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ABSTRACT

ADDRESSING STIFFNESS-INDUCED CHALLENGES

IN MODELING AND IDENTIFICATION

FOR RIGID-BODY SYSTEMS WITH FRICTION AND IMPACTS

Mathew Halm

Michael Posa

Imperfect, useful dynamical models have enabled significant progress in planning and controlling

robotic locomotion and manipulation. Traditionally, these models have been physics-based, with

accuracy relying upon manual calibration only feasible in laboratory environments. As robotics

expands into complex real-world applications, models of unknown environments must instead be

automatically fit to limited data. One major challenge is modeling frictional contact, especially

during collisions involved in common robotics tasks. Rapid deformation under impact manifests as

extreme sensitivity to initial conditions and material properties. Thus, even slight errors in state

estimation and system identification can lead to significant prediction errors. Consequently, model

inaccuracy or the sim-to-real gap often hinders the development of performant robotics algorithms.

Physical models can be optimized using advanced techniques to overcome these challenges, but such

methods have limited tractability when a large number of parameters are unknown. Furthermore,

even given accurate parameters, roboticists often make inaccurate rigid-body approximations to

reduce the computational burdens of physical simulation to meet faster-than-real-time requirements.

An alternative black-box approach, in which models are learned from scratch, has attempted to

address these issues for instance using deep neural networks (DNN’s). While DNNs in theory can

capture any dynamical behavior, they empirically struggle with the stiff behaviors associated with

contact.

This dissertation instead focuses on scaling physical model identification to the high-dimensional

setting and quantifying the limited accuracy of low-fidelity models. We consider rigid bodies under-
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going rigid contact, for which infinite stiffness is represented as constrained optimization. By careful

treatment of these constraints, we demonstrate that infinitely-stiff dynamics can be identified by op-

timizing a non-stiff objective. In conjunction, we use DNN’s in a white-box setting to model physical

quantities, specifically reconstructing geometries from scratch. We then consider how rigid-body

collision models lack the fidelity to correctly predict outcomes of nearly-simultaneous impacts—such

as heel and toe strikes during a footstep. We develop a theoretical basis to capture partial knowl-

edge of impact events as uncertain set-valued outcomes, and again use numerical optimization to

compute approximations of such sets.
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CHAPTER 1

Introduction

Imperfect but useful dynamical models have long enabled improvements in planning and control

of robotic locomotion and manipulation. Traditionally, roboticists have relied on high-accuracy,

physics-based models of tightly-controlled laboratory environments. In these settings, obtaining

such a model is often a manual process, in which physical properties such as masses, lengths,

and shapes are often preliminarily calculated from design documents, and a handful of important

quantities may be further calibrated with abundant measurements from precise instrumentation.

However, as robotics shifts toward complex real-world applications in unknown environments, model

accuracy requirements are increasing; calibration data is becoming scarcer; and the model-fitting

process must be fully automated. In response, recent work in the field has focused on how empirical,

data-driven models can be automatically fit to the limited available data. In spite of these efforts,

model inaccuracy or the sim-to-real gap remains a common bottleneck in both machine learning-

based (Ibarz et al., 2021) and mechanics-based robotics algorithms (Wensing et al., 2022).

Frictional contact, the physical process driving these robotic tasks, is a principal source of these

challenges. Impacts among robots and their surroundings are particularly difficult to model. When

objects collide, materials deform on an imperceptibly small spatial and temporal scale, preventing

interpenetration. The underlying material property driving this rapidity, mechanical stiffness, causes

multiple forms of numerical stiffness in the equations of motion of these systems (Stewart, 2000).

Even small changes in initial conditions and material properties generate large changes in real-world

outcomes. Additionally, measurements of the velocities are extremely sensitive to the time that they

are recorded, as they change near-instantaneously during impact (Fazeli et al., 2017b). Accordingly,

small errors in state estimation and parameter identification produce large prediction error, even

over a small time horizon (Chatterjee, 1997; Ajay et al., 2018; Ibarz et al., 2021). These properties

become significant problems when fitting a model of a real system from noisy sensor measurements.

