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Abstract
Robotic manipulation and locomotion often entail nearly-simultaneous collisions—such as heel and toe strikes during
a foot step—with outcomes that are extremely sensitive to the order in which impacts occur. Robotic simulators and
state estimation commonly lack the fidelity and accuracy to predict this ordering, and instead pick one with a heuristic.
This discrepancy degrades performance when model-based controllers and policies learned in simulation are placed
on a real robot. We reconcile this issue with a set-valued rigid-body model which generates a broad set of outcomes
to simultaneous frictional impacts with any impact ordering. We first extend Routh’s impact model to multiple impacts
by reformulating it as a differential inclusion (DI), and show that any solution will resolve all impacts in finite time. By
considering time as a state, we embed this model into another DI which captures the continuous-time evolution of
rigid body dynamics, and guarantee existence of solutions. We finally cast simulation of simultaneous impacts as a
linear complementarity problem (LCP), and develop an algorithm for tight approximation of the post-impact velocity set
with probabilistic guarantees. We demonstrate our approach on several examples drawn from manipulation and legged
locomotion, and compare the predictions to other models of rigid and compliant collisions.

Keywords
Rigid-body Dynamics; Simulation; Contact Modeling; Legged Locomotion; Manipulation; Linear Complementarity
Problems

1 Introduction

Imperfect but useful physical models have long enabled
improvements in planning and control of robotic locomotion
and manipulation. However, the shift from slow, simple
motion in tightly-controlled laboratories to dynamic,
complex, real-world tasks has dramatically increased
accuracy requirements and decreased calibration data
availability for these models. As a result, model inaccuracy
has become a common bottleneck in developing modern
machine learning and mechanics-based methods alike;
in particular, inaccurate prediction of collisions among
robots and their surroundings is a longstanding failure of
robotics models, especially when multiple impacts happen
simultaneously or in quick succession (Ibarz et al. 2021;
Wensing et al. 2022).

From a mechanical perspective, these failures arise
in part from inherent unpredictability of simultaneous
collisions. While some robotics systems and environments
are intentionally soft (e.g. cloth manipulation), many
locomotion and manipulation tasks inherently involve
contact between nearly-rigid components of robots and their
environment (Wieber et al. 2016; Kemp et al. 2007). When
such objects collide, materials deform on an imperceptibly-
small spatial and temporal scale to prevent interpenetration,
inducing extreme sensitivity in their motion. Even small
changes in initial conditions and material properties generate
large changes in real-world outcomes; accordingly, small
errors in state estimation and identification produce large
prediction error (Ibarz et al. 2021; Chatterjee 1997). A
familiar occurrence of this sensitivity is the unpredictability

of billiards breaks (Wang et al. 2015) and dice rolls, though
even a simple rectangular block impacting flat ground
(Figure 1) is difficult to model (Housner 1963; Zhang and
Makris 2001; Lygeros et al. 2003; Yilmaz et al. 2009).
Unfortunately, sensitive, simultaneous impacts regularly
occur in robotics (see Section 3.1).

This sensitivity is highly dependent the rapid ordering or
sequencing of impact forces between the various colliding
bodies (Wang and Mason 1992; Hurmuzlu and Marghitu
1994; Chatterjee 1999; Ivanov 1995; Smith et al. 2012;
Uchida et al. 2015). In reality, this ordering emerges from
material properties and deformation dynamics (Chatterjee
1999), which are generally not tractable to fully identify or
simulate in real-world robotics scenarios. Instead, robotics
models typically make a rigid-body assumption, a tractable
but coarse approximation of contact mechanics in which
objects do not deform. Such models inherently do not
fully capture true impact physics; instead, they typically
select a single outcome according to some physically-
principled constraints. There is broad agreement that it
is important that solutions to such models should exist
over arbitrary time horizons; and that collisions not inject
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(a) Initial condition
(pre-impact)

(b) Symmetric impact
(post-impact)

(c) A-then-B sequential impacts
(mid-, then post-impact)

(d) B-then-A sequential impacts
(mid-, then post-impact)

Figure 1. Differing outcomes under differing impulse orderings in instantaneous, inelastic impact models are considered for a
rocking block (yellow), which collides with flat ground (gray) at 2 corners A,B(a); additional details provided in Section 2.2.2 and
Appendix A. (b) One perspective is that impacts at A and B should be resolved simultaneously. Applying the inelastic variant of
Anitescu and Potra (1997) (see Equation (31)) for example results in the block coming to rest. (c) Other models process impacts
one-at-a-time, e.g. Ivanov (1995). With sufficient friction, any impact at a single corner can stick. If A’s impact is processed first, the
block pivots counter-clockwise, necessitating a second impact at B, which then causes the block to pivot about B with A lifting off
the ground. If the impacts are instead ordered B-then-A, then by symmetry is A pivots and B lifts off.

energy into the system (Stewart 2000; Stronge 1990). Most
models also add additional and seemingly well-motivated
constraints in the pursuit of uniqueness of solutions, such
as maximum dissipation (Drumwright and Shell 2010),
minimum potential energy (Uchida et al. 2015), symmetry
(Smith et al. 2012), and velocity-based complementarity
(Anitescu and Potra 1997). Additionally some models have
a handful of non-unique solutions, but rely on a numerical
solvers which may be biased toward a particular solution
(Anitescu and Potra 1997; Stewart and Trinkle 1996; Remy
2017). However, differing constraints inevitably lead to
disagreeing or unrealistic predictions (Remy 2017; Fazeli
et al. 2020), and unique outcomes do not reflect the
large uncertainty generated from the practically-unknowable
sequencing of impacts. Under restrictions on the systems
and mechanics involved, such as massless limbs and no
kinetic friction, such models may lead to useful, accurate
modeling of robotic systems and tasks (Johnson et al. 2016;
Burden et al. 2016). As both simple and complex robotics
systems violate these assumptions (Remy 2017; Fazeli et al.
2020), it is still important to investigate principled modeling
approaches that faithfully represent such systems.

In the examples we discuss in Section 5.4, we find
that the discrepancies between and within models can be
significantly large. This may be particularly problematic
for model-based controllers which have built around and
are fragile to deviations from a single, expected behavior
(Wensing et al. 2022), such as learned policies trained on a
single set of settings in a single simulator (Peng et al. 2018),
or tracking a dynamically-feasible trajectory of a particular,
approximate model (Yang and Posa 2023). This work takes a
fundamentally different perspective, in which we propose the
development of set-valued rigid-body models that attempt to
generate all physically-reasonable outcomes, particularly by
capturing the effects of arbitrary ordering of impacts. Though
some predictions from such a model may not ultimately
occur, controllers guaranteed to stabilize the model—and

learned policies trained on the model’s predictions—are
well-positioned to perform reliably in the real world.

While non-unique predictions through randomly-
sequenced individual impacts has existed conceptually for
decades (Ivanov 1995), such methods do not capture the
subtleties of partially-concurrent impacts (Chatterjee and
Ruina 1998), and feasible computation of the entire set
of possibilities has remained an open problem (Stewart
2000). In the domain of inelastic impacts, we tackle both
of these issues by developing a differential impact model
which allows impacts to resolve at arbitrary relative rates,
first conceptually explored in Posa et al. (2016). This
construction is similar mathematically to other methods,
including Darboux-Keller (Keller 1986) and LZB (Nguyen
and Brogliato 2018) approaches, in that it extends Routh’s
original method for inelastic impact (Routh 1891); such
extensions have so far however been focused on producing
a single outcome when well-identified material properties
are available (Nguyen and Brogliato 2018). We also find
that intentionally permitting many different behaviors
enables proofs of existence of well-behaved solutions under
exceptionally few assumptions—ones which terminate a
single impact in both continuous and discrete domains; and
continuous-time solutions incorporating both movement
under sustained contact as well as instantaneous impacts.
In particular, in the latter case we guarantee solutions
through well-known pathological scenrios of rigid-body
motion, such as Painlevé paradoxes (Stewart 2000) and Zeno
behaviors (Ames et al. 2006). We will pair these theoretical
advances with practical algorithms for approximation of the
set of outcomes to individual impacts, which can be readily
integrated with event-based simulation schemes.

This work extends our previous work (Halm and Posa
2019), in which we first extended Routh’s impact method
to set-valued simultaneous frictional impacts. This paper
supplements the scope of this work with the following:
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• In Section 3, we provide a simplified theoretical anal-
ysis of our set-valued impact model (Equation (39)).
We prove that solutions to this model always exist
(Theorem 1), and that each solution is physically
reasonable in that it dissipates kinetic energy (The-
orem 2) and terminates the impact process over a
finite duration (Theorem 3). We include new motivat-
ing examples highlighting the inconsistencies between
existing models of simultaneous impact in Section 3.1.

• In Section 4, we unify set-valued impacts and
continuous-time evolution into a single model (Equa-
tion (53)). We prove that solutions to this model as
well always exist (Theorem 4) over arbitrary time
horizons (Theorem 5 and Corollary 3). We illumi-
nate via example how pathological scenarios including
Painlevé paradoxes and Zeno behaviors are captured
by the model.

• In Section 5, we formulate an implicit numerical
integration scheme for impact model, encoded as a lin-
ear complementarity problem (LCP) (Equation (75)).
We demonstrate that each integration step LCP is
solvable (Theorem 6) and dissipates kinetic energy
(Theorem 7). We provide algorithms with probabilistic
bounds on computation time for both sampling from
(Algorithm 1 and Theorem 8) and global approxima-
tion of (Algorithm 2 and Theorem 9) the feasible post-
impact velocity set of a simultaneous impact event. In
Section 5.4, we apply our model to several examples
from robotic locomotion and manipulation.

2 Background

We now introduce notation (summarized in Tables 1 and 2)
for and review the mathematics underpinning continuous-
time rigid-body dynamics with contact. Well-versed readers
may skip to Section 3 and use this section and the appendix
as required. We use several set-, matrix-, and vector-valued
operations and constants, the most common of which are
listed in Table 1.

We begin with mathematical foundations: sampling-
based set approximation (Section 2.1.1), set-valued maps
(Section 2.1.2), differential inclusions (Section 2.1.3), and
linear complementarity problems (Section 2.1.4).

We conclude with an overview of rigid-body dynam-
ics under sustained contact (Section 2.2.1), impacts (Sec-
tion 2.2.2); and initial value problems that combone both of
these behaviors (Section 2.2.3); a listing of the associated
system terms is in Table 2.

For notational brevity, we frequently write a singleton set
{a} without braces (e.g. a+B is the Minkowski sum of {a}
and B) and suppress dynamics terms’ inputs whenever clear
(i.e. we write M instead of M(q)).

2.1 Mathematical Foundations
The total derivative of an absolutely continuous function
f(t) is denoted ḟ(t). f : A→ B is Lipschitz continuous
with constant L if for all a1, a2 in A, ∥f(a1)− f(a2)∥2 ≤
L ∥a1 − a2∥2. An absolutely continuous f(t) has this prop-

erty if
∥∥∥ḟ(t)∥∥∥

2
≤ L almost everywhere (a.e.). Furthermore,

Table 1. Frequently-used constants and operations on sets
A,Ai, A

′, B, scalars c, vectors v,w, matrices M ,N , and
functions f : A→ B, g(t) : R→ Rn, D : A→ P (B). For
brevity, we frequently write a singleton {a} without braces.

Expression Meaning

Ac complement of A
int(A) interior of A
cl(A) closure of A

conv(A) convex hull of A
P (A) power set {A′ : A′ ⊆ A}

f : A→ B f maps a ∈ A to f(a) ∈ B
D : A→ P (B) D maps a ∈ A to D(a) ⊆ B

f(A′) image of A′, {f(a′) : a′ ∈ A′}
D(A′) image of A′, ∪a′∈A′D(a′)
MA scaled set, {Ma : a ∈ A}
−A (−1)A
A+B Minkowski sum {a+ b : a ∈ A, b ∈ B}
A−B Minkowski sum of A and −B

[A1; . . . Ak] Cartesian product A1 × · · · ×Ak
ġ(s) total Lebesgue derivative d

dsg
vi ith element of v

σmax(M) maximum singular value of M
σmin(M) minimum singular value of M
M ≻N M −N is positive definite
M ⪰N M −N is pos. semi-definite
v > w vi > wi for each i
v ≥ w vi ≥ wi for each i
A > 0 each element of A is positive
A ≥ 0 each element of A is non-negative
∥A∥F Frobenius norm of A
∥v∥p lp norm of v, (

∑
i |vi|p)

1
p

∥v∥M M -norm
√
vTMv, M ⪰ 0

v̂ unit direction, v
∥v∥2

, of v ̸= 0

Ball(c) c-radius ball {v : ∥v∥2 < c}
1 matrix/vector of all 1’s
0 matrix/vector of all 0’s

Rn+ {v ∈ Rn,v ≥ 0}

(partial) compositions of Lipschitz functions are also Lips-
chitz with constant no more than the product of the com-
posed functions. That is, if f, g : A×B → A are two Lip-
schitz functions with constants Lf and Lg , h(a, b1, b2) =
f(g(a, b1), b2) is Lipschitz with constant no more than
LfLg .

We say a function α(s) : Ω→ clR+, is positive definite if
it is positive on Ω \ {0} and α(0) = 0.

2.1.1 Set Approximation via Sampling Problems in
robotics can often be approximately solved with arbitrary-
close approximation (up to limitations stemming from
machine precision) via stochastic sampling (e.g. planning
with RRT* (Karaman and Frazzoli 2011)). In Section 5,
we will use sampling to approximate the set of post-impact
velocities corresponding to a pre-impact state with an ε-net:

Definition 1. For ε ≥ 0, an ε-net of a set X is a set X ′ ⊆ X
such that for each x ∈ X , ∃x′ ∈ X ′ with ∥x− x′∥2 ≤ ε.

In the spirit of probabilistic completeness, we will show
that, with sufficient samples and ignoring limitations on
machine precision, our simulation scheme can approximate

Prepared using sagej.cls



4 Journal Title XX(X)

Table 2. Dynamics terms for rigid bodies and frictional contact.
Some terms are written with the dependence on their inputs
suppressed.

Term Space Meaning

nq N number of configuration variables
nv N number of generalized velocities
nx N number of states nq + nv
m N number of contacts
t R time
q Rnq robot/environment configuration
v Rnv robot/environment velocity
x Rnx robot/environment state
x̄ Rnx+1 time-augmented state (43)
u Rnu robot/environment input forces

Γ(q) Rnq×nv generalized velocity Jacobian (9)
M(q) Rnv×nv generalized mass-inertia matrix
Fs(x,u) Rnv non-contact forces (10)
K(q,v) R total kinetic energy (11)
Jn(q) Rm×nv normal velocity Jacobian
Jt(q) R2m×nv tangent velocity Jacobian
J(q) R3m×nv full contact velocity Jacobian (26)
λn Rm normal forces vector
λt R2m frictional contact forces vector
λ R3m full contact forces vector (27)
µi R ith contact Coulomb friction coeff.

FC (q) P (Rnv ) Coulomb friction cone at q (18)
JD Rkm×nv linear tangent vel. Jacobian (34)
λD Rkm linear friction forces vector (34)
J̄ R(k+1)m×nv linear velocity Jacobian (35)
λ̄ R(k+1)m linear contact forces vector (35)

LFC (q) P (Rnv ) linear friction cone at q (22)
I P (N) set of all contacts
IA(q) P (I) active/touching contact set at q (13)
IP (q) P (I) penetrating contact set at q (14)
QA P (Rnq ) set of active-contact configurations
QP P (Rnq ) set of penetrating configurations
X̄A P

(
Rnx+1

)
set of active-contact states

X̄P P
(
Rnx+1

)
set of penetrating states

C(q) P (Rnv ) set of colliding velocities (28)
S(q) P (Rnv ) set of separating velocities (29)

this set to arbitrary ε with arbitrary confidence. The essential
goal is to show that a sufficient quantity of independent and
identically distributed samples of a set tends to yield an ε-net
of the set with low ε. In particular, we will be approximating
the image of a box under a Lipschitz continuous function via
uniform sampling on the input space:

Lemma 1. Dense Sampling (Appendix B.1). Let g(x) :
Rn → Rm be Lipschitz with constant L. Consider a set of N
uniform i.i.d. samples X = {x1, . . . , xN} from [0, h]n. Then
g(X ) is an ε-net of g([0, h]n) with probability at least

1− (1− Ω)N

Ω
, Ω =

⌈
hL
√
n

ε

⌉−n
. (1)

2.1.2 Set-Valued Maps Our mathematical constructions
and theoretical results will frequently make use of set-
valued maps D(a) : A→ P (B), which take as input an
element a ∈ A an output a subset of B′ of some output

(a) (b)

Figure 2. Illustration of a set-valued function and
corresponding differential inclusion. (a) Graph of Unit(v), the
set-valued unit direction for dimension n = 1. Unit(v) is
continuous at v ̸= 0. At 0, Unit takes the value [−1, 1], which
contains a continuous extension of v̂ from both the left (−1)
and the right (+1), so that Unit is u.s.c.. (b) Flow field (yellow)
of the solutions (blue, red) to the inclusion v̇ ∈ −Unit(v) for the
2-dimensional unit direction.

space B. As complex operations on the sets involved in
such maps are essential to our analysis, some abbreviated
notation is required for the readability of our constructions
and derivations. We list these abbreviations as part of
Table 1. Set-valued maps may exhibit properties reminiscent
of continuity for single-valued functions. We in particular
will make frequent use of an upper semi-continuity (u.s.c.)
property:

Definition 2. A function D : A→ P (B), where A ⊆ RnA ,
B ⊆ RnB , is upper semi-continuous if for any input a and
neighborhood B′ of D(a), there exists a neighborhood A′

of a with B′ ⊆ D(A′). Equivalently, if B is compact, for all
convergent sequences (ai)i∈N and (bi)i∈N,

bi ∈ D(ai) ,∀i =⇒ lim bi ∈ D(lim ai) .

