Proof of Theorem 34
Consider a state [q; v], normal impulse increment λn,max ≥
0, and solution to the impact LCP z =

[
β; λ̄; γ

]
∈

LCP(Wq,wq(v,λn,max)). Let v′ = v +M−1J̄
T
λ̄. Then

from the complementarity condition we have

0 = zT (Wqz +wq(v,λn,max)) , (162)

=
(
λ̄
T
J̄
)
v′ + λTnµγ + βTλn,max , (163)

= (v′ − v)
T
Mv′ + λTnµγ + βTλn,max . (164)

As λTnµγ + βTλn,max ≥ 0,

(v′ − v)
T
Mv′ ≤ 0 . (165)

(165) is equivalent to ‖v′‖2M ≤ vTMv′. The Cauchy-
Schwartz inequality then gives ‖v′‖2M ≤ ‖v‖M ‖v′‖M , and
therefore K(q,v′)−K(q,v) ≤ 0.
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F Simulation Proofs

F.1 Proof of Lemma 35
Let [q; v] be an impacting state (v ∈ I(q)), and let
λn,max > 0 be a normal impulse. Consider an impact LCP
solution

[β; λn; λD; γ] ∈ LCP(Wq,wq(v,λn,max)) .

such that
λn < λn,max . (166)

Therefore for each contact i, the complementary equation
(83) yields βi = 0 as λn,maxi

− λn,i > 0. Then from
complementarity equation (84), Jn,iv′ ≥ 0.

F.2 Proof of Lemma 36
Consider a configuration q ∈ QA \ QP . It is sufficient to
prove the claim for v = 0 as LFC (q, v̄) ⊆ LFC (q,0) for
any velocity v̄ (see (42)). Furthermore, asM is full rank, we
may assume WLOG that M = I . Consider the set of forces
in the linear friction cone with total normal force 1:

Λ = LFC (q,0) ∩
{
λ̄ : ‖λn‖1 = 1

}
. (167)

As LFC (q,0) is a convex cone, any vector r satisfies the
claim if r · J̄TΛ > 1.

As the linear friction cone is a subset of the Coulomb
friction cone (see (43)), by Assumption 18, 0 6∈ J̄TΛ.
Furthermore, J̄TΛ is compact, non-empty, and convex.
Therefore, 0 6∈ J̄TΛ− (−J̄TΛ) = 2J̄

T
Λ, and by Theorem

11.4 of Rockafellar (1970) J̄TΛ and −J̄TΛ are strongly
separated by some hyperplane. Then by definition there
exists some vector r̃ such that

min
F∈J̄T Λ

F · r̃ > max
F∈−J̄T Λ

F · r̃ = − min
F∈J̄T Λ

F · r̃ . (168)

Setting ε = minF∈J̄T Λ F · r̃ > 0, r = r̃
ε satisfies the claim.

F.3 Proof of Theorem 37
Let q0 ∈ QA \ QP be a pre-impact configuration and let
v0 ∈ I(q0) be a pre-impact velocity. As each λn,max is
selected from the uniform distribution over the unit box, we
have that

cp = Eλn,max∼p

[
min
i
λn,maxi

]
=

1

m+ 1
. (169)

We assume WLOG that p is supported on the interior of
the unit box (0, 1)m, as the probability of being on the
boundary is 0. Let σ > 0 be the minimum singular value of
M = M(q0). We can bound the norm of the initial velocity
from below by √

σ ‖v‖2 ≤ ‖v‖M . (170)

Now, select r for q0 as defined in Lemma 36. We will
now show that the existence of r in conjunction with
dissipation (Theorem 34), allows us to create a useful
sufficient condition for impact termination.

Consider any execution of Algorithm 2 with initial state
[q0; v0], and let λkn,max, λ̄k = [λkn; λkD] and vk be the
maximum normal impulse; selected impulse; and velocity

computed on lines 4–6 on the kth iteration of the loop. If
the loop has not terminated after K steps, then for all loop
iterations k ∈ {1, . . . ,K}, vk ∈ I(q0). By Theorem 34 and
Lemmas 35–36, we have that

‖v0‖M ≥ ‖vK‖M , (171)

≥
√
σ ‖vK‖2 , (172)

≥
√
σ
r

‖r‖2
· vK (173)

≥
√
σ

‖r‖2

(
r · v0 +

K∑
k=1

∥∥λkn,max∥∥1

)
, (174)

≥ −
√
σ ‖v0‖2 +

√
σ

‖r‖2

K∑
k=1

∥∥λkn,max∥∥1
, (175)

≥ −‖v0‖M +

K∑
k=1

√
σ

‖r‖2
min
i
λkn,maxi

. (176)

For this inequality to hold, and thus for vK to remain in
I(q0), it must be true that the summation in (176) is no
greater than 2 ‖v0‖M . Therefore, termination of the impact
within K steps (i.e. Z(h, q0,v0) ≤ K) is implied by ZK >
cZ ‖v0‖M , where

cZ =
2 ‖r‖2
h
√
σ
, (177)

ZK =

K∑
k=1

1

h
min
i
λkn,maxi

. (178)

Given that the λn,max ∼ hp are selected i.i.d. we have
that E [ZK ] = Kcp. Thus we would expect an impact to
terminate proportional to

K∗ =

⌈
cZ
cp

⌉
d‖v0‖Me . (179)

We now explicitly bound the termination time Z using
Hoeffding’s inequality, applied below in (183); for k ∈ Z+

and K = 2K∗ + k,

P (Z ≥ K) ≤ P (ZK ≤ cZ ‖v0‖M ) , (180)
≤ P (ZK ≤ K∗cp) , (181)
= P (ZK −Kcp ≤ − (K∗ + k) cp) , (182)

≤ exp

(
− 2

K
(K∗ + k)

2
c2p

)
, (183)

≤ exp
(
− (K∗ + k) c2p

)
, (184)

≤ exp
(
−kc2p

)
. (185)

Thus the claim is satisfied.