In settings where only a handful of parameters are unknown, the field has derived several tools
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to overcome these challenges with purely physics-based models. When many more datapoints

than unknowns are available (known as underparameterization), statistical analysis can guaran-

tee that the parameters that minimize objectives akin to nonlinear least-squares are highly accurate

(Belkin et al., 2019; Bianchini et al., 2022). While the stiffness in the dynamics makes the pro-

cess of finding such parameters numerically challenging, the low-dimensional setting allows such

difficulties to be overcome by applying advanced optimization techniques, such as second-order

(Kolev and Todorov, 2015), constrained (Fazeli et al., 2017b), or global (Heiden et al., 2020) meth-

ods. Utilizing these techniques can be difficult, as their setup require extensive human knowledge

of the robot and its surroundings, and fitting model parameters requires expertise in both me-

chanics and optimization. Prior art has not explored how higher-dimensional unknowns, such as

reconstructing geometries from scratch, could be effectively embedded into these techniques. Fur-

thermore, the outcomes of collisions have a complex relationship with the material properties and

deformation dynamics of the involved objects (Chatterjee, 1999). These behaviors are in general are

not tractable to simulate under the faster-than-real-time computational requirements of real-world

robotics problems. Under these constraints, roboticists typically only have access to rigid-body

models, a tractable but coarse approximation of contact mechanics in which objects do not deform.

Therefore, even excellent parameter identification algorithms produce models that are fundamen-

tally limited by these inaccuracies (Fazeli et al., 2017a).

Due in part to these difficulties, an alternative approach has emerged, in which the entirety of the

dynamical behavior of robots and their environments are learned from scratch (Ajay et al., 2019;

Janner et al., 2019; Chua et al., 2018; Nagabandi et al., 2019; Ajay et al., 2018; Ibarz et al., 2021).

In this setting, often referred to as black-box modeling, the dynamics are modeled as a universal

function approximator such as a deep neural network (DNN); such models have a vast number of

unknown parameters which give them the flexibility to capture any possible dynamical behavior.

However, particularly in the case where the dynamics to be learned are stuff, this flexibility comes

as significant cost. As these tools are often used in an overparameterized regime where the pa-

rameters outnumber available data, many distinct models may exactly fit the training data, and

one must be selected via an inductive bias. Unfortunately, in direct conflict with the stiff and
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nearly-discontinuous behaviors of frictional contact, deep learning techniques tend to select the

smoothest interpolator of the data. This behavior is both a predisposition of common training tech-

niques (Belkin et al., 2019; Ribeiro et al., 2020) and an explicit goal of common regularizers such as

weight-decay and spectral normalization (Zhang et al., 2019; Miyato et al., 2018). Furthermore, the

high-dimensional setting does not allow tractable application of advanced optimization techniques;

instead, the domain is limited to first-order stochastic gradient descent (SGD).

In consideration of these challenges, this thesis instead returns to physics based modeling, with the

broad goals of 1) scaling the identification problem to the high-dimensional setting; and 2) capturing

and computing the extent to which low-fidelity physics models are inherently incapable of making

precise predictions. We focus on the domain of rigid-body models with rigid contact, in which ex-

treme sensitivity in the infinite stiffness limit is represented as constrained numerical optimization

embedded into the systems dynamics. We take inspiration from many recent robotics algorithms

which leverage this optimization structure for effective and efficient simulation, estimation, plan-

ning and control (Stewart and Trinkle, 1996; Aydinoglu et al., 2022, 2023; Posa et al., 2013, 2014;

Wensing et al., 2022). By careful treatment of the constraints embedded in these dynamical sys-

tems, we will discover how even infinitely-stiff dynamics can be identified by optimizing a non-stiff

objective (Bianchini, Halm, Matni, and Posa, 2022). With a well-condition optimization technique,

we then effectively use DNN’s as a computational tool in a white-box modeling setting, where they

can be used to represent unknown geometries that are reconstructed with minimal priors. For such

models with well-identified parameters, we then consider how the simplified rigid-body view of col-

lisions lacks fidelity to correctly predict the outcomes of nearly-simultaneous collisions commonly

encountered in robotics—such as heel and toe strikes during a foot step. We develop a theoretical

basis to capture partial knowledge of such events as uncertain set-valued outcomes, and again use

numerical optimization to compute approximations of such sets.