Similar to continuous functions, there are several useful
compositional rules which preserve upper semicontinuity;
finite combination of u.s.c. functions by cartesian product,
convex hull, composition, union, and addition are all u.s.c.
(Aubin and Cellina 1984).

2.1.3 Differential Inclusions We will later see that in
continuous time, the dynamics of rigid bodies under fric-
tional contact present complexities that Ordinary Differential
Equation (ODE) formulations cannot capture, as multiple
outcomes that obey the constituent laws of contact may exist
(non-unique behaviors) (Stewart 2000). It is then useful to
define an object that, unlike ODEs, allows for the derivative
at each state to lie in a set of possible values

ẋ ∈ D(x) . (2)

As the set-valued map D(x) associated with friction may
not be continuous, conditions for a function x(t) to solve
this differential inclusion (DI) are weaker from those for an
ODE:

Definition 3. For a compact interval [a, b], x(t) : [a, b]→
Rn is a solution to the differential inclusion ẋ ∈ D(x) if x(t)
is absolutely continuous and ẋ(t) ∈ D(x(t)) a.e. on [a, b].
Denote the set of such solutions as SOL (D, [a, b]).
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Solutions to initial value problems for (2) are defined
similarly:

Definition 4. The set of solutions to ẋ(t) ∈ D(x(t)) with
initial condition x(a) = x0 over the interval t ∈ [a, b] are
denoted as IVP (D,x0, [a, b]).

In Figure 2, we consider an example DI

v̇ ∈ −Unit (v) , (3)

where Unit (x) is the set-valued unit direction function

Unit (v) =

{
{v̂} v ̸= 0 ,

{v′ : ∥v′∥2 ≤ 1} v = 0 .
(4)

The unique solution to the initial value problem starting from
v(0) = v0 has the form

v(t) = max (∥v0∥2 − t, 0) v̂0 . (5)

This solution is non-differentiable at t = ∥v0∥2 and thus
is not a solution of any ODE. In general, non-emptiness
and regularity of the initial value problem depends on the
structure of D(x); fortunately, we will later show that
solution sets for frictional dynamics are well-behaved due
to their upper semi-continuous (u.s.c.) structure:

Proposition 1. Aubin and Cellina (1984). Let x0 ∈ Rn
and [a, b] be a compact interval. Suppose D(x) is uniformly
bounded (i.e. D(x) ⊆ Ball(c) for some c > 0). If D(x)
is u.s.c., closed, convex, and non-empty at all x, then
IVP (D,x0, [a, b]) is non-empty and u.s.c. in x0 under
uniform convergence.

U.s.c. functions have the useful property that they
map compact sets to closed sets, and Proposition 1
immediately and crucially implies that SOL (D, [a, b]) and
IVP (D,x0, [a, b]) are non-empty and closed under uniform
convergence. The DI in Figure 2 for example exhibits this
structure.

2.1.4 Linear Complementarity Problems We will formu-
late multi-impact simulation as a sequence of linear comple-
mentarity problems (LCP’s), which have been widely used
for frictional contact simulation (Anitescu and Potra 1997;
Stewart and Trinkle 1996). We refer the reader to Cottle et al.
(2009) for a complete description.

Definition 5. The linear complementarity problem with
parameters W ∈ Rn×n and w ∈ Rn is the constraint
satisfaction problem

find z ∈ Rn , (6)

subject to zT (Wz +w) = 0 , (7)
z,Wz +w ≥ 0 , (8)

for which the set of solutions is denoted LCP(W ,w). (7)–
(8) are often abbreviated as 0 ≤ z ⊥Wz +w ≥ 0.

For LCPs related to frictional behavior, W is often
copositive (i.e. xTWx ≥ 0 for all x ≥ 0). This property
provides a sufficient condition for LCP feasibility and
computability:

Proposition 2. (Cottle et al. 2009). Let w ∈ Rn, and
let W ∈ Rn×n be copositive. If wTLCP(W ,0) ≥ 0, then
LCP(W ,w) contains a solution which can be computed in
finite time.

While solution uniqueness is not guaranteed, if mapping
the solution through a matrix A produces uniqueness, it also
produces Lipschitz continuity:

Proposition 3. (Facchinei and Pang 2003). For all
matrices W ∈ Rn×n, A ∈ Rm×n, if the function f(w) =
ALCP(W ,w) is unique over a convex domain Ω ⊆ Rn, it
is also Lipschitz on Ω.

2.2 Rigid-Body Dynamics with Friction
We now describe the mathematics and assumptions of rigid
body modeling of multiple articulated-body systems which
undergo Coulomb friction and inelastic impacts; notation is
summarized in Table 2.

As discussed in Section 1, both the suitability of rigid-
body modeling and the motion that results is dependent
on the properties of the materials involved. While the
following sections will specifically outline some narrow,
technical assumptions, we first establish three high-level
modeling decisions which inform the scope of applicability
of our models; our derivations; and our comparisons to the
surrounding literature.

• All bodies are rigid. We assume that every body
deforms negligibly, i.e. bodies’ stiffnesses are high
enough that the energy input to the system is much
lower than the potential energy required to compress
objects significantly. In this setting, continuous-time
evolution under sustained contact can be tracked with
a state containing the position, orientation, linear
velocity, and angular velocity of a nominal frame
affixed to each body; and impacts can be reasonably
modeled as instantaneous. There are multiple, nuanced
interpretations of what can be considered “negligible”
deformation, especially when concurrent impacts are
involved; we refer the reader to Chatterjee and Ruina
(1998) for a detailed discussion.

• Contact forces are dominated by dry friction,
specifically Coulomb’s law (Popova and Popov
2015) described in Section 2.2.1. This law is often
appropriate e.g. for manipulation of clean objects or
locomotion over dry terrain, rather than interaction
with viscous or adhesive substances.

• Impacts are completely inelastic, in that they
dissipate kinetic energy as much as possible.
Such assumptions are appropriate e.g. for materials
which plastically deform under impact; have viscous
deformation behavior; or for which the energy is
lost to elastic vibrations (Stoianovici and Hurmuzlu
1996; Stewart 2000). Inelastic impact models been
employed effectively in robotics simulation, planning,
and control (Wieber et al. 2016; Wensing et al. 2022).
For a single impact, this property characterized by
the bodies having no separating velocity post-impact,
though there is in general no single accepted rule for
sumultaneous impacts (Stewart 2000).
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2.2.1 Continuous-time evolution without impacts Rigid
robots contacting rigid objects and environment can be
modeled with inputs u (e.g. motor torques) and states
x = [q;v] ∈ Rnx , where q ∈ Rnq represents the robot’s
configuration and object poses. Though v ∈ Rnv is simply
dq
dt for some systems, others (e.g. those relating angular
velocities and quaternion derivatives) obey

dq = Γ(q)vdt , (9)

for some smooth, bounded, full-column-rank Γ(q) ∈
Rnq×nv (Tedrake 2023; Castro et al. 2020). Contact between
these bodies is modeled as occurring at up to m ∈ N point
pairs (for a thorough introduction, see Brogliato (1999) and
Stewart (2000)) referred to as the contacts I = {1, . . . ,m}.
Impactless evolution of the system is governed by

M(q)
dv

dt
= Fs(x,u) +

∑
i∈I

Ji(q)
Tλi . (10)

Here, the continuous function M(q) ≻ 0,M ∈ Rnv×nv is
the generalized inertial matrix, related to the kinetic energy
K(q,v) ∈ R by

K(q,v) =
1

2
∥v∥2M(q) =

1

2
vTM(q)v . (11)

By assumption, there exist global c1, c2 > 0 such that
c1I ⪰M ⪰ c2I . Fs aggregates smooth, non-contact forces
(e.g. potential, gyroscopic, and input forces as well as
Coriolis and centrifugal effects). For each i, JTi λi ∈ Rnv

is the net (generalized) force due to the ith contact. Ji =
[Jn,i;Jt,i] ∈ R3×nv is the contact Jacobian which maps
generalized velocities into Euclidean velocities in the ith
contact frame normal (Jn,i ∈ Rnv ) and tangential (Jt,i ∈
R2×nv ) directions. λi = [λn,i;λt,i] ∈ R3 are the contact-
frame normal forces λn,i ∈ R and frictional forces λt,i ∈
R2, which are typically dictated by two essential physical
laws:

• Normal complementarity: The signed distance
ϕ(q) ∈ Rm captures object geometry as inter-
body distances. Normal forces push bodies apart,
and neither penetration nor force-at-a-distance are
possible; that is, for each i,

Jn,i =
∂ϕi
∂q

Γ , 0 ≤ λn,i ⊥ ϕi(q) ≥ 0 . (12)

We denote the active and penetrating contacts at q as

IA(q) = {i ∈ I : ϕi(q) ≤ 0} , (13)
IP (q) = {i ∈ I : ϕi(q) < 0} . (14)

• Maximal dissipation: Friction dissipates as much
power (Jt,iv · λt,i) as possible. Coulomb friction
(Popova and Popov 2015) with coefficient µi in
particular obeys this property within the admissible set{

λt,i : ∥λt,i∥2 ≤ µiλn,i
}
. (15)

The corresponding set of generalized forces is the
friction cone

FC(q) =
∑

i∈IA(q)

{
Ji(q)

Tλi : ∥λt,i∥2 ≤ µiλn,i
}
.

The maximally-dissipative friction force and associ-
ated generalized force Fi opposes the sliding direction
Unit(Jt,iv) as much as possible:

λt,i ∈ −µiλn,iUnit(Jt,iv) , (16)

Fi(q,v,λn,i) =
(
JTn,i − µiJ

T
t,iUnit(Jt,iv)

)
λn,i .

(17)

We note in particular the identity

FC (q) =
∑

i∈IA(q)

Fi(q, 0,R+) . (18)

A common variant of this model is the linearized
Coulomb model, in which the admissible set is
replaced with {λt,i ∈ µiλn,iconv ({d1, . . . ,dk})}
for k ∈ N unit-length vectors D = [d1, . . . ,dk] ∈
R2×k, leading to similar definitions of forces and a
linearized friction cone:

UnitD(r) = conv

(
argmax

di
di · r

)
, (19)

λt,i ∈ −µiλn,iUnitD(Jt,iv) , (20)

FD,i(q,v,λn,i) =
(
JTn,i − µiJ

T
t,iUnitD(Jt,iv)

)
λn,i ,

(21)

LFC (q) =
∑

i∈IA(q)

FD,i(q, 0,R+) . (22)

The identity UnitD(r) ⊆ UnitD(0) ⊆ Unit(0) leads
to∑

i∈IA(q) FD,i(q,v,R+) ⊆ LFC (q) ⊆ FC (q) .

(23)

ϕ(q) is Lipschitz and continuously differentiable. We also
assume that for all active, non-penetraing contacts, there
exists a generalized velocity for which the contact is
separating:

Assumption 1. ∀i ∈ I, ϕi(q) = 0 =⇒ Jn,i(q) ̸= 0.

Jn,i is bounded and continuous by the properties of ϕ
and Γ, while Jt,i has the same properties by assumption.
These properties can be guaranteed, for instance, for
piecewise-smooth bodies with bounded curvature. We note
that because ϕ is continuous, IA(q) and I \ IP (q) are
u.s.c. in q. From these functions we also define QA =
{q : IA(q) ̸= ∅}, the configurations with active contact, and
QP = {q : IP (q) ̸= ∅}, the interpenetrating configurations.

We will often see that various theoretical guarantees
(seminally including existence of solutions in continuous and
discrete time (Stewart 2000)) for such systems depend on a
pointedness assumption on the friction cone FC:

Assumption 2. Pointed Friction Cone. At any configura-
tion q, the friction cone FC(q) is pointed in some direction
d(q):

∀F ∈ FC(q), d(q) · F ≥ ∥F ∥2 . (24)

Therefore, there also exists p(q) such that for any λ with
each λt,i in the Coulomb admissible set (15),∥∥JTλ∥∥

2
≥ p(q) ∥λ∥2 . (25)
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Finally, we define the following notation:

Jn =

Jn,1...
Jn,m

 , Jt =

Jt,1...
Jt,m

 , J =

[
Jn
Jt

]
, (26)

λn =

λn,1...
λn,m

 , λt =

λt,1...
λt,m

 , λ =

[
λn
λt

]
, (27)

C(q) = {v ∈ Rnv : ∃i ∈ IA(q), Jn,iv < 0} , (28)
S(q) = {v ∈ Rnv : ∀i ∈ IA(q), Jn,iv > 0} . (29)

C(q) is the set of colliding velocities, for which an active
contact is moving towards penetration and must cause an
impact. S(q) is the set of separating velocities, where no
impact occurs as all contacting surfaces are moving away
from each other. While C(q) and S(q) are disjoint, there
may be some velocities in neither set; these cases may
generate impacts, as in Painlevé’s Paradox (Stewart 2000),
discussed in Section 2.2.3. By Assumption 1, when q is non-
penetrating, S(q) = int (C(q)c) and C(q) = int (S(q)c).

2.2.2 Instantaneous, Inelastic Impact Laws (10), (12),
and (16) provide only a partial solution to initial value
problems (IVPs). Bodies can collide or come into contact
with non-zero velocity (ϕi(q(t)) = 0 and d

dtϕi(q(t)) < 0);
penetration therefore must be avoided via an impact or
instantaneous velocity jump from v− to v+ obeying

M(q)(v+(t)− v−(t)) =
∑
i∈IA(q) Ji(q)

TΛi, (30)

arising from instantaneous contact impulses Λi. As dv
dt does

not exist, an alternative formulation to ODEs equations in
time is required to capture this behavior.

Several models select Λ via an impulsive analog to
Coulomb’s friction law (Anitescu and Potra 1997; Glocker
and Pfeiffer 1995; Routh 1891), with additional constraints
pertaining to the elasticity of the impact. We focus discussion
and our own modeling efforts on inelastic collisions,
which are well defined in the single-impact case via the
constraint Jn,iv+ = 0. Each discussed model makes its own
generalization of this concept to simultaneous impacts, and
there is in general no single accepted rule (Stewart 2000).
we note that many of the models here have extensions to
partially- and fully-elastic collisions, with much effort going
to preserving energy dissipation in these cases (Stronge
1990; Mirtich 1996; Anitescu and Potra 1997; Liu et al.
2008a,b; Glocker 2012, 2013; Nguyen and Brogliato 2018).

In this paper, we will consider and combine concepts from
two families of impact models: algebraic and differential.
In this section, we discuss how different methods makes
their own nuanced translations of the complementarity
and maximal dissipation laws from sustained contact to
impacts, resulting in distinct theoretical and computational
characteristics.

Algebraic methods calculate Λi as the solution to a finite-
dimensional system of algebraic equations (Anitescu and
Potra 1997; Hurmuzlu and Marghitu 1994; Glocker and
Pfeiffer 1995; Chatterjee and Ruina 1998), which relate the
pre- and post-impact velocities to the impact’s underlying
impulses. Such systems of equations can be approximately
computed via numerical optimization.

In some of these models, all impacts are resolved
simultaneously. For inelastic impacts, Glocker and Pfeiffer
(1995) and Anitescu and Potra (1997) for instance solve
for an impulse Λ which both prevents penetration and
(approximately) satisfies linearized Coulomb friction at the
post-impact velocity v+:

find v+; {Λi : i ∈ IA} , (31a)
s.t. impulse/impact balance (30) , (31b)

0 ≤ Λn,i ⊥ Jn,iv
+ ≥ 0 , (31c)

Λt,i ∈ −µiΛn,iUnitD(Jt,iv
+) . (31d)

A critical feature of the algebraic formulation (31) is the
use of linearized Coulomb friction, which allows it to be
cast as a solvable, copositive LCP (see Proposition 2). We
refer the reader to Stewart and Trinkle (1996) for a full
description, but provide a short summary below. Letting
λt,i = DλD,i and JD,i = DTJt,i, (31d) can be captured as
as the complementarity constraints

0 ≤ λD,i ⊥ JD,i(q)v
+ + 1γi ≥ 0 , (32)

0 ≤ γi ⊥ µiλn,i − 1TλD,i ≥ 0 . (33)

For convenience, we define the lumped terms

λD =

λD,1...
λD,m

 , JD =

JD,1...
JD,m

 , (34)

λ̄ =

[
λn
λD

]
, J̄ =

[
Jn
JD

]
. (35)

This casting of multiple, simultaneous impacts as a single
LCP is a significant computational advantage, as only
one, solvable numerical program must be instantiated
to calculate the post-impact velocity. Furthermore, it is
know that solutions to this LCP always dissipate kinetic
energy (Anitescu and Potra 1997). However, the constraints
embedded in this problem are often violated in real systems
with multiple contacts, in particular the so-called velocity-
based complementarity (31c) formulation of inelasticity
(Chatterjee 1999).

An alternative algebraic view of simultaneous impacts that
does not require the same velocity-based complementarity
constraints is to resolve multi-impact as a sequence of
individual impacts, as in Ivanov (1995); Smith et al. (2012);
Seghete and Murphey (2014); and many other models. To
summarize this technique:

1. Pick a single active contact i ∈ IA(q).
2. Resolve a single impact at i with some impulse Λi,

and increment v ← v +M−1JTi Λi.
3. Terminate and take v+ = v if it is non-colliding (v ̸∈
C(q)); otherwise, return to step 1.

Various methods differ in their choice of contact ordering
as well as single-impact resolution, resulting in distinctly
different final outcomes to the same initial conditions. Some
such methods are only able to guarantee that the process
terminates under significant assumptions, e.g. two or fewer
contacts (Seghete and Murphey 2014). Additionally, such
methods by design are unable to directly represent partially-
concurrent impacts that occur in real-world systems. In
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Section 5.4, sequences of single impacts resolved using (31)
will serve as a point of comparison for a new collision law
that we develop. As each individual impact dissipates kinetic
energy, this sequential application will always predict a post-
impact velocity with non-increased energy, provided that the
termination condition is reached.