F.4 Proof of Lemma 41
Suppose not. Then there exists a configuration q ∈ QA \
QP , velocity v, and ε > 0, such that for all N ∈ N, there
exists a vN , JnvN ≥ − 1

N , ‖vN‖M ≤ ‖v‖M , and yet vN =
fq(v′N , ε1) ∈ I(q).

Due to energy dissipation (Theorem 34) and the
boundedness of vN , the sequence v′N is bounded as well.
Without loss of generality we can therefore assume that
vN → v∞ and v′N → v′∞. As JnvN ≥ − 1

N , it must be
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that Jnv∞ ≥ 0. Therefore, v′∞ = fq(v∞, ε1m) = v∞ via
Lemma 40. As vN and v′N converge to each other, there
exists an N∗, with LCP-selected force λ̄N∗ = [λn; λD]
such that

‖(v′N∗ − vN∗)‖2 =
∥∥∥M−1J̄

T
λ̄N∗

∥∥∥
2
<

ε

‖r(q)‖2
, (186)

where r(q) comes from Lemma 36. However, by Lemma
35, as v′N∗ ∈ I(q), at least one contact must fully activate,
and thus ‖λn‖1 ≥ ε. But then again by Lemma 36,∥∥∥M−1J̄

T
λ̄N∗

∥∥∥
2
≥ ε
‖r(q)‖2

, a contradiction.

F.5 Proof of Theorem 43
First we will show that generating an ε-net of V∞(x0, h) \
I(q0) can be reduced to generating an ε′-net of VN (x0, h)
for a suitable (ε′, N). We will then show that VN (x0, h) is
the image of a box under a Lipschitz continuous function,
reducing the claim to Proposition 4.

Select an initial condition x0 = [q0; v0] ∈ (QA \ QP )×
Rnv ; step size h > 0; and approximation constants
ε, δ > 0. By Lemma 42, we can select N such that
VN (x0, h) is an ε

3 -net of V∞(x0, h). Consider a run of
Approximate(h,x0, ε,N,M) for some M > 0. Define ψ
as it is constructed on line 2 of Algorithm 3. Furthermore,
suppose that the M samples from VN (x0, h) generated on
line 4 of Algorithm 3 constitute a ε′ net of VN (x0, h), where

ε′ = min

ε
3
,
δ
(
ε

3ψ ,v0

)
σmax(Jn)

 , (187)

and δ
(
ε

3ψ ,v0

)
comes from Lemma 41.

Consider any possible post-impact velocity v1 ∈
V∞(x0, h) \ I(q0). Then there exists a v2 ∈ VN (x0, h)
with ‖v1 − v2‖2 <

ε
3 . Select the closest velocity

v3 ∈ VN (x0, h) ⊆ V∞(x0, h) to v2 selected on line 4
during a run of Approximate(h,x0, ε,N,M). From (187),
we can determine two key facts: ‖v3 − v2‖2 ≤

ε
3 , and

Jnv3 ≥ −δ
(
ε

3ψ ,v0

)
. This same v3 is used to generate

v4 = fq0(v3,
ε

3ψ1m) on line 5, and Jnv4 ≥ 0 via Lemma
41.
v4 is in the post-impact set V∞(x0, h) \ I(q0) by Lemma

41, and it will be output by Approximate(h,x0, ε,N,M).
Furthermore suppose that λ̄ = [λn; λD] was the LCP-
selected force in the calculation of v4; we then have that

‖v4 − v3‖2 ≤
∥∥∥M−1J̄

T
λ̄
∥∥∥

2
, (188)

≤ σ
∥∥λ̄∥∥

1
, (189)

≤ σ ‖λn‖1 (1 + max
i
µi) , (190)

≤ ε

3
, (191)

where σ = σmax

(
M−1J̄

T
)

and the final inequality comes
from the construction of ψ on line 2 of Algorithm 3. Thus,
by triangle inequality, ‖v4 − v1‖2 is bounded above by

‖v2 − v1‖2 + ‖v3 − v2‖2 + ‖v4 − v3‖2 ≤ ε . (192)

Therefore, the claim is true if the samples from VN (x0, h)
generated on line 4 of Algorithm 3 are a ε′ net of VN (x0, h)

with probability 1− δ; we conclude by calculating anM that
guarantees this property.

Consider the sequence of functions

f1(λ1
n) = fq0(v0,λ

1
n) , (193)

fk(λ1
n, . . . ,λ

k
n) = fq0(fk−1(λ1

n, . . . ,λ
k−1
n ),λn) . (194)

Examining (100), we see that the sequence fN can be used
to construct the N -step reachable velocities:

VN (x0, h) = fN ([0, h]Nm) . (195)

Furthermore, if fq0
has Lipschitz constant L, then fN

is Lipschitz continuous on [0, h]Nm with constant LN by
Proposition 2. Under Assumption 38, Sim(h,x0, N) yields
a uniform sample of [0, h]Nm mapped under fN . Therefore,
the claim holds, with M given by Proposition 4:

M ≥ ln(δΩ)

ln(1− Ω)
, (196)

Ω =

⌈
hLN

√
Nm

ε

⌉−Nm
. (197)
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