1.1. Outline and Contributions

We begin in Chapter 2 by presenting a comprehensive background on dynamical systems; rigid-

body dynamics; and system identification. In the Chapter 2 and main body of the text, sufficient

3



background is provided to illuminate the meaning and importance of our primary theoretical and

practical results. In the interest of readability, we sequester detailed proofs and technical lemmas

to the appendicies, with supplemental theoretical background in Appendix A.

In Chapter 3, we summarize recent and seminal works related to system identification; integration

of neural networks into physical models; and neural representations of geometry.

Our primary contributions begin in Chapter 4, in which we present concrete, empirical evidence

that naïve deep-learned approaches fail to capture numerically stiff contact behaviors, first published

Parmar*, Halm*, and Posa (2021). We isolate the effects of contact’s non-smoothness by varying

the mechanical stiffness of a compliant contact simulator, and describe and motivate the selection

of a canonical “die roll” system upon which such effects are exhaustively evaluated. Even with

meticulously optimized hyperparameterd, we find that stiffness alone dramatically degrades the

model-fitting processes; generalization, and data-efficiency. Additional experimental details are

provided in Appendix B.

In Chapter 5, we leverage the optimization-based structure of rigid-body models to develop an al-

ternative, mechanics-based model-fitting objective to prediction error; this work was originally pub-

lished in Pfrommer*, Halm*, and Posa (2020) and Bianchini, Halm, Matni, and Posa (2022). We

prove that this objective tightly approximates graph distance, a well-accepted but computationally-

intractable measure of model quality (Cifarelli, 1988; Adcock, 1878). We demonstrate our objective’s

superior ability to avoid local minima during the model optimization process. Technical lemmas

and proofs are provided in Appendix C.

In Chapter 6, we investigate how physics-based model identification can be scaled from fitting

a few scalar parameters to identifying infinite-dimensional unknowns, such as object geometries.

In Pfrommer*, Halm*, and Posa (2020), we develop a novel, implicit representation that we call

ContactNets, in which deep neural networks parameterize geometries as unions of convex shapes.

The parameters of these networks can be fit to data by optimizing our mechanics-based objective.

We demonstrate that ContactNets can identify geometric and frictional properties of an object

4



rolling, pivoting, and sliding against its environment from less than a minute of motion capture

data. Theoretical results are detailed in Appendix D.

Finally in Chapter 7, we examine how, given well-identified parameters, rigid-body models can

represent extreme sensitivity to initial conditions with set-valued predictions. We focus on sensitivity

due to the rapid ordering or sequencing of impact forces in nearly-simultaneous collisions. As existing

rigid-body models lack the fidelity and accuracy to predict this ordering, we develop a set-valued

rigid-body model which captures the set of all impact orderings as a continuous-time differential

inclusion, published in Halm and Posa (2019) and Halm and Posa (2023). We rigorously prove

key theoretical properties of this model, including existence of solutions, and develop a sampling-

based algorithm to tightly approximate the set of possible collision outcomes. We demonstrate our

approach on several examples drawn from robotic manipulation and locomotion. Both experimental

details and theoretical proofs are provided in Appendix E.

We conclude in Chapter 8 with a summary of both the described work and potential future avenues

of study.
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CHAPTER 2

Background

In this chapter, we discuss the mathematical and mechanical context around our work. We be-

gin with some essential mathematical definitions (Section 2.1); common operations’ notation is

listed in Table 2.1. We then build a context for physical dynamical models, with an overview of

dynamical systems (Section 2.2); set-valued functions (Section 2.3) and dynamics (Section 2.4);

rigid-body mechanics (Section 2.5); and dynamical systems with embedded optimization problems

(Section 2.6). We summarized associated notation in (Table 2.2). We then turn towards review of

essential algorithms for robotics. We define the system identification problem (Section 2.7), and

provide additional details for data-driven, neural network modeling in particular (Section 2.8); these

concepts will be essential in Chapters 4 to 6. We conclude with some brief tools from sampling-

based approximation (Section 2.9), necessary for computational approximations of the set-valued

dynamics we derive in Chapter 7.