In Figure 1 above, we provide a simple example which
illustrates both how simultaneous vs. sequential resolution,
as well as different sequential orderings, can result in
distinct outcomes even for an extremely simple example.
We consider an instance of the classically-studied “rocking
block” system (Housner 1963; Zhang and Makris 2001;
Lygeros et al. 2003; Yilmaz et al. 2009). A slender
rectangular block with velocity v+ is dropped onto flat
ground, colliding at two corners A,B. It is assumed that
the constituent materials generate inelastic impacts (zero
coefficient of restitution), such that any concurrent collisions
result in non-separating post-impact velocities. Affixing
(31) as the model for impacts and only changing between
simultaneous and sequential resolution, we find that 3
different outcomes might be predicted, corresponding to rest
or rolling off of either corner.

As opposed to algebraic models, differential impact
models consider continuous evolution of velocity from pre-
to post-impact velocity, in which the total derivative of v
satisfies laws of frictional contact in some form. In the
context of rigid contact models, this derivative dv

ds = v̇(s)
is with respect to a variable of integration s which does
not correspond to time, but rather measures the impulse
accumulated over an instantaneous collision. At least in a
limited capacity, such methods do directly represent the time-
dependence and continual evolution of real-world object
velocities during impact, which in Section 3 will allow
us to represent partially-concurrent impacts resolving at
arbitrary relative rates. This fidelity however necessitates
computationally expensive simulation of non-smooth or
constrained differential equations to resolve impacts, and
thus such methods have not been a focus of modern, efficient
simulation (Castro et al. 2020; Coumans 2015).

We will now describe one of the oldest differential models
for a single impact (Routh 1891), which we will later extend
to the simultaneous impact case. This method was first
presented by Routh in 2 dimensions, and extended to 3
dimensions later by Keller (1986) (Wang and Mason 1992).
For a single contact IA(q) = {i}, Routh (1891) proposed
a method which satisfies Coulomb friction differentially. To
summarize this technique,

1. Increase the normal impulse Λn,i with slope λn,i = 1.
2. Increment the tangential impulse with slope λt,i

satisfying Coulomb friction (16) for the mid-impact
velocity v̄ = v +M−1JTi Λi.

3. Stop at the inelastic condition Jn,iv̄ = 0; set v+ = v̄.

As observed in Posa et al. (2016), this process is equivalent
to the DI

dv

ds
∈M(q)−1Fi(q,v(s), 1) . (36)

Note that for a frictionless contact (µ = 0), this simplifies to
Mv̇ = JTn,i. A diagram depicting the resolution of a planar
impact with this method is shown in Figure 3. Solutions may
transition from sliding to sticking, and the direction of slip

Figure 3. Velocity through an impact resolved by Routh’s
method (adapted from Posa et al. (2016)). The extreme rays of
the friction cone are shown as solid red arrows. The contact
begins in a sliding regime. When v, shown in the yellow dotted
line, intersects Jtv = 0, the contact transitions to sticking and
the impact terminates when Jnv = 0.

may even reverse. While the path is piecewise linear in the
planar case, this is not true in three dimensions (Keller 1986;
Wang and Mason 1992). We additionally note that while
(36) predicts “forces” even when v is separating (Jn,iv >
0), Routh’s method is by definition only used on velocity
trajectories starting with Jn,iv ≤ 0 until the first moment
that that Jn,iv = 0, and thus inelasticity is preserved.

Implicit in Routh’s method is an assumption that the
terminal condition in step 3) will eventually be reached;
if it is possible to get “stuck” with Jn,iv < 0 forever,
then Routh’s method would be ill-defined and not predict a
post impact state. This does not happen in the frictionless
case, as Jn,iv has constant positive derivative Jn,iv̇ =

∥Jn,i∥2M−1 . With more careful treatment capturing kinetic
energy dissipation, a similar result can be shown for the
frictional case:

Lemma 2. Single Impact Termination (Appendix B.2). Let
q ̸∈ QP be a non-penetrating configuration, and i ∈ IA(q)
be an active contact. Then there exists κ(q) > 0 such that for
any solution v(s) : [0, ∥v(0)∥2 κ(q)]→ Rnv of the single
frictional contact system (36), v(s) exits the impact at some
s∗ ≤ ∥v(0)∥2 κ(q); i.e., Jn,iv(s∗) ≥ 0.

The implication of Lemma 2 is that a priori, one can
determine an s > 0 proportional to the pre-impact speed
∥v∥2 (with constant of proportionality κ) such that any
solution to the DI (36) on [0, s] can be used to construct
the post-impact velocity v+. We will see, however, that
the extension of this methodology to multiple concurrent
impacts is non-trivial, and that physical systems associated
with these models often exhibit non-uniqueness.

We note that Routh’s method has previously be extended
to the multiple impact case by Liu, Zhao and Brogliato
(2008a,b), often called the LZB model (Nguyen and
Brogliato 2018). In this framework, relative rates of impulse
accrual are set via an energy-based framework, which takes
as parameterization the stiffnesses of each contact involved.
These models have the capability to capture Coulumb
friction as well as partially-elastic collisions via a bi-stiffness
modeling approach. As we instead develop a model which
allows for simultaneous, inelastic impacts to resolve at
arbitrary relative rates when stiffnesses are unknown, the
special case of perfectly-inelastic LZB impacts with any
material stiffnesses will be exactly captured by our model.

2.2.3 Initial value problems through impact Any com-
plete solution to continuous-time IVP’s for rigid bodies

Prepared using sagej.cls



Halm and Posa 9

undergoing impacts must somehow combine the sustained-
contact and instantaneous impact models described above.
Several formalisms have been developed to this end.
Hybrid systems modeling combines ODE’s with discrete
jumps which are triggered when the continuous-time state
reaches certain algebraic conditions; in the context of rigid-
body models, such events represent instantaneous impacts
(Brogliato et al. 2002; Ames et al. 2006; Johnson et al. 2016;
Burden et al. 2016). Such methods are commonly simu-
lated in an event-driven scheme, in which ODE numerical
integration is interrupted when impact conditions are met,
and instantaneous impulses are resolved (Ames et al. 2006;
Johnson et al. 2016). Building on the early ideas of Lecornu
(1905), Moreau (1977) instead developed an alternative mea-
sure differential inclusion (MDI) formalism which permits
non-zero impulses in FC(q) to occur over an infinitesimal
time period dt. Similar to differential inclusions, MDI’s are
rigorously defined in the language of Lebesgue calculus and
measure theory. These models are often simulated with a
time-stepping scheme (Stewart and Trinkle 1996), in which
net impulses combining continuous forces and and impacts
over a non-zero time period ∆t are determined.

Much theoretical work has been concerned with the
consistency of such models (Stewart 1998, 2000; Brogliato
et al. 2002; Ames et al. 2006; Monteiro Marques 2013) or
the existence of solutions to IVP’s for every valid initial
condition. Two types of pathological scenarios to this end
have received much attention: Painlevé (1895) and Zeno
(Ames et al. 2006) behaviors. The model which we develop
is capable of producing solutions through each of these
scenarios; we accordingly now describe these behaviors and
discuss related results in other modeling frameworks.

Early hybrid-system formulations trigger impact events if
and only if a collision occurs (Brogliato et al. 2002; Ames
et al. 2006). However, since at least Jellet (1872) and later
detailed by Painlevé (1895), this rule lead to non-existence
of solutions for sustained contact when the continuous-time
manipulator equations (10) are combined with Coulomb
friction1. Although controversial, the prevailing treatment of
these scenarios is to allow for impacts without collisions
(IWC’s, also called tangential collisions) when non-existence
is encountered (Génot and Brogliato 1999; Stewart 2000;
Brogliato et al. 2002; Zhao et al. 2007). These behaviors
are characterized by an instantaneous impact of the form
(30) despite the fact that no bodies are colliding (i.e.
Jn,iv

− = 0 rather than Jn,iv
− < 0). This can be modeled

in hybrid systems for instance by adding additional events to
trigger IWC’s (Génot and Brogliato 1999; Brogliato et al.
2002). Stewart (1998) seminally proved and demonstrated
on a classic 2D rod example that Moreau’s MDI naturally
generates IWC behaviors, and accordingly IVP’s can be
solved with this model. The associated proof of existence,
derived by constructing a solution as the limit of discrete
time-stepping simulations as the time-step duration ∆t→ 0,
is a preeminent consistency proof for MDI’s and applies
broadly to single-contact systems. It is not known if such a
method works completely for multiple contacts, in particular
if such limits correctly comply with inelasticity constraints
and Coulomb friction; a partial characterization of such
limits is available assuming that the friction cone is pointed
(Stewart 1998). Zhao et al. (2007) demonstrated that Routh’s

method can be used to resolve a 3-D analogue of this rod
example, with an IWC that results in sticking contact. Our
model, also derived from Routh’s model and equivalent to
it in the one-contact case, accordingly produces solutions to
such scenarios with IWC’s.

Another pathology of particular interest for hybrid
systems, Zeno behavior (Ames et al. 2006), occurs when
models lead to an infinite sequence of impact events within
a finite duration of time (i.e. impact i happens at ti with
limi→∞ ti <∞). Such behavior presents both a practical
simulation challenge as well as a theoretical challenge,
as numerical solvers would have to compute solutions
to infinite impact resolutions to simulate a finite time
duration. A familiar example of Zeno behavior is a ball
bouncing on flat ground with partially elastic collisions
(Acary and Brogliato 2008). Such phenomena can occur
even with completely inelastic impacts, such as with a
rocking block which wobbles from corner to corner, losing
a fraction of momentum each time in a similar fashion to
the bouncing ball; a detailed analysis is available in Lygeros
et al. (2003). Johnson et al. (2016) model this example
by introducing a “pseudo-impulse” behavior that precludes
Zeno phenomena, which modifies the wobbling behavior to
predict sticking after finitely-many events. Ames et al. (2006)
instead proposes a “completed” hybrid system which extends
solutions past the Zeno point by maintaining sticking contact
at each contact involved in the Zeno phenomenon. Neither
method captures a broad array of frictional behaviors, with
the former capturing only sticking friction on massless
limbs, and the latter entirely frictionless. In Section 4.3, we
reproduce a version of this example to illustrate our model’s
predictions in the presence of Zeno behavior.

In Section 4, we derive a differential inclusion model
(Equation (53)) which generally applies to multi-body, mul-
tiple contact systems; specifies impacts to be inelastic; and
guarantees existence of solutions (Theorems 4 and 5) under
similar assumptions as Stewart (1998) (see Assumption 2).
The theoretical guarantees for our model are more general
than those for the MDI presented in Stewart (1998), in that
Coulomb friction and inelasticity are well-characterized even
in the multiple contacts case. While DI’s have long been used
in rigid-body dynamics (Leine and Van de Wouw 2008), this
paper and concurrent work (Nurkanović et al. 2021b,a) are
the first to solve IVPs through impacts via adding time as
a state. This work is the first DI to capture both inelasticity
and friction in impact. We additionally combine these ideas
with the LCP-based structure of time-stepping simulation
Stewart and Trinkle (1996) to develop our own discrete
impact integrator in Section 5.

3 Simultaneous Impact Model
Figure 1 demonstrates that simultaneous collisions can excite
quantitative and qualitative disagreement between common
impact models’ predictions, with even the post-impact
contact mode differing. This discrepancy occurs even when
the same physical parameters such as mass and coefficients
of friction and restitution are provided to these models.
However, making two points collide at exactly the same time
is unlikely in real life. Nonetheless, as shown on a real-
world system by Chatterjee (1999), even a single collision
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(a) Initial condition
(pre-impact)

(b) Simultaneous algebraic impacts
(post-impact)

Figure 4. (a) A compass gait walker, consisting of two legs attached with a hinge joint at the hip, takes a step with hip velocity v and
excites non-uniqueness in the model of Anitescu and Potra (1997). (b) A single impact at that the leading foot (point A) can cause
the trailing foot (point B) to lift off the ground. Alternatively, impacts at both feet can cause the trailing foot to slide or come to rest.

(a) Initial condition
(pre-impact)

(b) Simultaneous algebraic impact
(post-impact)

(c) B-then-A sequential algebraic impact
(mid- then post-impact)

Figure 5. Subtly different solutions for a box sliding into a wall with velocity v (a) are shown. (b) When a simultaneous impact is
generated via Anitescu and Potra (1997), the box comes to rest. (c) When point B has an impact before point A, point A instead
continues sliding, while point B lifts off the wall.

can result in multiple outcomes depending on the ordering
of impulse accumulation between contacts. In this section,
we first offer two additional examples of this type—one
related to legged locomotion and the other to manipulation;
further details on the models and experiments can be found
in Appendix A and Section 5.4. We then describe and
characterize model that captures the non-uniqueness due to
impulse ordering by extending Routh’s method to multiple
contacts with arbitrary relative rates.

3.1 Motivating Examples
A ubiquitous model of bipedal walking is the compass gait
walker, which consists of two rods (legs) connected with a
revolute joint at the hip. Bipedal walking involves stepping
with a leading foot while a trailing foot rests on the ground,
as shown in Figure 4. As observed by Remy (2017), if a wide
step (156◦ between the legs) is taken by the model, then the
simultaneous method of Anitescu and Potra (1997) results in
three categorically different solutions. In one case, there is
only an impact at the leading foot, and the trailing foot lifts
off the ground. In two others, impacts at both feet can result
in the trailing foot sliding or coming to rest.

In the second example, motivated by non-prehensile
pushing of an object, we consider a box which slides on
one corner on a floor before impacting a wall (Figure 5).
If a single impact occurs between the box and the wall, it
will trigger a second impact against the floor. Due to the
position of the center of mass of the box, both impacts add
counter-clockwise rotational momentum to the box, causing
the contact with the wall to lift off. Alternatively, if both of
these impacts are resolved simultaneously, the box comes to
rest under sufficient friction.

3.2 Simultaneous Impact Model Construction
We have previously demonstrated that some simultaneous
impact models are sensitive to impulse ordering. As
predicting this ordering demands precise knowledge of initial

conditions and material properties beyond the fidelity of
robotic sensors and simplified rigid-body models, we instead
seek to predict the set of outcomes that result from arbitrary
impulse orders.

The foundational concept of this model is that while
Routh’s method models impacts as instantaneous (Routh
1891), the variable of integration s provides a natural way
to specify the relative rates of impulse accural between
concurrent impacts. A similar model, without theoretical
results or a detailed understanding, was proposed by Posa
et al. (2016) where it proved useful for stability analysis
of robots undergoing simultaneous impact. We consider the
following extension to Routh’s method which at any given
instant during the resolution process, the impacts are allowed
to concurrently resolve at any relative rate:

1. Increase Λn,i on each non-separating (Jn,iv ≤ 0)
active contact i ∈ IA(q) at rate λn,i ≥ 0 such that

∑
i

λn,i = ∥λn∥1 = 1 . (37)

2. Increment each tangential impulse with slope λt,i sat-
isfying Coulomb friction (16) at v̄ = v +M−1JTΛ.

3. Terminate when all Jn,iv̄ ≥ 0, i.e. v̄ ̸∈ C(q). v+ = v̄.

We can understand the constraint (37) on λ as choosing a net
force that comes from a convex combination of the forces
that Routh’s method might select for any of the individual
contacts i ∈ IA(q). In particular, we note that step 1 restricts
the normal forces to be dissipative, i.e.

λn,i · Jn,iv ≤ 0 . (38)
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As before, we can capture this behavior as a DI:

v̇ ∈ Dq(v) = M−1conv

 ⋃
i∈Iq(v)

Fi(q,v, 1)

 ,

(39)

Iq(v) =

{
{i ∈ IA(q) : Jn,iv ≤ 0} v ∈ clC(q) ,
argmini∈IA(q) Jn,iv otherwise .

(40)

While non-physical, the behavior outside of clC(q) has
been chosen to preserve upper semi-continuity, and is not
encountered when resolving impacts due to the termination
condition v ̸∈ C(q). The construction of (39) is similar to
that of the single contact system (36); it is furthermore
equivalent to (36) and therefore Routh’s method when only
one contact is active.

3.3 Properties
We now detail properties of our simultaneous impact system
that are useful for analyzing its solution set.

3.3.1 Existence and Closure For any configuration q ∈
QA, Dq(v) is non-empty, closed, uniformly bounded, and
convex. Therefore by Proposition 1, we obtain the following:

Theorem 1. Existence of Solutions (Appendix C.1). For all
configurations q ∈ QA, velocities v0, and compact intervals
[a, b], SOL (Dq, [a, b]) and IVP (Dq,v0, [a, b]) are non-
empty and closed under uniform convergence.

3.3.2 Energy Dissipation An essential behavior of inelas-
tic impacts reflected in our model is that they dissipate
kinetic energy. By construction of (39), the kinetic energy
K(q,v(s)) is continually non-increasing during impact (i.e.
when v(s) ∈ clC(q)) as normal forces are constrained to be
dissipative (38) and frictional forces are naturally, maximally
dissipative:

Theorem 2. Dissipation (Appendix C.3). Let q ∈ QA, and
let [a, b] be a compact interval. If v(s) ∈ SOL (Dq, [a, b])
and v([a, b]) ⊆ clC(q), then ∥v(s)∥M is non-increasing.

The proof of this Theorem involves the calculation of the
total derivative of K as

K̇ = vTJTλ . (41)

One might also wonder if K strictly decreases during
impact; certainly, this would not be the case if v(s)
could stay constant. Therefore, solutions to the differential
inclusion must not be permitted to select v̇ = 0, i.e., 0 ̸∈
Dq(v

∗) for every v∗ ∈ clC(q). As Dq(v) ⊆M−1FC(q),
this property is guaranteed by the pointed friction cone
assumption (Assumption 2). Assumption 2 covers most
situations in robotics—including grasping and locomotion—
with the notable exception being jamming between
immovable surfaces. We note that this assumption does
not preclude Painlevé-type scenarios necessitating impacts
without collision (Stewart 1998). Furthermore, it guarantees
strict dissipation during the entirety of the impact process:

Corollary 1. Strict Dissipation (Appendix C.5). Let q ∈
QA \ QP and [a, b] be a compact interval. If v(s) ∈
SOL (Dq, [a, b]) and v([a, b]) ⊆ clC(q), ∥v(s)∥M is strictly
decreasing.