2.1. Mathematical Definitions

The total derivative of an absolutely continuous function f(t) is denoted ḟ(t). f : A→ B is Lipschitz

continuous with constant L if for all a1, a2 in A, ∥f(a1)− f(a2)∥2 ≤ L ∥a1 − a2∥2. An absolutely

continuous f(t) has this property if
∥∥∥ḟ(t)

∥∥∥
2
≤ L almost everywhere (a.e.). The composition of

Lipschitz functions is also Lipschitz:

Proposition 1. let f, g : A × B → A be two Lipschitz functions with constants Lf and Lg. Then

h(a, b1, b2) = f(g(a, b1), b2) is Lipschitz with constant LfLg.

We say a function α(s) : Ω→ clR+, is positive definite if it is positive on Ω \ {0} and α(0) = 0.

2.2. Modeling Robots as Dynamical Systems

Many robotics algorithms—including planners, controllers, estimators, and simulators—are funda-

mentally model-based, in that a core dependency is a dynamical-system model of robots and their
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Table 2.1: Frequently-used constants and
operations on sets A,Ai, A

′, B, scalars c,
vectors v,w, matrices M ,N , and functions
f : A → B, g(t) : R → R

n, D : A → P (B).
For brevity, we frequently write a singleton
{a} without braces.

Expression Meaning

Ac complement of A
int(A) interior of A
cl(A) closure of A
co(A) convex hull of A
P (A) power set of A
MA scaled set, {Ma : a ∈ A}
−A (−1)A
A+B Minkowski sum of A and B
A−B Minkowski sum of A and −B

[A1; . . . Ak] Cartesian product A1 × · · · ×Ak

f(A′) image of A′, {f(a′) : a′ ∈ A′}
D(A′) image of A′, ∪a′∈A′D(a′)
ġ(s) total derivative d

ds
g

vi ith element of v
σmax(M) maximum singular value of M
σmin(M) minimum singular value of M
M ≻N M −N is positive definite
M ⪰N M −N is pos. semi-definite
v > w vi > wi for each i
v ≥ w vi ≥ wi for each i
A > 0 each element of A is positive
A ≥ 0 each element of A is non-negative
∥A∥F Frobenius norm of A
∥v∥p lp norm of v for p > 0

∥v∥
M

M -norm
√
vTMv, M ⪰ 0

v̂ unit direction, v

∥v∥
2

, of v ̸= 0

Ball(c) c-radius ball {v : ∥v∥
2
< c}

1 matrix/vector of all 1’s
0 matrix/vector of all 0’s

R
n+ {v ∈ R

n,v ≥ 0}
dual(A) dual cone of A
proj(v, A) projection of v onto A

Table 2.2: Dynamics terms for rigid bodies and fric-
tional contact. Some terms are written with the de-
pendence on their inputs suppressed.

Term Meaning

nq number of configuration variables
nv number of generalized velocities
m number of contacts
nθ number of system parameters
t time
q robot/environment configuration
v robot/environment velocity
x robot/environment state
x′ next robot/environment state
θ system parameters
u robot/environment input forces

Γ(q) generalized velocity Jacobian (2.2)
fθ(x,u) State update equation (2.3)
M(q) generalized mass-inertia matrix (2.8)
Fs(x,u) non-contact forces (2.8)
φ(q) signed distance between bodies
K(q,v) total kinetic energy (2.9)
Jn(q) normal velocity Jacobian
Jt(q) tangent velocity Jacobian
J(q) full contact velocity Jacobian (2.24)
I set of all contacts
IA(q) active/touching contact set at q (2.11)
IP (q) penetrating contact set at q (2.12)
QA set of active-contact configurations
QP set of penetrating configurations
X̄A set of active-contact states
X̄P set of penetrating states
C(q) set of colliding velocities at q (2.26)
S(q) set of separating velocities at q (2.27)
λn normal forces vector
λt frictional contact forces vector
λ full contact forces vector (2.25)
µi ith contact Coulomb friction coeff.