3.3.3 Linear Impact Termination While solutions to the
underlying DI are guaranteed to exist in the simultaneous
impact model, we have yet to prove that they terminate the
impact process, as in Routh’s single-contact method. We now
discuss a similar linear-duration condition:

Proposition 4. Finite Termination. For any configuration
q ∈ QA \ QP and pre-impact velocity v(0), the DI (39)
resolves the impact within a duration proportional to
∥v(0)∥M .

We will prove this claim as a consequence of kinetic
energy decreasing fast enough to force termination—a
significant expansion of Corollary 1. Even though K always
decreases, Corollary 1 does not forbid K̇ from getting
arbitrarily close to zero. For example, consider a 2 DoF
system with 2 frictionless, axis-aligned contacts (M =
Jn = I2). For any ϵ > 0, we can pick a velocity and impulse
increment which satisfy K̇ > −ϵ:

vϵ =
−1− ϵ

2

[
1
ϵ

]
∈ C(q) , JTn

[
ϵ
1

]
1

1 + ϵ
∈ Dq(vϵ) .

(42)

However as we take ϵ→ 0, vϵ converges to a non-impacting
velocity; thus, K̇ only remains small for a short duration
before impact termination. It remains possible that the
aggregate dissipation over an interval of nonzero length can
be bounded away from zero. We define this quality as α(s)-
dissipativity:

Definition 6. α(s)-dissipativity. For a positive definite
function α(s) : clR+ → [0, 1], the system v̇ ∈ Dq(v) is
said to be α(s)-dissipative if for all s > 0, for all v ∈
SOL (Dq, [0, s]) s.t. v ([0, s]) ⊆ clC(q), if ∥v(0)∥M = 1,
∥v(s)∥M ≤ 1− α(s).

α(s)-dissipativity is a sufficient condition for linear-
duration impact termination (Proposition 4) from any initial
velocity, and the particular form of α(s) can be used to bound
the linear rate:

Lemma 3. Termination via Aggregate Dissipation
(Appendix C.6). Let q ∈ QA and let v̇ ∈ Dq(v) be
αq(s)-dissipative. Then if v(s) ∈ SOL (Dq, [0, s

∗]) and
v([0, s∗]) ⊆ clC(q),

s∗ ≤
(
inf
s>0

s

αq(s)

)
∥v(0)∥M .

Under Assumption 2, v̇ ∈ Dq(v) exhibits α(s)-
dissipativity for every q ∈ QA \ QP , a direct proof of
Proposition 4:

Theorem 3. Aggregate Dissipation (Appendix C.7). For
every configuration q ∈ QA \ QP there exists an αq(s) such
that v̇ ∈ Dq(v) is αq(s)-dissipative.

The u.s.c. structure of Dq has the additional implication
that nearby configurations obey a uniform dissipation rate:

Corollary 2. Uniform Aggregate Dissipation (Appendix
C.8). For compact Q ⊆ QA \ QP , there exists a single
αQ(s) such that v̇ ∈ Dq(v) is αQ(s)-dissipative for all q ∈
Q.

Prepared using sagej.cls



12 Journal Title XX(X)

4 Continuous-Time Dynamics Model
We now describe how the simultaneous impact DI can be
embedded into a full, continuous-time dynamics model. As
the impact model integrates over a variable other than time,
rather than switching between integration spaces, we define
time advancement t as a variable in an augmented state x̄(s):

x̄(s) =

[
x(s)
t(s)

]
=

q(s)v(s)
t(s)

 ∈ Rnq+nv+1 . (43)

For any state x̄(s) we can extract the relevant configuration,
velocity, and time as by selecting the appropriate indices, e.g.
as q(x̄(s)). For notational compactness, whenever clear, we
will write this construction in the shortened form q(s). We
will also frequently make use of the sets

X̄A = {x̄ : q(x̄) ∈ QA} , X̄P = {x̄ : q(x̄) ∈ QP } .
(44)

4.1 Model Construction
We now construct the dynamics model as a differential
inclusion d

ds x̄(s) ∈ D(x̄(s)). Under this formulation, the
velocity v(s) is continuous with respect to s, but can be
discontinuous with respect to time t(s) in the sense that v
can evolve while t is held constant. To make the system
autonomous, we represent the external forces u as set-
valued, time-varying full-state feedback U(x̄). In order for
the system to be well-behaved, we assume that the convex-
compact u.s.c. properties exploited in the impact dynamics
carry over into the continuous time case:

Assumption 3. Fs(x,U(x̄)) is convex-compact u.s.c. in x̄.

We identify three behaviors that ˙̄x ∈ D(x̄) should obey:

4.1.1 No Contact Forces Whenever all active contacts
have separating velocities (and when no contacts are active),
i.e.

x̄(s) ∈ X̄S = {x̄ : v(x̄) ∈ S(q(x̄))} , (45)

x̄(s) should evolve according to (10) with no contact forces
(λ = 0), in the sense that

M(q)dv ∈ Fs (x,U(x̄)) ds , (46a)
dq = Γ(q)vds , (46b)
ds = dt . (46c)

These equations can be packaged into DI form as

˙̄x ∈ DS(x̄) =

 Γv
M−1Fs(x,U(x̄))

1

 . (47)

4.1.2 Collision Whenever v(s) is colliding over [a, b], i.e.

x̄([a, b]) ⊆ X̄C = {x̄ : v(x̄) ∈ C(q(x̄))} , (48)

t and q should be constant, and v should obey our
simultaneous impact model:

˙̄x ∈ DC(x̄) =

 0
Dq(v)

0

 . (49)

4.1.3 Sustained Contact The model must capture contin-
uous state evolution with respect to time under sustained
contact, as in (10). Additionally, proving that our model
is well-behaved requires that D(x̄(s)) be convex. Conve-
niently, sustained contact can be represented as a convex
combination of contactless and collision dynamics:

˙̄x(s) ∈ conv (DS(x̄) ∪DC(x̄)) . (50)

To demonstrate this property, we consider that (10) dictates
that the state q, v under sustained contact obeys

dq = Γvdt , Mdv ∈
(
JTλ + Fs

)
dt , (51)

for finite, non-zero contact forces λ = [λn; λt]. Letting
λ̃ = λ

∥λn∥1
, our impact model would allow Mdv ∈ JT λ̃ds

at q,v. Thus selecting ṫ = 1
1+∥λn∥1

∈ (0, 1), we rewrite (51)
as

dq = ((1− ṫ)0+ ṫΓv)ds , (52a)

Mdv ∈
(
(1− ṫ)JT λ̃ + ṫFs(x,U(x̄))

)
ds , (52b)

dt = ((1− ṫ)0 + ṫ1)ds . (52c)

The convex combination DI (50) can then generate sustained
contact with this choice of ṫ. As a result, t(s) neither evolves
directly with s nor remains constant; effectively, solutions
of (50) slow down time by a factor of (1 + ∥λn∥1). We
will show that this factor is bounded on average under mild
assumptions.

We now combine these three modes into a single
differential inclusion. While we might easily choose the
contactless mode when x̄ ∈ X̄S , switching between impact
and sustained contact when the velocity is non-separating
is less obvious, particularly as Painlevé’s Paradox (see
Stewart (2000) for details) might require impact dynamics
even without a collision (IWC’s). Furthermore, almost
all selections of ˙̄x from conv (DS(x̄) ∪DC(x̄)) will
correspond to non-physical behavior; a particular ˙̄x must
be chosen to maintain contact by exactly counteracting
forces such that inter-body distance is identically zero during
contact. In the subsequent section, we will prove that each of
these behaviors correctly emerges in the following full DI
model:

˙̄x ∈ D(x̄) =


DS(x̄) x̄ ∈ X̄S ,

DC(x̄) x̄ ∈ int(X̄C) ,

conv (DS(x̄) ∪DC(x̄)) otherwise .
(53)

By including DC(x̄) in the right hand side whenever
x̄ is not separating, (53) by construction allows IWC’s
to occur. We will show that in this model, ϕ(q) = 0
is effectively a barrier: solutions beginning at a non-
penetrating configuration are forced to never penetrate. Thus,
under proven existence of solutions, the model will switch
between sustained contact and impacts (possibly without
collision) as necessary.

4.2 Properties
4.2.1 Existence and Closure As we previously reviewed,
existence guarantees for continuous-time evolution through
impact have thus far been severely limited. We now show
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that our philosophy of including a wide set of behaviors
leads to existence of solutions via Proposition 1, and the only
additional assumptions required are that energy and inputs
are bounded (Assumptions 4 and 5). The continuous-time
DI (53) directly exhibits many of the properties required
for Proposition 1. B its construction, at any x̄, D(x̄) is
non-empty, compact, and convex. We will additionally see
that it is u.s.c. in our proof of Theorem 4. However, as
Coriolis components of Fs can grow quadratically, D is
often not uniformly bounded; thus Proposition 1 cannot be
directly used to prove existence of solutions. However, nearly
identical properties of IVP’s can still be established in the
following manner. Suppose first that smooth forces can only
input power at a bounded rate:

Assumption 4. ∃c > 0, v · Fs(x,U(x̄)) ≤ c ∥v∥M .

This condition is widely satisfied by many robotic
systems, including those with globally bounded controllers
and potential gradients (such as gravity). Assumption 4
implies that x̄ cannot diverge to infinity over a finite horizon.
Furthermore, we will assume that if x̄ is bounded, ˙̄x is
bounded as well:

Assumption 5. Over any compact set X̄ , Fs(x,U(x̄)) is
bounded, and therefore D(X̄ ) is compact.

Assumptions 4 and 5 imply that over a finite interval,
the solutions x̄(s) beginning from a compact set X̄ have
bounded derivative and therefore inherit the key existence,
closure, and u.s.c. structure of globally bounded DI’s:

Theorem 4. Existence of Solutions (Appendix D.1). Let
X̄ be a compact set and [a, b] be a compact interval. Then
IVP

(
D, X̄ , [a, b]

)
is compact and IVP (D, x̄, [a, b]) is non-

empty, closed, convex, and u.s.c. in x̄ over X̄ .

(a) 1D ball-ground system (b) 1D system phase portrait

Figure 6. (a) A simple, 1D system of a non-rotating ball falling
under gravity with configuration q = z = ϕ(z) is shown. (b) A
phase plot demonstrates why our DI prevents penetration; an
example trajectory is shown in white. Penetration corresponds
to crossing from the right-half- to the left-half-plane. This cannot
happen on the top half of the vertical axis (ϕ = 0, ż ≥ 0), as the
flow by definition points right. The cross also cannot happen on
the bottom half of the axis, as the quadrant III has
purely-vertical flow (dϕ = żdt = 0).

4.2.2 Non-Penetration While there is no structure in
D(x̄) that explicitly prevents penetration, ϕ(q) ≥ 0 is
naturally, implicitly preserved, as the DI requires ϕi(q(s)) to
be constant under penetration. A graphical argument is given
in Figure 6.

Lemma 4. Non-Penetration (Appendix D.2). Let x̄0 ̸∈ X̄P
be non-penetrating, let [a, b] be a compact interval, and
let x̄(s) ∈ IVP (D, x̄0, [a, b]). Then x̄(s) ̸∈ X̄P for all s ∈
[a, b].

4.2.3 Correct Mode Selection Our requirements dictate
that solutions x̄(s) containing only separating velocities
(x̄ ∈ X̄S ) should comply with contactless dynamics, and
likewise with impact dynamics when x̄(s) contains only
colliding velocities and non-penetrating configurations (x̄ ∈
X̄C \ X̄P ). The former is a trivial result of the construction of
D, but the latter is only similarly trivial when x̄ ∈ int(X̄C) \
X̄P . However, all states x̄ ⊆ X̄C have penetrating velocity,
and thus any contactless dynamics component in ˙̄x would
by definition cause x̄ to penetrate (i.e. enter X̄P ), allowing a
proof by contradiction:

Lemma 5. Impact Dynamics (Appendix D.3). Let [a, b]
be a compact interval and x̄(s) ∈ SOL (D, [a, b]) with
x̄([a, b]) ⊆ X̄C \ X̄P . Then x̄(s) ∈ SOL (DC , [a, b]).

4.2.4 Linear Time Advancement While Theorem 4
guarantees existence of solutions over any interval of s,
practical application often requires reasoning about solution
sets over intervals in time (over t(s)). To do so, solutions of
the model must significantly advance time—i.e. for any time
duration tf , all solutions of the model have t(sf )− t(0) >
tf for large enough sf . For small enough tf , this property
only requires the solution to exit the impact dynamics
regime, which by Theorem 3 is guaranteed to occur:

Theorem 5. Time Advancement (Appendix D.4). Let X̄ ⊆
X̄ cP be a compact set with no penetrating configurations.
Then there exists s∗(X̄ ), t∗(X̄ ) > 0, such that for all sf >
s∗(X̄ ), if x̄(s) ∈ IVP

(
D, X̄ , [0, sf ]

)
, then t(sf )− t(0) >

t∗(X̄ ).

If t(sf )− t(0) > t∗ is guaranteed over a set X̄ , then t(s)
must at least advance at rate t∗

s∗ over arbitrarily long horizons:

Corollary 3. Amortized Advancement (Appendix D.5).
Let X̄ ⊆ X̄ cP be a compact set with no penetrating
configurations, such that

X̄ (sf ) ={
x̄(·) ∈ IVP

(
D, X̄ , [0, sf ]

)
: x̄([0, sf ]) ⊆ X̄

}
, (54)

is non-empty for all sf > 0. Define s∗(X̄ ), t∗(X̄ ) > 0 as in
Theorem 5, and let

tf (sf ) = min
x̄(·)∈X̄ (sf )

t(x̄(sf ))− t(x̄(0)) . (55)

Then lim infsf→∞
tf (sf )
sf
≥ t∗(X̄ )

s∗(X̄ )
.

The results in this section guarantee that solutions to our
model (53) are well-behaved and exist over arbitrary time
horizons. These results came with a number of structural
assumptions on the involved terms in the manipulator
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equations, but ultimately provide a state-of-the-art result
on consistency with relatively few assumptions. We have
argued that Assumptions 1 and 3–5 are satisfied by the large
majority of robotic systems, while Assumption 2 is also
made in the preeminent solution existence results for MDI’s
(Stewart 1998). However, unlike the limited analysis of the
multiple contacts case for MDI’s, each solution of our DI is
by definition compliant with inelastic and Coulomb friction
constraints.

Under these assumptions, our model is able to make
predictions in pathological scenarios, including Painlevé and
Zeno behaviors. We have seen how our model complies
with Coulomb friction in the sustained contact case, and
thus can capture Painlevé’s ubiquitous example of a rod
sliding on a flat surface with high friction (Zhao et al.
2007; Stewart 1998). As our model is guaranteed to have a
solution over some time horizon for this system (Theorem 4),
the only possibility for this scenario is that our model
generates an impact without collision. As the resulting
behavior is equivalent to Routh’s (and therefore Darboux-
Keller’s) model for one contact, we refer the reader to (Zhao
et al. 2007) to learn more about the prediction of such models
in this example.

4.3 Zeno behavior example
As discussed in Section 2.2.3, even inelastic contact can
exhibit Zeno behavior. In the remainder of this section, both
to verify that our model (53), captures Zeno behavior and
to illustrate its solutions x̄(s), we will examine an instance
of the rocking block example of Lygeros et al. (2003),
where an alternate “wobbling” trajectory (Figure 7) of the
system described in Figure 1 and Section 5.4.1 is considered.
The simplified setting will allow us to explicitly construct
a solution x̄(s) which exhibits Zeno behavior as well as
transitions between sustained contact and impact modes. The
code used to generate the figures associated with the example
is available online2.

We consider a block of width w = 1m; height h = 2m;
coefficient of friction µ = 1 with the ground; and uniformly-
distributed mass m = 1kg, with moment of inertia I =
1
12 (w

2 + h2). The block has configuration q = [x; y; θ]
composed of its center of mass position and angle with the
horizontal. The block begins by rotating about the bottom left
corner on the ground (Figure 7a), with initial angular velocity
θ̇0 = 1 at time t = 0.