FC (q) Coulomb friction cone at q (2.16)
LFC (q) linear friction cone at q (2.20)
JD linear tangent vel. Jacobian (2.32)
λD linear friction forces vector (2.32)
J̄ linear velocity Jacobian (2.33)
λ̄ linear contact forces vector (2.33)
Λn normal impulses vector
Λt frictional impulses vector
Λ full contact impulse vector

gθ(x,u,Λ) optimization-based update (2.37)
hθ(x,u,x

′,Λ) optimization-based objective (2.37)
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environments. Continuous-time models are often described with a differential equation

ẋ(t) = fθ(x(t),u(t)) . (2.1)

Here, the state x = [q;v] captures positions and velocities of the robot and various objects in it’s

environment via a configuration q ∈ R
nq and generalized velocity v. Though v ∈ R

nv is equal to

dq
dt for some systems, others (e.g. those relating angular velocities and quaternion derivatives) obey

dq = Γ(q)vdt , (2.2)

for some smooth, bounded, full-column-rank Γ(q). ẋ = dx
dt represents the time derivative of the

state. u ∈ R
nu are inputs, such as motor torques, under direct control of the robot. When simulating

such dynamics, it is common practice to develop a discrete-time approximation of (2.1),

x′ = fθ(x,u) , (2.3)

where (x,u) is the current state and input and x′ the next state after a time-step of duration ∆t.

The behavior of such systems are defined jointly by their parameters θ ∈ R
nθ and laws of motion

f . In the case of a rigid-body model, θ for instance may include masses; link lengths; and object

geometries, while f is some form of Newton’s laws of motion. By contrast, some data-driven models,

such as neural networks, can have millions of parameters; fθ in this setting can tightly approximate

any function, depending on the particular choice of θ.

2.3. Set-Valued Maps

Our mathematical constructions and theoretical results will frequently make use of set-valued maps

D(a) : A → P (B), which take as input an element a ∈ A an output a subset of B′ of some

output space B. For notational compactness, we will often use various shorthand forms of set-

valued operations, listed as part of Table 2.1. Set-valued maps may exhibit properties reminiscent

of continuity for single-valued functions. We in particular will make frequent use of an upper semi-
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continuity (u.s.c.) property:

Definition 1. A function D : A → P (B) is upper semi-continuous if for any input a and neigh-

borhood B′ of D(a), there exists a neighborhood A′ of a with B′ ⊆ D(A′). Equivalently, if B is

compact, for all convergent sequences {an}n∈N and {bn}n∈N,

bn ∈ D(an) , ∀n =⇒ lim bn ∈ D(lim an) .

2.4. Differential Inclusions

(a) (b)

Figure 2.1: (a) Graph of Unit(v) for n = 1. Unit(v) is continuous at v ̸= 0. At 0, Unit takes
the value [−1, 1], which contains a continuous extension of v̂ from both the left (−1) and the right
(+1), so that Unit is u.s.c.. (b) Flow field (yellow) of the solutions (blue, red) to v̇ ∈ −Unit(v) for
v ∈ R

2.

We will later see that in continuous time, the dynamics of rigid bodies under frictional contact

present complexities that the ODE formulation (2.1) cannot capture, as multiple outcomes that

obey Coulomb’s law of friction may exist (non-unique behaviors) (Stewart, 2000). It is then useful

to define an object that, unlike ODEs, allows for the derivative at each state to lie in a set of possible

values

ẋ ∈ D(x) . (2.4)

As the set-valued mapD(x) associated with friction may not be continuous, conditions for a function

x(t) to solve this differential inclusion (DI) are weaker from those for an ODE:
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Definition 2. For a compact interval [a, b], x : [a, b]→ R
n is a solution to the differential inclusion

ẋ ∈ D(x) if v is absolutely continuous and ẋ(t) ∈ D(x(t)) a.e. on [a, b]. Denote the set of such

solutions as SOL (D, [a, b]).

Solutions to initial value problems for (2.4) are defined similarly:

Definition 3. The set of solutions to ẋ(t) ∈ D(t) with initial condition x(a) = x0 over the interval

t ∈ [a, b] are denoted as IVP (D,x0, [a, b]).

In Figure 2.1, we consider an example DI

v̇ ∈ −Unit (v) , (2.5)

where Unit (x) is the set-valued unit direction function

Unit (v) =





{v̂} x ̸= 0 ,

{v : ∥v∥2 ≤ 1} = cl(Ball(1)) v = 0 .