As µ > w
h , Coulomb friction can maintain stiction during

the rotating motion (Zhang and Makris 2001). The motion of
the block is thus fully determined by its orientation θ which
follows pendulum dynamics

(I +m ∥r∥22)
d2θ

dt2
= −mg ∥r∥2 cos(θ + α) , (56)

where g = 9.81 is the gravitational acceleration; α =
arctan

(
h
w

)
; and r = [rx(θ); ry(θ)] is the (world-frame

coordinates) vector from the corner to the center of mass.
By conservation of energy, this motion will reach an apex at

θ∗ = arcsin

(
(I +m ∥r∥22)θ̇20

2mg ∥r∥2
− sin(α)

)
− α ≈ .22 [rad] ,

(57)

at which the center of mass remains to the right of the contact
point. Thus, again by energy conservation the block pivots
back down to its initial position with angular velocity −θ̇0 at
some time t1, which by (56) and (57) is no more than Lθ̇0,
with

L =
2θ̇0

θ̈min
, (58)

θ̈min =
mg ∥r∥2 cos(θ∗ + α)

(I +m ∥r∥22)
. (59)

The velocity of the center of mass during this period is

d

dt

[
x
y

]
=

dθ

dt

[
−ry
rx

]
. (60)

The forces which maintain stiction can be determined
by applying the manipulator equations (10) along with the
constraint that the acceleration of the pivot point A is zero:

d

dt
JA(q)v = JA(q)

dv

dt
+

dJA
dt

v = 0 , (61)

dv

dt
= M−1

 0
−g
0

+ JTAλA

 . (62)

As JAM
−1JTA ≻ 0 is bounded away from 0 and the

constituent functions are smooth in time, λA is a smooth
function of time during this period. By examining (52), we
form a solution of the DI by reparameterization of time into
s with the relation ds = ṫ+ λn,A, and thus

s(t) =

∫ t

0

(1 + λn,A(τ))dτ . (63)

s(t) is smooth and strictly monotonically increasing with
slope≥ 1 and thus has differentiable, continuous inverse t(s)
with slope ṫ ∈ [0, 1]. Define

v(s) =
dθ

dt

−ry(θ(t(s)))rx(θ(t(s)))
1

 , (64)

q(s) = q(0) +

∫ s

0

ṫ(s)v(s̄)ds̄ . (65)

t(s) can thus be composed with q(s),v(s) to form a a
solution to the DI (53). Once the bottom right corner
(point B) comes back down to the ground, the DI can
admit a sticking impact at B starting integration value
s1 = s(t1) (Figures 7c and 7d). As Jt,Bv(s1) = 0, an
impact which sticks the entire time (and thus any impulse
accumulation rate λn,B ≥ µ|λt,B |) is allowed by the DI. We
can determine the total impulse ΛB which brings point B to
rest by solving the impact equation (30)

0 = JB
(
v(s1) +M−1JTBΛB

)
. (66)

We note that Λn,B is homogeneous in v(s1). We can thus
extend the DI solution from the pendulum phase through the
impact by freezing time and configuration and setting

v(s) = v(s1) +
s− s1
Λn,B

M−1JTBΛB , (67)
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(a) Initial condition (b) Wobble apex (c) Before first impact (d) After first impact

Figure 7. Half-cycle of rocking block Zeno trajectory, modified from Lygeros et al. (2003). (a) At the beginning of the half-cycle, the
block is pivoting about the bottom left corner (A), with angular velocity θ̇0 = 1. (b) Coulumb friction maintains sticking contact at A,
such that the block follows a pendulum trajectory, reaching an apex at θ∗ ≈ .22rad. (c) As the center of mass remained to the right
of the pivot point A, the block falls back down and by conservation of energy impacts the ground with angular velocity θ̇ = −θ̇0. (d)
By conservation of angular momentum, the impact reduces the angular velocity by a factor of 0.7. This end state is a mirror image
of the initial condition, except with the angular velocity reduced by a factor of 0.7. Therefore, another half cycle will return to the
initial condition, except with a modified angular velocity θ̇ = (0.7)2θ̇0.

Figure 8. Trajectory of the wobbling trajectory of the rocking block system. Left: The evolution of θ and θ̇ are shown in the
t(s)-domain. Beginning with t(s) ≈ 1, there are a series of vertical jumps in the plot of θ̇, corresponding to impacts; the trajectory
comes to rest after the Zeno accumulation point at t(s∗) ≈ 2.67. Center: in the s domain, the jumps in θ̇ are replaced with
time-frozen impact, where θ is held constant. Due to the time slowing factor described by Equation (52a), the s domain is
significantly longer, with the accumulation point occuring at s∗ ≈ 28.4. Right: the rates of accumulation for time (ṫ) and normal
impulse (λA,λB) are displayed. While the trajectory is absolutely continuous in s, these derivatives are only defined almost
everywhere, with discontinuous switches during the transitions between impact and sustained contact. These switches become
closer and closer together as s reaches s∗.

on s ∈ [s1, s1 +Λn,B ]. By conservation of angular momen-
tum, the post-impact velocity is pivoting about point B, in a
mirror image to the initial condition (Figure 7d), with angular
velocity

−θ̇0
I +m ∥r∥22 (− cos(2α))

I +m ∥r∥22
= −0.7θ̇0 . (68)

By symmetry, the block with then have a mirror-image
pendulum motion of time/integration duration no more than
0.7t1 and 0.7s1, causing another impact to again pivot
about point A with angular velocity (0.7)2θ0. Thus, we can
infinitely repeat this cycle to construct a solution to the
DI with the total time/integration duration reaching finite

accumulation points

s∗ ≤
∞∑
i=0

0.7i(s1 +Λn,B) , (69)

t(s∗) ≤
∞∑
i=0

0.7it(s1) . (70)

As v and q are continuous on [0, s∗), we can take the limit
as s→ s∗ to extend to the accumulation point as v(s∗) = 0
and q(s∗) is at rest with both points A and B on the ground.
This is clearly an equilibrium of the DI model, where normal
forces of 0.5mg at each contact point keep the block at
rest. Thus v(s) = 0, q(s) = q(s∗), t(s) = t(s∗) + s−s∗

1+mg is
a valid continuation of the solution past s∗. A visualization
of this trajectory is given in both t(s) and s domains in
Figure 8, with a supplemental figure displaying the relative
accumulations rates of t, ΛA, and ΛB with respect to s.
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5 Discrete Impact Integration
Section 3 provides a rigorous theoretical framework
guaranteeing existence of solutions to our impact model. In
this section, we now develop a computational framework that
allows this model to be applied to two key settings.

In the first, we consider embedding this model into an
“event-based” discrete-time simulation environment, such
as the one developed in Anitescu and Potra (1997), where
collisions are resolved instantaneously via an update function

v+ ← ImpactLaw(q,v) . (71)

Faithful capture of the non-uniqueness in our model means
that ImpactLaw(q,v) should be capable of returning a set
of different values for v+; simulation will be considered
as sampling stochastically from this set. Our second
application, reachability analysis, is to approximate the
entire set of possible outcomes for a given initial condition.
In pursuit of both applications, we develop an LCP-based
integration scheme for our impact DI (39). We will bound
the number of LCP solves required for each of these
applications. We conclude the section with several numerical
examples of post-impact set approximation, and provide
comparisons to other complaint and rigid impact resolution
methods.

We note that this section is purely focused on resolving
an impact event with ImpactLaw(q,v), rather than the
integration of this subroutine into e.g. a particular event-
based simulator. Extensive analysis on when the impact
update should be triggered and whether every post-
impact velocity is suitable for every event-based simulation
scheme is therefore excluded, but we offer some brief
discussion here. For instance, most event-based simulators
are vulnerable to Zeno behaviors, as infinite impacts would
require infinite runs of the ImpactLaw algorithm. Secondly,
the post-impact termination used herein will simply be that
the velocity is non-colliding. While this is not sufficient e.g.
to avoid immediately triggering another impact in Painlevé-
type scenarios, some simulators such as Anitescu and Potra
(1997) will successfully step forward in time if this condition
is met. Finally, many simulators such as Anitescu and Potra
(1997) only trigger ImpactLaw at a collision, and will thus
never trigger a collision under grazing. We assume that
the logic for handling such events is appropriately handled
outside of the impact resolution scheme.

5.1 Model Construction
Just as forward Euler integration can cause penetration in
continuous-time simulators (Halm and Posa 2020), it can
also break the inelastic condition if applied to our impact
model (39). To rectify this issue, we develop an approximate,
implicit, and discrete integration scheme. Our method takes a
simulation step by finding a small contact impulse increment
λ:

find v′; {λi : i ∈ IA} , (72a)

s.t. M(v′ − v) = JTλ , (72b)
λn,i ≥ 0 and λn,iJn,iv

′ ≤ 0 , (72c)
λt,i ∈ −µiλn,iUnitD(Jt,iv

′) , (72d)

where the dependence of J,M on q = q0 is suppressed for
notational compactness.

Conceptually, our simulation scheme can be understood
as differential, as it closely mirrors our impact DI (39) which
selects v̇ ∈M−1FC(q). The primary changes are that (72)
approximates the derivative with a finite difference (v′ − v);
enforces Coulomb friction (72d) and inelasticity (72c) at
the incremented velocity v′; and replaces Coulomb friction
with its linear approximation. However, computationally,
our method seems most similar to the LCP-based algebraic
method (31), and we will show the each increment (72) can
also be solved as an LCP. Despite this similarity, the are
significant philosophical differences between (31) and (72)
that lead to qualitatively different predictions. As opposed
to the unrealistic velocity-based complementarity constraint
(31c), the termination condition Jn,iv

′ ≥ 0 is removed from
(72c), and thus it may take many increments of our model
to reach post-impact velocity. Furthermore, the removal of
this constraint makes (72) underconstrained, and thus allows
significant freedom for selection of the normal impulse
increments.

As our model intentionally captures a set of realistic
outcomes, we frame resolving an impact as sampling from
that set. We parameterize the sampling process with a normal
impulse distribution with finite-valued probability density
p(λn) over the unit box; step size h > 0; and (possibly
infinite) max iteration count N . We compute samples from
our discrete approximation of Routh’s method (Algorithm 1)
as follows:

1. Generate a non-zero, maximum normal impulse
increment λn,max ∼ h · p(λn).

2. Find a set of forces λ ̸= 0 with normal component
λn ≤ λn,max that solves (72); Increment v ← v +
M−1JTλ.

3. Terminate and take v+ = v if it is non-colliding (v ̸∈
C(q)) or the iteration limit is reached; else, return to 1.

While our theoretical results extend to any p(λn), we assume
in this section that p(λn) is uniform density for simplicity.
For notational compactness, we assume that all contacts are
active and non-penetrating (ϕ(q) = 0).

A difficulty in step 2) above is that λ = 0 solves (72), and
makes no progress towards impact termination. Additionally,
it is possibile that no solution to step 2) allows λn = λn,max.
We therefore add constraints that encourage λn to be large:

0 ≤ β ⊥ λn,max − λn ≥ 0 , (73)
0 ≤ λn ⊥ Jnv

′ + β ≥ 0 . (74)

Together, (73)–(74) enforce (72c); λn ≤ λn,maxi ; and either
λn,i = λn,maxi

or contact i has terminated.

Similar to the methods of Glocker and Pfeiffer
(1995) and Anitescu and Potra (1997) described in
2.2.2 (see also (32)–(33)), we transcribe our model as
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LCP(Wq0
,wq0

(v,λn,max)):

z =

βλ̄
γ

 , wq(v,λn,max) =

λn,maxJ̄v
0

 , (75a)

Wq =


0 −I 0 0
I JnM

−1Jn JnM
−1JD 0

0 JDM
−1Jn JDM

−1JD E
0 µ −ET 0

 , (75b)

v′(λ̄) = v +M−1J̄
T
λ̄ , (75c)

where q is the configuration of the impacting state; µ =
diag(µ1, . . . ,µm); and E = blkdiag(1, . . . ,1). We note
in particular that the columns and rows of Wq and wq

associated with [λ̄;γ] above are identical to the impact LCP
of Anitescu and Potra (1997).

Algorithm 1: Sim(h,x0, N)

Input: step h, initial state x0 = [q0;v0], max iterations N
Output: final velocity v

1 (v, i)← (v0, 0);
2 while v ∈ C(q0) and i ≤ N do
3 λn,max ∼ h · p(λn);
4 Select z = [β; λ̄;γ] ∈ LCP(Wq0 ,wq0(v,λn,max));
5 (v, i)← (v +M(q0)

−1J̄(q0)
T λ̄, i+ 1);

6 end

5.2 Properties
5.2.1 Existence The most essential property of our
integration step is that, because Wq is copositive, we can
leverage Proposition 2 to show that the constituent LCP has
a solution:

Theorem 6. Single-Step Existence (Appendix E.1).
LCP(Wq,wq(v,λn,max)) is non-empty for all states
[q; v], and normal impulse λn,max ≥ 0. A solution can be
found with Lemke’s Algorithm in finite time.

5.2.2 Dissipation As discussed in Section 3.3.2, an
essential property of inelastic impacts is energy dissipation;
because solutions to our model approximate the DI, each
integration step cannot increase kinetic energy:

Theorem 7. Dissipation (Appendix E.2). Let [q; v] be
any state with active contact, and let λn,max ≥ 0 be a
normal impulse. Then all impulses λ̄ generated by the impact
constraints (LCP(Wq,wq(v,λn,max))) dissipate kinetic
energy:

K(q,v′(λ̄)) ≤ K(q,v) . (76)

5.2.3 Linear Impact Termination We now show that
Algorithm 1 likely terminates in a small number of steps,
allowing it to be used to implement ImpactLaw(q,v).

To understand the rate at which this termination happens,
we consider that a pointed friction cone (Assumption 2)
guarantees that the magnitude of the change in velocity
M−1J̄

T
λ̄ for a single step not only grows linearly in ∥λn∥1,

but also moves v in some (non-unit) direction r(q):

Lemma 6. Net Force Bound (Appendix E.4). Consider a
configuration q ∈ QA \ QP . There exists a nonzero r(q) ∈

Rnv , such that for any λ̄ = [λn; λD] obeying (33),

r(q) ·M−1J̄(q)T λ̄ ≥ ∥λn∥1 . (77)

r(q) is computable as a linear program, as it arises from
minimization over a polygonal set, LFC.

Let the random variable Z(h, q0,v0) be the number of
LCP solves required for Sim(h, [q0; v0],∞) to terminate.
Given that multiple impacts might occur in a single time-
step, it is crucial that Z(h, q0,v0) be as small as possible.
Consider that Lemma 6 implies that the velocity takes
large steps in the r direction with high probability, yet
total movement in any direction is bounded by 2 ∥v0∥M
as kinetic energy is non-increasing (Lemma 13). We can
therefore show that with high probability, Z grows linearly
with ∥v0∥M :

Theorem 8. Discrete Termination (Appendix E.5). Let
q0 ∈ QA \ QP have m active contacts. Pick σ such that
M(q0) ⪰ σI; pick r(q0) as in Lemma 6; let h > 0 be a
step-size. Let

c = 4
⌈
(m+1)∥r(q0)∥2

h
√
σ

⌉
. (78)

Then for all k ∈ Z+, v0 ∈ C(q0),

P (Z(h, q0,v0) > c ⌈∥v0∥M⌉+ k) ≤ e−
k

(m+1)2 . (79)

As the probability density of Z exponentially decays, it
has finite moments (including mean and variance).

We conclude by noting that Lemma 6, and thus the pointed
friction cone assumption (Assumption 2), is an essential
component of our theoretical analysis for impact termination.
Without this assumption there is no guarantee that impact
simulations will terminate, but there is no inherent reason
that simulations that happen to terminate are any less
reasonable.

5.3 Post-Impact Set Approximation
We now describe a method to approximate the set of
outcomes to simultaneous impacts as modeled in our DI
(39), which culminates in probabilistic guarantees on densely
sampling this set via Lemma 1.

In order for computation of the set of possible outcomes
of Algorithm 1 to be well-posed, we must consider a key
practical ramification of the LCP solve on line 4: numerical
LCP solvers typically only find a single solution, and may
be systematically biased in their selection among multiple
solutions. For all claims in this section, we therefore make
the additional assumption that this selection process does not
affect the outcome of an individual integration step:

Assumption 6. Consider a configuration q ∈ QA \ QP .
For each velocity v and normal impulse increment λn,max ≥
0, every λ̄ generated by (75) results in the same incremented
velocity v′. Equivalently, there exists a function fq : Rnv ×
cl(Rm+)→ Rnv , such that

v′(λ̄) = v +M−1J̄
T
λ̄ = fq(v,λn,max) . (80)
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This assumption can be verified via Semidefinite
Programming (Aydinoglu et al. 2020). We note that v′(λ̄)
under Assumption 6 is only unique given λn,max; different
velocity increments can be While Assumption 6 is violated
for at least some systems (e.g. for compass gait and RAMone
in Section 5.4), it implies useful properties including
Lipschitz continuity:

Lemma 7. For each configuration q ∈ QA \ QP ,
fq(v,λn,max) is Lipschitz continuous.

Proof. Because v′(λ̄) is unique, we must have that

J̄
T
λ̄ =

[
0 J̄

T
0
]
LCP(Wq,wq(v,λn,max)) , (81)

is a singleton over the convex domain wq(Rnv , cl(Rm+)).
Therefore by Proposition 3, fq is Lipschitz continuous.

We will also make use of two scenarios where the
integration step LCP is guaranteed select zero impulse:

Lemma 8. Consider a configuration q ∈ QA \ QP and
λn,max ≥ 0. Then if either Jnv ≥ 0 or λn,max = 0,

v = fq(v,λn,max) . (82)

Proof. Observe that if either λn,max = 0 or if v is
not impacting (Jnv ≥ 0), we can select zero normal
impulse (λn = 0, thus v′ = v) and satisfy the normal
complementary equations (73)–(74). Setting λD = 0; γ =
0; and β as the negative part of Jnv constitutes a full
solution to the LCP.

The continuity of fq allows for expansion of the Jnv ≥ 0
case; if v is almost terminated, then only a single simulation
step with a small λn,max is required to end the impact:

Lemma 9. Single-Step Termination (Appendix E.6). For
all configurations q ∈ QA \ QP , velocities v, and ε > 0,
there exists δ(ε,v), such that for any almost-separating
velocity v̄ (Jnv̄ ≥ −δ(ε,v)) that is sufficiently small
(∥v̄∥M ≤ ∥v∥M ), a small impulse can terminate the impact:
fq(v̄, ε1) ̸∈ C(q).

We now iteratively define the reachable set of Alg. 1. Let
VN (x0, h) be the set of possible outputs of Sim(h,x0, N).
Then we have that

V0(x0, h) = {v0} , (83)
Vi(x0, h) = fq(Vi−1(x0, h), [0, h]

m) , (84)
Vi(x0, h) ⊇ Vi−1(x0, h) . (85)

Here, we used Lemma 8 to ignore early termination (i.e.
Jnv ≥ 0 before N loop iterations) in (84), and to establish
the monotonic growth in (85). We construct the entire set of
reachable velocities as

V∞(x0, h) = ∪i∈NVi(x0, h) . (86)

Vi(x0, h) can approximate V∞(x0, h) with arbitrarily well:

Lemma 10. Consider a configuration q0 ∈ QA \ QP ;
velocity v0, and step-size h ≥ 0. Then for each ε > 0,
there exists an i, such that Vi([q0; v0], h) is an ε-net of
V∞([q0; v0], h).

Figure 9. Evolution of the rocking block impact, displayed as
the normal velocities of the two points (top), and the normal and
tangential velocity of point A (bottom). Our method generates all
three outcomes from Figure 1, as well as intermediate results
between the symmetric and sequential impacts.

Proof. Vi([q0; v0], h) is a monotonic (85) and uniformly
bounded (via Theorem 7) sequence of sets. It is then
convergent in the ε-net sense to ∪iVi = V∞([q0; v0], h).

Similarly, the post-impact reachable set is simply the
reachable velocities which are non-penetrating:

Sim(h,x0,∞) ∈ V∞(x0, h) \ C(q0) . (87)

Algorithm 2: Approximate(h,x0, ε,N,M)

Input: step size h, initial state x0 = [q0; v0],
approximation ε ∈ (0, h), trajectory length N ,
trajectory count M

Output: post-impact set approximation Ṽ+

1 Ṽ+ ← {};
2 ψ ← σmax

(
M−1J̄

T
)
m(1 + maxi µi) + 1 ;

3 for i = 1 to M do
4 v ← Sim(h,x0, N);

5 Ṽ+ ← Ṽ+ ∪
{
fq0(v,

ε
3ψ

1m)
}

;

6 end
7 Ṽ+ ← Ṽ+ \ C(q0);
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Figure 10. Evolution of the compass gait step. The center plot compares the normal velocities of the two contacts, while the left
and right show velocities of points A and B, respectively. Our model produces the three outcomes in Figure 4b, as well as all
reasonable intermediate velocities of point B. Furthermore, oscillation of impact between the feet allows point A to slide or lift off,
while point B maintains contact.

Figure 11. Evolution of the box-wall impact. The center plot compares the normal velocities of the two contacts, while the left and
right show velocities of points A and B, respectively. Our model produces both the simultaneous and sequential outcome in Figure
5, as well as all reasonable intermediate velocities where A still slides and B lifts off. Furthermore, results are also generated where
B slides instead of sticking or lifting off.

We can finally use the above derived properties to
construct a method, Algorithm 2, for approximating the post-
impact set. Lemma 10 and Lemma 1 together show that
M samples from Sim(h,x0, N) well-approximate V∞, and
can be forced to terminate with only a small additional
step (Lemma 9). Therefore, Algorithm 2 is approximately
complete:

Theorem 9. Consider an initial configuration
q0 ∈ QA \ QP , initial velocity v0 ∈ Rnv , and step-size
h > 0. For all ε, δ > 0, there exists N,M > 0, such
that Approximate(h,x0, ε,N,M) returns an ε-net of
V∞(x0, h) \ C(q0) with probability at least 1− δ.

Proof. See Appendix E.7

5.4 Numerical Examples
We now show several examples of the post-impact velocity
sets generated by our model. The MATLAB code is available
online2. We analyze three examples shown thus far (Figs. 1,
4, 5), along with two more complex systems.

For each system, we plot the evolution of the velocity
through the impact process with lines, projected onto the

contact frames; these plots compare the impact process in
our method to both sequential and simultaneous resolution
via Equation (31) (Anitescu and Potra 1997), as described in
Section 2.2.2. Our method is shown in gray and simultaneous
resolution via Anitescu and Potra (1997) is shown in
blue. For two-contact impacts, we show the two sequential
resolutions (A,B,A, . . . ) and (B,A,B, . . . ) in red and
yellow. We show samples of the post-impact velocity sets
generated via Algorithm 2, as a dark gray region. The light
gray region by contrast traces the intermediate velocities
encountered along the impact-resolving trajectories of our
model. For some examples, axes of symmetry were used to
duplicate samples.

All examples were computed on a MacBook Pro with
2.4 GHz Quad-Core Intel Core i5. In Table 3, we report
mean runtime of our algorithm for each of these examples
in terms of the number of LCP steps to resolve each impact;
wall-clock time of each impact sample; and wall-clock
computation time for each LCP solve. In general, we find
that the step sizes implemented in our examples are capable
of terminating all impacts within a handful of steps. From
a simulation perspective, generating a single sample would
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Table 3. Computational Performance for Post-impact Set
Sampling

Example LCP’s / Sample Time / Sample Time / LCP

Rocking Block 2.67 2.1× 10−3 s 8.0× 10−4 s
Compass Gait 2.27 1.9× 10−3 s 8.5× 10−4 s
Box and Wall 1.97 1.6× 10−3 s 8.1× 10−4 s

RAMone 3.20 2.2× 10−3 s 7.0× 10−4 s
Disk Stacking 9.04 1.1× 10−2 s 1.3× 10−3 s

therefore only be a few times slower than e.g. the LCP
method of Anitescu and Potra (1997), with solve times on
the order of 2ms. However, global set approximation takes
between 210 and 220 samples depending on the example (see
Appendix A), and thus fast set approximation remains an
open challenge.

Additionally, for the Rocking Block example, we analyze
whether it is valid to interpret the set of predictions of our
model as the results of highly-sensitive outcomes of impacts
between highly-stiff, deformable bodies.

5.4.1 Rocking Block We revisit dropping a narrow,
rectangular object onto flat ground (Fig. 1), which may
either result in the object coming to rest or pivoting on a
corner. As shown in Figure 9, our method produces each
of these symmetric and sequential outcomes. The real-world
analogues of these three outcomes are that the short but non-
zero duration impacts either happen at the exact same time
and rate or sequentially with no overlap. Our model also
produces analogues to where there is some partial overlap
in these durations, for which scaled-down versions of the
purely-sequential outcomes (i.e., rolling on one foot with a
smaller angular velocity) is the final result.

To examine whether or not these additional results can
be physically interpreted as originating from sensitivity to
impact ordering, we employ a compliant contact simulation
scheme as a point of comparison. Under these dynamics,
the block evolves through time according to the manipulator
equations (10), with contact forces determined by a Kelvin-
Voigt linear elasticity model. The normal forces are applied
at each corner i ∈ {A,B} (see Figure 1), computed as

λn,i =

max

(
0,−kiϕi − 2ζ

√
ki
m

dϕi

dt

)
ϕi ≤ 0 ,

0 ϕi > 0 .
(88)

ki is the contact stiffness at point i. ζ is the damping
ratio, which can make impacts inelastic if set high enough;
for all experiments, we use ζ = 5 and stiffness at least
1× 106 N

m to approximate instantaneous, inelastic impacts.
As the resulting impacts are inelastic, we can consider
a continuous-time collision as being terminated when the
penetrating velocity has nearly vanished i.e. Jn,iv ≥ −δi
for all active contacts ϕi(q) ≤ 0. For all experiments, we
use δi = m

mini ki
1× 10−3 m

s . The friction forces follow a
typical continuous approximation of Coulomb friction (16)
(Nurkanović et al. 2021a; Castro et al. 2020), with

λt,i = −µiλn,iUnitε(Jt,iv) , (89)

Unitε(r) =
r

max (∥r∥2 , ε)
. (90)

Figure 12. Post-impact velocities of perturbations to the
rocking block impact under compliant contact are well-captured
by our model’s predictions. Velocities under perturbation are are
plotted as circles of varying color, projected onto the contact
normals. Top: the stiffness ratio between the contacts is varied
from 10−5 to 105. The set of compliant-contact outcomes is
properly contained in and nearly covers the entirety of our
model’s predictions. Bottom: the angle of the block before the
impact is varied from −1× 10−2 deg to 1× 10−2 deg. As
before, nearly the entire set of our model’s predictions is
covered by these perturbations. However, the maximum
post-impact separating velocity is slightly larger than our
model’s predictions.

For all experiments, we set ε = 1× 10−10 m
s . We simulate

trajectories of this stiff system with MATLAB’s stiff ODE
solver ode15s.

We consider two phenomena in the compliant contact
domain which may lead to differing outcomes: different
stiffness ratios kA

kB
and slight changes in initial conditions.

In the former, we vary kA
kB

from 10−5 to 105, while holding
min(kA, kB) = 1× 106 N

m and holding the pre-impact state
the same as in Figure 9; 105 was chosen at the maximum
ratio due to numerical limitations of the ODE solver. In
the latter, we vary the initial angle θ at which the block
hits the ground, such that the collision process will start
at one corner first. We vary θ0 from −1× 10−2 deg to
1× 10−2 deg, which is enough that the impacts are nearly
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sequential in the extreme cases, with 99.9992% of the total
impulse accumulated at the first collision occuring before the
second collision starts. For each angle θ0, the initial high
of the block is raised so one corner touches the ground,
and the initial downward velocity is accordingly slightly
decreased to maintain the same total mechanical energy
(kinetic plus gravitational potential) across initial conditions.
For each of these two experiments, we additionally consider
49 intermediate values for kAkB and θ0.

We plot outcomes of the concurrent impacts in Figure 12,
and find that the scaled-down predictions of our model in
Figure 9 can be attributed to differing orders of impulse
accrual due to either changing stiffness ratio or initial
condition. In the case of varying stiffness ratio with the same
initial condition as Figure 9, we find that the results, when
projected onto the contact normals, are properly contained
by and nearly cover the entirety of our model’s predictions.
In the case of varying initial angle, we again see a tight
match between the compliant collisions and our model’s
predictions, except that the maximum post-impact separating
velocity for compliant collisions is slightly larger.

As our model’s predictions were only calculated for θ0 =
0, we would expect that over the set of perturbations to θ0 we
encounter a slightly larger set of post-impact velocities, due
to slight shifts from the continuous-time evolution between
states.

5.4.2 Compass Gait We revisit the compass gait walker
model taking a wide step (Fig. 4). Previously, we showed
that the model of Anitescu and Potra (1997) predicts that the
leading foot sticks (point A), while the trailing foot (point
B) could slide, stick, or lift off. Our model generates each
of these outcomes, as well as various convex combinations
of these results (Figure 10). It also generates oscillatory
behavior where impulses at points A and B alternate during
the impact process. This can potentially cause A to lift off,
and B to remain on the ground instead.

5.4.3 Box and Wall We examine our model’s predictions
on the scenario described in Figure 5, where a box impacts
a wall (at point B) while sliding along flat ground (at
point A). Simultaneous resolution with Anitescu and Potra
(1997) predicted that the box came to rest, while sequential
resolution predicts that A continues sliding and B lifts off.
As in the previous examples, our model reproduces both
behaviors, as well as convex combinations of them (Figure
11). Additionally, some sequences allow A to slide even
faster, while others allow B to slide instead of lifting or
sticking.

5.4.4 RAMone In this example, we examine a footstep of
a more complex 5-link bipedal robot, RAMone, originally
considered by Remy (2017). As shown in Figure 13, much
like the compass gait example, Anitescu and Potra (1997)
always predicts that the leading foot sticks, while the trailing
foot can stick, slide, or lift. Our model reproduces the same
results, as well as ones where the final contact velocities are
scaled down.

5.4.5 Disk Stacking In this example, we demonstrate our
ability to generate non-unique results in a multi-object
scenario motivated by manipulation: stacking disks. A tower
of 3 discs (Figure 14) is created by dropping a disk on two

others, which rest on the ground. The only prediction for this
5-contact collision offered by Anitescu and Potra (1997) is
the entire tower coming to rest. While we cannot be sure that
the numerical results cover all possible outputs of our model,
we are able to generate various outcomes in which the tower
falls apart. Figure 14b shows how the post-impact normal
velocities compare in the left and right sides of the tower.
The top ball always maintains contact with at least one of the
left or right balls, and one of those balls always stays on the
ground. The contacts that are maintained may slide, while the
ball on the opposite side may even lift off the ground (Figure
14c).

6 Conclusion

Non-unique behavior is a pervasive complexity that is
present in both real-world robotic systems and common
models capturing frictional impacts between rigid bodies—
and thus accurate incorporation of such phenomena is
an essential component of robust planning, control, and
estimation algorithms. Our model presents a state-of-the-
art theoretical foundation for capturing these set-valued
outcomes. Despite the high versatility of allowing impacts
to resolve at arbitrary relative rates, both the continuous-
time formulation and simulation method have termination
guarantees.

Future development of our model will focus on capturing
a wider array of contact-driven behaviors; improved
theoretical guarantees; and more efficient computational
approaches. For instance, while many models in robotics
assume impacts are inelastic, capturing restitution would
increase the accuracy of our model for some systems.
Several different approaches have been used to extend
Routh’s method to capture partially elastic impacts which
are guaranteed to dissipate kinetic energy (Liu et al.
2008a,b; Mirtich 1996). In particular, Mirtich (1996)
combines Routh’s model with Stronge’s energetic coefficient
of restitution (Stronge 1990), which relates the quantity
work done in compression and restitution phases of elastic
impacts. One possible variant of our models would allow for
Stronge-type restitution to resolve at arbitrary relative rates
in a similar fashion to the compression-only setting of our
inelastic models.

Additionally, while approximation of the post-impact set
is probabilistically complete, a straightforward process for
computing the sample count M and trajectory lengths N
required for particular approximation constants ε, δ is not
known. This proof thus did not inform useful computational
settings in our examples. Future research could instead
develop outer approximations of the post-impact set via
Lyapunov reachability and semidefinite programming (Posa
et al. 2016).
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(a) RAMone initial condition

(b) Footfall impact resolution process

Figure 13. Evolution of a footfall (a) of the RAMone robot. (b) Similar to the compass gait example, Anitescu and Potra (1997)
predicts that the leading foot, point A, comes to rest, while point B may come to rest, slide, or lift off. All results from our model
produce intermediate outcomes between these three results, and point A remains in stiction for the entire duration of the impact.

Notes

1. It is important to note that Painlevé also considered non-
uniqueness to be a pathology of rigid-body assumptions and
Coulomb friction; more discussion of this topic is covered at
length in Stewart (2000). As the subject of this paper concerns
deliberate non-uniqueness, we forgo detailed discussion of this
perspective in this work.

2. The codebase for this paper is available at https://

github.com/mshalm/routh-multi-impact. Exam-
ples related to Section 5.4 can be run by calling Results();
more details are available in Appendix A. Figures relating
to the Zeno example are computed numerically by calling
ZenoBlock().
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(a) Disk stack initial condition (b) Normal impact resolution process comparing left and right sides

(c) Impact resolution process at individual contact points

Figure 14. Evolution of a stack of disks (a) as the top disk fall on the bottom two. Anitescu and Potra (1997) only predicts that the
entire system comes to rest. (b) Our method additional predicts several scenarios where the top disk remains in contact with only
one of the bottom two disks, while the other may roll away or even lift off the ground slightly. (c) various states of rolling, sliding, and
lifting contact are shown for points A, C, and E; plots for B and D are omitted as they are symmetric with A and C, respectively.
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A Example Details
Here, we list relevant details on the examples in Section
5.4. The MATLAB codebase at https://github.

Table 4. Rocking block parameters

Parameter Symbol Value

Block width w 1m
Block height h 2m
Block mass m 1 kg
Init. downward vel. v0 0.4429 m

s
Friction coefficient µ 1
Step size h 0.3N s
Trajectory length N 10
Trajectory set size M 214

Table 5. Compass gait parameters

Parameter Symbol Value

Leg length l 1m
Mass-to-foot length s∥ 0.5m
Leg mass m 1 kg
Trailing leg pitch φtr 78◦

Leading leg pitch φle −78◦
Trailing leg init. ang. vel. φ̇tr,0 0.25 rad

s

Leading leg init. ang. vel. φ̇le,0 0.25 rad
s

Friction coefficient µ 5
Step size h 0.25N s
Trajectory length N 5
Trajectory set size M 220

Table 6. Box and wall parameters

Parameter Symbol Value

Box side length w 1m
Box mass m 1 kg
Angle from box to ground θ 10◦

Init. horizontal velocity v0 1 m
s

Friction coefficient µ 1
Step size h 2N s
Trajectory length N 5
Trajectory set size M 218

com/mshalm/routh-multi-impact may be run via
Results(). The PATH LCP solver (Dirkse and Ferris
1995) must be installed, and pathlcp.m must be available
from the MATLAB path. Geometric, inertial, and simulation
parameters of the examples are listed in Tables 4–8, and
the listed symbols match the variable names used in the
codebase. Unless otherwise stated, bodies have uniform
density, and links are massless. For the RAMone example,
we refer the reader to Remy (2017) for a full description of
the system’s inertial and geometric properties.

B Additional Background and Proofs
In this appendix, we discuss aditional theoretical background
and proofs of technical lemmas necessary for detailed
understanding of the theoretical results in this thesis.
We equip domains Ω ⊆ Rn with the Euclidean (l2)
norm; Euclidean metric d(x1,x2) = ∥x2 − x1∥2, and the
Lebesgue measure. The total derivative ḟ(s) of an absolutely
continuous function f(s) is taken in the Lebesgue sense. We
make use of the following theorem:

Prepared using sagej.cls

https://underactuated.csail.mit.edu
https://github.com/mshalm/routh-multi-impact
https://github.com/mshalm/routh-multi-impact


26 Journal Title XX(X)

Table 7. RAMone parameters

Parameter Symbol Value

Trunk pitch Φ 16◦

Leading hip angle αle −70◦
Trailing hip angle αtr 70◦

Leading knee angle βle −2◦
Trailing knee angle βtr −92.48◦
Trunk init. x vel. ẋ0 −0.4114 m

s
Trunk init. y vel. ẏ0 −0.2105 m

s

Trunk init. ang. vel. Φ̇0 1 rad
s

Leading hip init. vel. α̇le,0 0 rad
s

Trailing hip init. vel. α̇tr,0 0 rad
s

Leading knee init. vel. β̇le,0 0 rad
s

Trailing knee init. vel. β̇tr,0 0 rad
s

Friction coefficient µ 105

Step size h 1N s
Trajectory length N 10
Trajectory set size M 220

Table 8. Disk stacking parameters

Parameter Symbol Value

Disk radius R 1m
Disk mass m 1 kg
Initial vertical velocity v0 −1 m

s

Friction coefficient µ
√
3

Step size h 1N s
Trajectory length N 10
Trajectory set size M 220

Proposition 5. Arzelà-Ascoli (Rudin 1991). Consider
a uniformly bounded sequence (fn)n∈N of Rn-valued
functions on a compact interval [a, b], where each function
fn is Lipschitz continuous with the same constant L.
Then, there exists a subsequence (fnk

)k∈N that converges
uniformly.