(2.6)

The unique solution to the initial value problem starting from v(0) = v0 has the form

v(t) = max (∥v0∥2 − t, 0) v̂0 . (2.7)

This solution is non-differentiable at t = ∥v0∥2 and thus is not a solution of any ODE. In general,

non-emptiness and regularity of the initial value problem depends on the structure of D(x); fortu-

nately, we will later show that solution sets for frictional dynamics are well-behaved due to their

upper semi-continuous (u.s.c.) structure:

Proposition 2 (Aubin and Cellina (1984)). Let x0 ∈ R
n and [a, b] be a compact interval. Suppose

D(x) is uniformly bounded (i.e. D(x) ⊆ Ball(c) for some c > 0). If D(x) is u.s.c., closed, convex,

and non-empty at all x, then IVP (D,x0, [a, b]) is non-empty and u.s.c. in x0 under uniform

convergence.
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U.s.c. functions have the useful property that they map compact sets to closed sets, and Proposition

2 immediately and crucially implies that SOL (D, [a, b]) and IVP (D,x0, [a, b]) are non-empty and

closed under uniform convergence. The DI in Figure 2.1 for example exhibits this structure.

Similar to continuous functions, there are several useful compositional rules which preserve upper

semicontinuity; finite combination of u.s.c. functions by cartesian product, convex hull, composition,

union, and addition are all u.s.c..

2.5. Rigid-Body Dynamics with Frictional Contact

A popular physics-based model class for robotics is articulated rigid-body models. In these models,

bodies do not deform, and their states are completely described by the position; orientation; linear

velocity; and angular velocity of a nominal frame affixed to the body.

2.5.1. Continuous-time Evolution Without Impacts

We begin be describing the dynamics of rigid-bodies which may experience finite contact forces

under sustained contact, but do not experience collisions or sudden changes in velocity. Contact

between these bodies is modeled as occurring at up to m point pairs (for a thorough introduction,

see Brogliato (1999) and Stewart (2000)) referred to as the contacts I = {1, . . . ,m}. Impactless

evolution of the system is governed by the manipulator equations

M(q)
dv

dt
= Fs(x,u) +

∑

i∈I
Ji(q)

Tλi . (2.8)

Here, the continuous function M(q) ≻ 0 is the generalized inertial matrix, related to the kinetic

energy K(q,v) by

K(q,v) =
1

2
∥v∥2M(q) =

1

2
vTM(q)v . (2.9)

By assumption, there exist global c1, c2 > 0 such that c1I ⪰ M ⪰ c2I. Fs aggregates smooth,

non-contact forces (e.g. potential, gyroscopic, and input forces as well as Coriolis and centrifugal

effects). For each i, JTi λi is the net (generalized) force due to the ith contact. Ji = [Jn,i;Jt,i] is

the contact Jacobian which maps generalized velocities into Euclidean velocities in the ith contact

frame normal (Jn,i) and tangential (Jt,i) directions. λi = [λn,i;λt,i] are the contact-frame normal
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forces λn,i and frictional forces λt,i, which are typically dictated by two essential physical laws:

• Normal complementarity: The signed distance φ(q) ∈ R
m captures object geometry as

inter-body distances. Normal forces push bodies apart, and neither penetration nor force-at-

a-distance are possible; that is, for each i,

Jn,i =
∂φi

∂q
Γ , 0 ≤ λn,i ⊥ φi(q) ≥ 0 . (2.10)

We denote the active and penetrating contacts at q as

IA(q) = {i ∈ I : φi(q) ≤ 0} , (2.11)

IP (q) = {i ∈ I : φi(q) < 0} . (2.12)

• Maximal dissipation: Friction dissipates as much power (Jt,iv · λt,i) as possible. Couloub

friction with coefficient µi in particular obeys this property within the admissible set

{
λt,i : ∥λt,i∥2 ≤ µiλn,i

}
. (2.13)

The corresponding set of generalized forces is the friction cone

FC(q) =
∑

i∈IA(q)

{
Ji(q)

Tλi : ∥λt,i∥2 ≤ µiλn,i
}
.