B.1 Proof of Lemma 1
Let g(x) : Rn → Rm be Lipschitz with constant L and let
h > 0. Let X = {x1, . . . , xN} be a set of uniform i.i.d.
samples from [0, h]n. By Lipschitz continuity, g(X ) is a ε-
net of g([0, h]n) if X is an ε

L -net of [0, h]n; we examine the
latter.

Consider a regularly-spaced grid of cardinality Mn:

X ′ =
{

h
2M , 3h

2M , . . . , (2M−1)h
2M

}n
. (91)

X ′ is a h
√
n

2M -net of [0, h]n. Thus, setting M =
⌈
hL

√
n

ε

⌉
, X ′

is an ε
2L -net of [0, h]n. Consider the case where for each

x ∈ X ′, X contains an xi with

xi ∈ x+
[
− h

2M , h
2M

]n ⊆ [0, h]n , (92)

and thus ∥xi − x∥2 ≤
ε
2L . Then by triangle inequality, X

is an ε
L -net of [0, h]n when (92) holds for each xi. For a

single x ∈ X ′, as the elements of X are chosen uniform
i.i.d, the probability of (92) not holding is (1−M−n)N . The
probability of (92) holding for every x is at least

1−Mn(1−M−n)N , (93)

by union bound. The proof holds as M−n = Ω.

B.2 Proof of Lemma 2
We may assume without loss of generality (WLOG) that
M = I by applying a coordinate transformation of M

1
2

to v. Let R be a matrix with columns that constitute an
orthogonal basis of Range

(
JTi
)
. By equivalence of norms

there exists ε > 0 such that

∥Jn,iv∥+ ∥Jt,iv∥2 ≥ ε
∥∥RTv

∥∥
2
. (94)

We will show that κ = (εmin (µi, 1))
−1 satisfies the

claim. Let V (s) =
∥∥RTv(s)

∥∥2
2
. Assume WLOG that v(s)

is a colling velocity (v(s) ∈ C(q)) at least until s∗ =∥∥RTv(0)
∥∥
2
κ ≤ ∥v(0)∥2 κ. Then, on the interval [0, s∗),

V̇ = 2v̇TRRTv , (95)

∈ 2
(
Jn,i − µiUnit (Jt,iv)

T
Jt,i

)
RRTv , (96)

= −2 ∥Jn,iv∥ − 2µi ∥Jt,iv∥2 , (97)

≤ −2εmin (µi, 1)
√
V , (98)

≤ − 2

κ

√
V . (99)

The unique solution to the IVP ẋ = − 2
κ

√
x,

x(s) =
(√

x(0)− s

κ

)2
, (100)

therefore bounds V from above on [0, s∗). Thus,

V (s∗) ≤
(√

V (0)− s∗

κ

)2

, (101)

=
(∥∥RTv(0)

∥∥
2
−
∥∥RTv(0)

∥∥
2

)2
, (102)

= 0 . (103)

Therefore RTv(s∗) = 0, Jn,iv (s∗) = 0, and v (s∗) ̸∈
C(q).

C Impact Model Proofs and Lemmas

C.1 Proof of Theorem 1
The final claim may be reached via direct application of
Proposition 5, as long as Dq(v) is non-empty, uniformly
bounded, closed-valued, convex-valued, and u.s.c. We will
demonstrate that each of these properties hold.

We first observe that the set of contacts Iq(v), used
in the construction of Dq(v) in (39), is non-empty by
construction. Furthermore, Iq(v) is u.s.c. in v, because it
is constructed from non-strict inequalities of linear functions
of v. Next, we note that for each i, Fi(q,v, 1) is non-empty,
uniformly bounded, closed-valued, and u.s.c. as it is an affine
transformation of Unit(·). Finally, we characterize Dq(v).
Dq(v) is non-empty, uniformly bounded, and close-convex
valued, by construction from the convex hull of a non-empty
union of Fi(q,v, 1). Now, consider an arbitrary velocity v0

and neighborhood V̇0 ⊃ Dq(v0). As Iq(v) is u.s.c., we can
select a neighborhood V with Iq(V) ⊆ Iq(v0). Therefore on
V ,

Dq(v) ⊆ D0(v) = conv
(
∪i∈Iq(v0)Fi(q,v, 1)

)
. (104)
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D0(v) is u.s.c. as the convex hull of u.s.c. functions, and
furthermore Dq(v0) = D0(v0). Therefore by definition of
u.s.c. there exists a neighborhood V0 of v0 such that

Dq(V0) ⊆ D0(V0) ⊆ V̇0 . (105)

Dq(V) is therefore by definition u.s.c. and the claim is
satified.

C.2 Homogeneity Lemma
As the set of allowable contact forces are only dependent on
the direction of v, Dq(v) is positively homogeneous in v, in
the sense that ∀k > 0,v ∈ Rnv , Dq(v) = Dq(kv). Positive
homogeneity induces a similar property on the solution set to
the differential inclusion:

Lemma 11. Homogeneity. For all q, k > 0,
and [a, b] compact, if v(s) ∈ SOL (Dq, [a, b]),
kv( sk ) ∈ SOL (Dq, [ka, kb]).

Proof. Consider a configuration q ∈ Rnq and compact
interval [a, b]. We first demonstrate that the impact DI
mapping Dq(v) is positively homogeneous in v (Dq(v) =
Dq(kv) for k > 0). The DI mapping Fi(q,v, 1) for
contact i is an affine transform of Unit(Jt,iv) and thus
positively homogeneous. Also, the the set of contacts
Iq(v) used in the construction of Dq(v) in (39), is
also positively homogeneous in v. Therefore, Dq(v) =
M−1conv

(
∪i∈IqFi

)
is positively homogeneous.

Now, consider a solution v(s) to the impact DI v̇ ∈ Dq(v)
over [a, b], and k > 0. kv( sk ) is well-defined and absolutely
continuous over the interval [ka, kb], and has derivative
equal to v̇( sk ) a.e. on [ka, kb]. Then v̇( sk ) ∈ Dq(v(

s
k )) =

Dq(kv(
s
k )) a.e., and kv( sk ) ∈ SOL (Dq, [ka, kb]).

C.3 Proof of Theorem 2
Let q ∈ QA, and let [a, b] be a compact interval. Consider a
solution of the impact DI v(s) ∈ SOL (Dq, [a, b]) with non-
separating velocity (v([a, b]) ⊆ clC(q)). We will show that
∥v(s)∥M is non-increasing by proving that K̇(q,v(s)) is
non-positive almost everywhere. Pick any s ∈ [a, b] where
v̇(s) ∈ Dq(v(s)). By construction of Dq(v) (39) and the
definition of the convex hull, there exists coefficients ci ≥ 0
such that

Mv̇(s) ∈
∑

i:Jn,iv(s)≤0

ciFi(q,v(s), 1) . (106)

We observe by chain rule that

K̇ = vTMv̇ ∈
∑

i:Jn,iv≤0

civ
TFi(q,v, 1) . (107)

K̇ is then non-positive as each term in this sum is non-
positive by construction of Fi and (38):

vTFi(q,v, 1) = vTJTn,i − µi ∥Jt,iv∥2 . (108)

C.4 Strong Dissipation Lemma
Lemma 12. Strong Dissipation. Let q ∈ QA, and let
[a, b] be compact. If v(s) ∈ SOL (Dq, [a, b]) and v ([a, b]) ⊆
clC(q), ∥v(s)∥M constant implies v(s) constant.

Proof. Let q ∈ QA be a configuration with active contact,
and v(s) ∈ SOL (Dq, [a, b]) a solution to the associated
impact DI with impacting velocity (v([a, b]) ⊆ clC(q)). Let
λ(s) be the associated vector of force variables defined a.e..

Assume that v(s) is non-constant. We may now prove
the claim by showing that ∥v(b)∥M < ∥v(a)∥M . As
v(s) is continuous, we may select a < s∗ < b such that
∀δ > 0, v(s) is not constant on [s∗, s∗ + δ]. Let A =
{i ∈ IA(q) : Jn,iv(s∗) ≤ 0} be the set of non-separating
contacts at s = s∗. Let B be the set of contacts b ∈ A with
zero contact velocity (Jbv(s∗) = 0). As v(s) is continuous,
∃δε > 0 and ε > 0 such that ∀s ∈ [s∗, s∗ + δε] ⊆ [a, b],

• All i ∈ IA \A separate (Jn,iv(s) > ε)
• All i ∈ A \B move: Jn,iv(s) < −ε or ∥Jt,iv(s)∥2 >

ε
µi

.

Select s from [s∗, s∗ + δε] with v(s) ̸= v(s∗). By Theo-
rem 2,

0 ≥ ∥v(s)∥2M − ∥v(s
∗)∥2M , (109)

= 2v(s∗)TM (v(s)− v(s∗)) + ∥v(s)− v(s∗)∥2M ,
(110)

= 2 (Jv(s∗))
T
∫ s

s∗
λ(σ)dσ + ∥v(s)− v(s∗)∥2M . (111)

Therefore, there must exist a contact a ∈ A \B with∫ s
s∗

λn,a > 0 as (111) is non-positive. Finally,

K(v(s)) = K(v(s∗)) +

∫ s

s∗
(Jv(τ))Tλ(σ)dσ , (112)

≤ K(v(s∗))− ε
∫ s

s∗
λn,a(σ)dσ , (113)

< K(v(s∗)) . (114)

Therefore, as K is non-increasing, ∥v(b)∥M < ∥v(a)∥M .

C.5 Proof of Corollary 1
As v is never constant on clC(q) via Assumption 2, ∥v(s)∥M
strictly decreases by Lemma 12 and Theorem 2.

C.6 Proof of Lemma 3
Suppose not, so there exists a configuration q ∈ QA,
dissipation rate αq(s) such that v̇ ∈ Dq(v) is αq(s)-
dissipative, s > 0 and s∗ > ∥v(0)∥M

s
αq(s)

, and v(s) ∈
SOL (Dq, [0, s

∗]) with v([0, s∗]) ⊆ clC(q). Assume WLOG
by Lemma 11 that ∥v(0)∥M = 1. By solution homogeneity
(Lemma 11) we have for any sk = sk−1 + s ∥v(sk)∥M ,

∥v (sk)∥M
∥v (sk−1)∥M

≤ (1− αq(s)) . (115)

Setting s0 = 0, we thus have

∥v (sk)∥M ≤ (1− αq(s))
k
, (116)

sk ≤ s
k∑
i=1

(1− αq(s))
k−1

. (117)

Therefore s∞ = limk→∞ sk = s
αq(s)

< s∗ and by continu-
ity of v, v (s∞) = 0. But then by Corollary 1 ∥v(s)∥M must
decrease below 0 on [s∞, s

∗], a contradiction.
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C.7 Proof of Theorem 3
Suppose not. Then there exists a q ∈ QA \ QP , an sf >
0, and a corresponding sequence of solutions

(
vj(s)

)
j∈N,

vj(s) ∈ SOL (Dq, [0, sf ]), all starting with
∥∥vj(0)∥∥

M
=

1 and never exiting clC(q), which dissipate less and less
energy:

lim
j→∞

∥∥vj(sf )∥∥M = 1 . (118)

As Dq is bounded and each solution vj(s) never exits{∥∥vj(s)∥∥
M
≤ 1
}

by dissipation (Theorem 2), the sequence
is equicontinuous and bounded. By Proposition 5, a
subsequence of vj(s) converges uniformly to a function
v∞(s), with ∥v∞(sf )∥M = 1 by (118). Because kinetic
energy is non-increasing, ∥v∞(s)∥M = 1 for all s ∈ [0, sf ].
By Theorem 1 v∞(s) is a solution to v̇ ∈ Dq(v). Therefore
as v∞(s) does not dissipate kinetic energy, it is constant
by Lemma 12, and thus 0 ∈ Dq(v∞(s)). But as each
vj(s) ∈ clC(q), we must also have v∞(s) ∈ clC(q), which
contradicts Assumption 2.

C.8 Proof of Corollary 2
Let Q ⊆ QA \ QP be a compact set of non-penetrating
configurations with active contact. We will construct a
suitable αQ explicitly. Let sf > 0. Define the DI[

q̇
v̇

]
= ẋ ∈ D′(x) =

[
0

Dq(v)

]
. (119)

As the set of active contacts IA(q) is u.s.c. and M ,J are
continuous, D′ is compact-convex, uniformly bounded, and
u.s.c.. Now consider the sets

X0 =

{[
q0
v0

]
: q0 ∈ Q ∧ ∥v0∥M(q0)

= 1

}
, (120)

Xf = {x(sf ) : x(s) ∈ IVP (D′,X0, [0, sf ])} . (121)

X0 represents all initial conditions with configurations in
Q and initial kinetic energy 1

2 , and Xf is set of states
reachable from X0 via solutions to the dynamics (119) for
a duration sf . As X0 is compact, IVP (D′,X0, [0, sf ]) and
therefore Xf is closed and non-empty by Proposition 1.
Any solution [q(s); v(s)] ∈ IVP (D′,X0, [0, sf ]) must have
constant q(s) = q(0) ∈ Q, because the inclusion (119)
prescribes q̇ = 0. Therefore, v(s) must be a solution to
the associated impact differential inclusion v̇ ∈ Dq(0)(v).
Therefore, by Theorem 3,

αQ(sf ) = 1− max
[qf ; vf ]∈Xf

∥vf∥M(qf )
∈ (0, 1] , (122)

where the fact that Xf is closed implies the strict
inequality αQ(sf ) > 0. Setting αQ(0) = 0 and selecting
a configuration q ∈ Q, we now show that v̇ ∈ Dq(v) is
αQ(s)-dissipative. Let sf > 0, ∥v0∥M(q) = 1, and v(s) ∈
IVP (Dq,v0, [0, sf ]). By Definition 3, x(s) = [q; v(s)] ∈
IVP (D′,X0, [0, sf ]) and thus ∥v(s)∥M(q) ≤ 1− αQ(s) <

1 for all s ∈ [0, sf ].

D Continuous-time Model Proofs

D.1 Proof of Theorem 4
Let [a, b] and X̄ be compact. As D(x̄) neither depends on
t(x̄) nor s, WLOG [a, b] = [0, sf ] and t(x̄) = 0 for each x̄ ∈

X̄ . We will prove that IVP (D, x̄, [0, sf ]) has the claimed
properties in the following manner:

1. We will bound kinetic energy growth (via Assumption
4), which will guarantee that solutions starting in X̄
remain in a larger open bounded set, X̄ ′.

2. We will show that, restricted to X̄ ′, ˙̄x ∈ D(x̄)
is equivalent to another DI ˙̄x ∈ D̃(x̄) which is
compatible with Proposition 1.

First, we construct a suitable X̄ ′. As X̄ is compact,
we may pick c > 0 such that X̄ ⊆ Ballc. Let x̄(s) ∈
IVP

(
D, X̄ , [0, sf ]

)
. We begin by establishing a bound

on v(x̄(s)) over [0, sf ]. Let K(x̄) = K(q(x̄),v(x̄)). By
Assumption 4, ∃cK > 0 such that for all x̄,

∂K

∂x̄
DC(x̄) = vTFs(x,U(x̄)) ≤

√
2cK ∥v∥M . (123)

As the impact dynamics dissipate energy (Theorem 2),

K̇(x̄(s)) ∈ ∂K

∂x̄
D(x̄) ≤ 2cK

√
K(x̄) . (124)

Similar to the argument in Appendix B.2, we compare (124)
to the differential equation ẋ = 2cK

√
x, and upper bound K

as

K(q(s),v(s)) ≤
(√

K(q(0),v(0)) + cKs
)2

. (125)

Thus, picking cM with c−1
M ∥v∥M ≤

√
2 ∥v∥2 ≤

cM ∥v∥M ,

∥v(s)∥2 ≤ cM
√
K(q(s),v(s)) , (126)

≤ cM
(√

K(q(0),v(0)) + cKs
)
, (127)

≤ c2M ∥v(0)∥2 + cMcKs . (128)

Now, we bound q(x̄(s)). As ∥q̇∥2 ≤ ∥Γ∥F ∥v∥2, selecting
cΓ = supq ∥Γ∥F , we can apply the triangle inequality as:

∥q(s)∥2 ≤ ∥q(0)∥2 + cΓs max
s′∈[0,s]

∥v(s′)∥2 . (129)

Finally, we bound ∥t(s)∥ ≤ s from ṫ ≤ 1. As ∥x̄(0)∥2 < c,

∥x̄(s)∥2 ≤ ∥q(s)∥2 + ∥v(s)∥2 + ∥t(s)∥ , (130)

< c+ (cΓsf + 1)
(
c2Mc+ cMcKsf

)
+ sf .

(131)

As (131) is constant, x̄(s) remains in a bounded open set X̄ ′.
Now, we relate ˙̄x ∈ D(x̄) to another DI which can be

analyzed via Proposition 1. First we show that D(x̄) is u.s.c.
For any q and separating velocity v ∈ S(q), we can pick
an open neighborhood Q× V of [q; v] which also consists
solely of separating velocities by continuity of ϕ and Jn.
Therefore, the set of separating-velocity states X̄S is open.
Furthermore, each of DS(x̄) (Assumption 3) and DC(x̄)
(Corollary 2) are u.s.c.. D(x̄) must then be u.s.c., because
it is constructed from two u.s.c. functions on disjoint open
sets, and their convex hull on the remainder of the space.

By Assumption 5, D(X̄ ′) is bounded. As X̄ ′ is open and
bounded, we can construct a bounded, non-empty, compact-
convex valued u.s.c. function D̃(x̄) defined over Rn such
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that D̃|X̄ ′ = D|X̄ ′ . In particular,

D̃(x̄) =

{
D(x̄) x̄ ∈ X̄ ′ ,

conv
(
clD(X̄ ′)

)
otherwise .

(132)

Therefore, by Proposition 5, IVP
(
D̃, x̄, [0, sf ]

)
is non-

empty, closed under uniform convergence, and u.s.c. on X̄ .
As D and D̃ are locally equivalent, IVP

(
D̃, x̄, [0, sf ]

)
=

IVP (D, x̄, [0, sf ]) on X̄ and the claim is proven.

D.2 Proof of Lemma 4
Suppose not. Then there exists a non-penetrating initial
state x̄0 = [q0; v0; t0] ̸∈ X̄P , compact interval [0, sf ],
and corresponding solution x̄(s) = [q(s);v(s); t(s)] ∈
IVP (D, x̄0, [0, sf ]) that penetrates at some sP ∈ (0, sf ]
(x̄(sP ) ∈ X̄P ). Thus some contact i ∈ I penetrates
at sP (ϕi(q(sP )) < 0). By the intermediate value
theorem, we may select sA ∈ [0, sP ) such that
ϕi(q(sP )) < ϕi(q(sA)) < 0 and contact i penetrates
on the entire interval [sA, sP ]. But then by the definition of
D(x̄), q(s) and therefore ϕi must be constant on [sA, sP ], a
contradiction.

D.3 Proof of Lemma 5
Suppose not. Then there exists a compact interval
[a, b]; solution x̄(s) ∈ SOL (D, [a, b]) with x̄(s) impacting
but not penetrating, x̄([a, b]) ⊆ X̄C \ X̄P ; and set S ={
s : ˙̄x(s) ∈ D(x̄(s)) \DC(x̄(s))

}
with positive measure.

Furthermore, ṫ(s)|S > 0 and q̇(s) = Γ(q(s))v(s)ṫ(s).
We will now show that allowing ṫ(s)|S > 0 must lead

to penetration and therefore a contradiction with Lemma 4.
By Lebesgue’s density theorem, we may select a point
of density a < s1 < b, i.e., for all δ > 0, [s1, s1 + δ] ∩
S has non-zero measure. As x̄(s) remains in X̄C , by
continuity of J(q) and x̄(s) we may select δ > 0 and a
contact i that is active ϕi(q(s)) = 0 with negative time
derivative Jn,iv(s) < 0 on [s1, s1 + δ] ⊆ [a, b]. Let ϕ̇max =
maxs∈[s1,s1+δ] Jn,iv(s) < 0. Then

ϕi(s1 + δ) =

∫
[s1,s1+δ]

Jn,iv(s)ṫ(s)ds , (133)

≤ ϕ̇max

∫
[s1,s1+δ]∩S

ṫ(s)ds , (134)

< 0 , (135)

and thus x̄(s1 + δ) ∈ X̄P , a contradiction.

D.4 Proof of Theorem 5
Let X̄ ⊆ X̄ cP be compact. By Corollary 2 there exists a
dissipation rate αX̄ (s) such that the impact differential
inclusion v̇ ∈ Dq(v) for each configuration q ∈ q(X̄ ) is
αX̄ (s)-dissipative. Let K̄ = maxX̄ ∥v∥M(q).

Suppose the claim is not true. Then, for some sf >

s∗(X̄ ) = K̄
αX̄(1) , there must exist a sequence of solu-

tions (x̄j(s))j∈N, x̄j(s) ∈ IVP
(
D, X̄ , [0, sf ]

)
, for which

the elapsed times grows arbitrarily small: tj(sf )− tj(0)→
0. By Theorem 4, IVP

(
D, X̄ , [0, sf ]

)
is compact, and

therefore by Assumption 5, the derivatives ˙̄xj(s) are uni-
formly bounded. Therefore (x̄j(s))j∈N is equicontinuous.
Thus by Proposition 5, a subsequence of x̄j(s) converges
uniformly to some x̄∞(s) with t∞([0, sf ]) = t∞(0). As
IVP

(
D, X̄ , [0, sf ]

)
is closed (Theorem 4), x̄∞(s) must also

solve the initial value problem.
We now show a contradiction arises because x̄∞(s)

follows impact dynamics longer than K̄
αX̄(1) . As t∞(s) is

constant, ṫ∞(s) = 0, and thus x̄∞(s) is following only
impact dynamics, x̄∞(s) ∈ IVP

(
DC , X̄ , [0, sf ]

)
. In order

for ˙̄x∞(s) to be selected from DC , we must have x̄∞(s) ̸∈
X̄S a.e., and thus v∞(s) ̸∈ S(q∞(s)) a.e. Additionally, as
x̄∞(s) only follows impact dynamics, the configuration is
constant, i.e. q∞([0, sf ]) = q∞(0) = q∞. Therefore v∞(s)
is a solution of v̇ ∈ Dq∞(v), and v∞(s) ∈ clC(q∞).
Therefore C(q∞) is non-empty and therefore has active
contact (q∞ ∈ QA). As, as X̄ is closed, q∞ ∈ q(X̄ ) and thus
v̇ ∈ Dq∞(v) is αX̄ (s)-dissipative. Finally, by Lemma 3,
sf <

∥v∞(0)∥M

αX̄ (1) ≤ s∗(X̄ ), a contradiction.

D.5 Proof of Corollary 3
As X̄ (sf ) is non-empty and compact for all sf > 0, tf (sf )
is well-defined. Then, lim infsf→∞

tf (sf )
sf
∈ [0, 1] as the DI

(53) enforces ṫ(s) ∈ [0, 1]. Consider a particular sf > 0,
and let x̄(s) ∈ IVP

(
D, X̄ , [0, sf ]

)
. By Theorem 5, t(s)

increases by t∗(X̄ ) over each interval of duration s∗(X̄ ),
bounding

tf (sf )

sf
≥ t∗(X̄ )

sf

⌊
sf

s∗(X̄ )

⌋
≥ t∗(X̄ )
s∗(X̄ )

− t∗(X̄ )
sf

. (136)

Therefore, lim infsf→∞
tf (sf )
sf
≥ t∗(X̄ )

s∗(X̄ )
.

E Simulation Proofs

E.1 Proof of Theorem 6
Consider some state [q; v] and normal impulse λn,max ≥ 0.
Let z = [β; λ̄; γ] Then we have

zTWqz =
1

2
zT
(
Wq +W T

q

)
z , (137)

=
∥∥∥J̄T λ̄∥∥∥2

M−1
+ λTnµγ , (138)

≥ 0 , (139)

where the final inequality holds because µ has positive
entries and M ≻ 0. Therefore, Mq is copositive.

Suppose further that z ∈ LCP(Wq,0), thus Wqz ≥ 0
and zTWqz = 0. Wqz ≥ 0 implies by construction that

λn ≤ 0 , ETλD ≤ µλn ≤ 0 . (140)

Therefore as λn,λD ≥ 0, λn = 0 and λD = 0. Finally, as
λn,max and β are non-negative,

zTwq(v,λn,max) = βTλn,max ≥ 0 . (141)

Therefore by Proposition 2, LCP(Wq,wq(v,λn,max)) is
non-empty.
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E.2 Proof of Theorem 7
Consider a state [q; v], normal impulse increment λn,max ≥
0, and solution to the impact LCP z =

[
β; λ̄; γ

]
∈

LCP(Wq,wq(v,λn,max)). Let v′ = v +M−1J̄
T
λ̄. Then

from the complementarity condition we have

0 = zT (Wqz +wq(v,λn,max)) , (142)

=
(
λ̄
T
J̄
)
v′ + λTnµγ + βTλn,max , (143)

= (v′ − v)
T
Mv′ + λTnµγ + βTλn,max , (144)

= ∥v′∥2M − vTMv′ + λTnµγ + βTλn,max , (145)

As λTnµγ + βTλn,max ≥ 0, ∥v′∥2M ≤ vTMv′. Cauchy-
Schwartz then gives ∥v′∥2M ≤ ∥v∥M ∥v′∥M , and thus
K(q,v′)−K(q,v) ≤ 0.

E.3 Impulse Advancement Lemma
If λn = 0 were allowed by the simulation LCP (75) at a
penetrating velocity v ∈ C(q), then v = v′ could be selected
in an infinite loop, and Algorithm 1 might never terminate.
The structure of the normal impulse constraints (73) and (74)
prevents this behavior by design for λn,max > 0:

Lemma 13. Impact Advancement (Appendix E.3).
Let [q; v] be colliding (v ∈ C(q)), and λn,max > 0.
Let λ̄ = [λn; λD] be an impulse generated by
LCP(Wq,wq(v,λn,max)). Then either some contact i
activates fully (λn,i = λn,maxi

), or all contacts terminate
(Jnv′(λ̄) ≥ 0).

Proof. Let [q; v] be an impacting state (v ∈ C(q)), and let
λn,max > 0 be a normal impulse. Consider an impact LCP
solution

[β; λn; λD; γ] ∈ LCP(Wq,wq(v,λn,max)) .

such that
λn < λn,max . (146)

Therefore for each contact i, the complementary equation
(73) yields βi = 0 as λn,maxi

− λn,i > 0. Then from
complementarity equation (74), Jn,iv′ ≥ 0.

E.4 Proof of Lemma 6
Consider a configuration q ∈ QA \ QP and λ̄ = [λn; λD]

obeying (33). By construction, J̄T λ̄ ∈ LFC(q). Let

F = LFC (q) ∩ J̄
T {[λn; λD] : ∥λn∥1 = 1} . (147)

As LFC (q) is a convex cone, r satisfies the claim if F ·
M−1r > 1. As LFC ⊆ FC, by Assumption 2, 0 ̸∈ F . F is
compact, non-empty, and convex polyhedron. Therefore, by
Rockafellar (1970, Theorem 11.4) there exists r̃ such that

ε = min
F∈F

F · r̃ > max
F∈−F

F · r̃ = −ε . (148)

Setting r(q) = M(q)r̃
ε satisfies the claim.

E.5 Proof of Theorem 8

Let q0 ∈ QA \ QP be a pre-impact configuration; let v0 ∈
C(q0) be a pre-impact velocity; and let h > 0 be a step size.
As each λn,max is selected from the uniform distribution
over the h-width box, we have that

cp = Eλn,max∼h·p

[
min
i

λn,maxi

]
=

h

m+ 1
. (149)

We assume WLOG that p is supported on the interior of
the unit box (0, 1)m, as the probability of being on the
boundary is 0. Let σ = σmin (M = M(q0)), and therefore√
σ ∥v∥2 ≤ ∥v∥M . Now, select r for q0 as defined in

Lemma 6. We will now show that the existence of r in
conjunction with dissipation (Theorem 7), allows us to create
a useful sufficient condition for impact termination.

Consider any execution of Algorithm 1 with initial state
[q0; v0], and let λkn,max, λ̄

k
= [λkn; λ

k
D] and vk be the

maximum normal impulse; selected impulse; and velocity
computed on lines 3–5 on the kth iteration of the loop. If
the loop has not terminated after K steps, then for all loop
iterations k ∈ {1, . . . ,K}, vk ∈ C(q0). By Theorem 7 and
Lemmas 6 and 13, we have that

∥v0∥M ≥ ∥vK∥M , (150)

≥
√
σ ∥vK∥2 , (151)

≥
√
σ

r

∥r∥2
· vK (152)

≥
√
σ

∥r∥2

(
r · v0 +

K∑
k=1

∥∥λkn∥∥1
)
, (153)

≥ −
√
σ ∥v0∥2 +

√
σ

∥r∥2

K∑
k=1

∥∥λkn∥∥1 , (154)

≥ −∥v0∥M +

K∑
k=1

√
σ

∥r∥2
min
i

λkn,maxi
. (155)

For this inequality to hold, and thus for vK to remain in
C(q0), it must be true that the summation in (155) is no
greater than 2 ∥v0∥M . Therefore, termination of the impact
within K steps (i.e. Z(h, q0,v0) ≤ K) is implied by ZK >
cZ ∥v0∥M , where

cZ =
2 ∥r∥2√

σ
, (156)

ZK =

K∑
k=1

min
i

λkn,maxi
. (157)

Given that the λn,max ∼ h · p are selected i.i.d. we have
that E [ZK ] = Kcp. Thus we would expect an impact to
terminate proportional to

K∗ =

⌈
cZ
cp

⌉
⌈∥v0∥M⌉ . (158)

We now bound the termination time Z using Hoeffding’s
inequality, applied below in (162); for k ∈ Z+ and K =
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2K∗ + k,

P (Z ≥ K) ≤ P (ZK ≤ cZ ∥v0∥M ) , (159)
≤ P (ZK ≤ K∗cp) , (160)
= P (ZK −Kcp ≤ − (K∗ + k) cp) , (161)

≤ exp

(
− 2

K
(K∗ + k)

2 c
2
p

h2

)
, (162)

≤ exp

(
− (K∗ + k)

c2p
h2

)
, (163)

≤ exp

(
− k

(m+ 1)2

)
. (164)

Thus the claim is satisfied.

E.6 Proof of Lemma 9
Suppose not. Then there exists a configuration q ∈ QA \
QP , velocity v, and ε > 0, such that for all N ∈ N, there
exists a vN , JnvN ≥ − 1

N , ∥vN∥M ≤ ∥v∥M , and yet v′
N =

fq(vN , ε1) ∈ C(q).
Due to energy dissipation (Theorem 7) and the

boundedness of vN , the sequence v′
N is bounded as well.

Without loss of generality we can therefore assume that
vN → v∞ and v′

N → v′
∞. As JnvN ≥ − 1

N , it must be
that Jnv∞ ≥ 0. Therefore, v′

∞ = fq(v∞, ε1m) = v∞ via
Lemma 8. As vN and v′

N converge to each other, there exists
an N∗, with LCP-selected force λ̄N∗ = [λn; λD] such that

∥(v′
N∗ − vN∗)∥2 =

∥∥∥M−1J̄
T
λ̄N∗

∥∥∥
2
<

ε

∥r(q)∥2
, (165)

where r(q) comes from Lemma 6. However, by Lemma 13,
as v′

N∗ ∈ C(q), at least one contact must fully activate,
and thus ∥λn∥1 ≥ ε. But then again by Lemma 6,∥∥∥M−1J̄

T
λ̄N∗

∥∥∥
2
≥ ε

∥r(q)∥2
, a contradiction.

E.7 Proof of Theorem 9
First we show that generating an ε-net of V∞(x0, h) \ C(q0)
can be reduced to generating an ε′-net of VN (x0, h) for a
suitable (ε′, N). We then show that VN (x0, h) is the image
of a box under a Lipschitz function, and apply Lemma 1.

Select an initial x0 = [q0; v0] ∈ (QA \ QP )× Rnv ; step
size h > 0; and constants ε, δ > 0. Define ψ as on line 2 of
Alg. 2. Select

ε′ = min

ε

3
,
δ
(
ε
3ψ ,v0

)
2σmax(Jn)

 , (166)

where δ
(
ε
3ψ ,v0

)
comes from Lemma 9. Via Lemma 10,

select N such that VN (x0, h) is an ε′-net of V∞(x0, h).
Consider a run of Approximate(h,x0, ϵ,N,M) for some
M > 0. Suppose that the M samples generated on line 4
of Alg. 2 constitute a ε′ net of VN (x0, h). Consider a post-
impact velocity v1 ∈ V∞(x0, h) \ C(q0). Then there exists
a v2 ∈ VN (x0, h) with ∥v1 − v2∥2 < ε′. Pick the closest v3

to v2 selected on line 4 of Alg. 2. From (166), we know that
∥v3 − v2∥2 ≤

ε
3 , and Jnv3 ≥ −δ

(
ε
3ψ ,v0

)
. v3 is used to

generate v4 = fq0
(v3,

ε
3ψ1m) on line 5, and Jnv4 ≥ 0 via

Lemma 9.
v4 is thus in the post-impact set V∞(x0, h) \ C(q0) and

is output by Approximate(h,x0, ϵ,N,M). Suppose that
λ̄ = [λn; λD] was the LCP-selected force in the calculation
of v4; we then have that ∥v4 − v3∥2 ≤

ε
3 by construction of

ψ on line 2 of Algorithm 2. Thus, ∥v4 − v1∥2 is smaller than

∥v2 − v1∥2 + ∥v3 − v2∥2 + ∥v4 − v3∥2 ≤ ε . (167)

Therefore, the claim is true if the samples from VN (x0, h)
generated on line 4 of Algorithm 2 are a ε′ net of VN (x0, h)
with probability 1− δ; we now calculate aM that guarantees
this property.

Consider the sequence of functions

f1(λ1
n) = fq0(v0,λ

1
n) , (168)

fk(λ1
n, . . . ,λ

k
n) = fq0(f

k−1(λ1
n, . . . ,λ

k−1
n ),λn) . (169)

Examining (84), we see that

VN (x0, h) = fN ([0, h]Nm) . (170)

Furthermore, if fq0
has Lipschitz constant L, then fN

is Lipschitz with constant no more than LN by the
composition rule for Lipschitz functions. Under Assumption
6, Sim(h,x0, N) yields a uniform sample of [0, h]Nm

mapped under fN . Therefore, the claim holds, withM given
by Lemma 1:

M ≥ ln(δΩ)

ln(1− Ω)
, Ω =

⌈
hLN

√
Nm

ε′

⌉−Nm

. (171)
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