The maximally-dissipative friction force and associated generalized force opposes the sliding

direction Unit(Jt,iv) as much as possible:

λt,i ∈ −µiλn,iUnit(Jt,iv) , (2.14)

Fi(q,v,λn,i) =
(
JTn,i − µiJTt,iUnit(Jt,iv)

)
λn,i . (2.15)
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We note in particular the identity

FC (q) =
∑

i∈IA(q)

Fi(q, 0,R
+) . (2.16)

A common variant of this model is the linearized Coulomb model, in which the admissible set

is replaced with {λt,i ∈ µiλn,ico ({d1, . . . ,dk})} for some unit-length vectorsD = [d1, . . . ,dk],

leading to similar definitions of forces and a linearized friction cone:

UnitD(r) = co

(
argmax

di
di · r

)
, (2.17)

λt,i ∈ −µiλn,iUnitD(Jt,iv) , (2.18)

FD,i(q,v,λn,i) =
(
JTn,i − µiJTt,iUnitD(Jt,iv)

)
λn,i , (2.19)

LFC (q) =
∑

i∈IA(q)

FD,i(q, 0,R
+) . (2.20)

The identity UnitD(r) ⊆ UnitD(0) ⊆ Unit(0) leads to

∑
i∈IA(q) FD,i(q,v,R

+) ⊆ LFC (q) ⊆ FC (q) . (2.21)

φ is Lipschitz and continuously differentiable. We also assume that for all active, non-penetraing

contacts, there exists a generalized velocity for which the contact is separating:

Assumption 1. ∀i, φi(q) = 0 =⇒ Jn,i(q) ̸= 0.

Jn,i is bounded and continuous by the properties of φ and Γ, while Jt,i has the same properties

by assumption. These properties can be guaranteed, for instance, for piecewise-smooth bodies with

bounded curvature. We note that because φ is continuous, IA(q) and I \ IP (q) are u.s.c. in q.

From these functions we also define QA = {q : IA(q) ̸= ∅}, the configurations with active contact,

and QP = {q : IP (q) ̸= ∅}, the interpenetrating configurations.

We will often see that various theoretical guarantees (seminally including existence of solutions in
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continuous and discrete time (Stewart, 2000)) for such systems depend on a pointedness assumption

on the friction cone FC:

Assumption 2 (Pointed Friction Cone). At any configuration q, the friction cone FC(q) is pointed

in some direction d(q):

∀F ∈ FC(q),d(q) · F ≥ ∥F ∥2 . (2.22)

Therefore, there also exists p(q) such that for any λ in the Coulomb admissible set (2.13),

∥∥JTλ
∥∥
2
≥ p(q) ∥λ∥2 . (2.23)

Finally, we define the following notation:

Jn =




Jn,1
...

Jn,m



, Jt =




Jt,1
...

Jt,m



, J =



Jn

Jt


 , (2.24)

λn =




λn,1
...

λn,m



, λt =




λt,1
...

λt,m



, λ =



λn

λt


 , (2.25)

C(q) = {v ∈ R
nv : ∃i ∈ IA(q), Jn,iv < 0} , (2.26)

S(q) = {v ∈ R
nv : ∀i ∈ IA(q), Jn,iv > 0} . (2.27)

C(q) is the set of colliding velocities, for which an active contact is moving towards penetration

and must cause an impact. S(q) is the set of separating velocities, where no impact occurs as all

contacting surfaces are moving away from each other. While C(q) and S(q) are disjoint, there may be

some velocities in neither set; these cases may generate impacts, as in Painlevé’s Paradox (Stewart,

2000). By Assumption 1, when q is non-penetrating, S(q) = int (C(q)c) and C(q) = int (S(q)c).
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2.5.2. Instantaneous, Inelastic Impact Laws

(2.8), (2.10), and (2.14) provide only a partial solution to initial value problems (IVPs). Bodies

can collide or come into contact with non-zero velocity (φi(t) = 0 and d
dtφi(t) < 0); penetration

therefore must be avoided via an impact or instantaneous velocity jump

M(q)(v+(t)− v−(t)) =∑i∈IA(q) Ji(q)
T
Λi, (2.28)

arising from instantaneous contact impulses Λi. As dv
dt does not exist, an alternative formulation

to ODEs equations in time is required to capture this behavior.

Several models select Λ via an impulsive analog to Coulomb’s friction law (Anitescu and Potra,

1997; Glocker and Pfeiffer, 1995; Routh, 1891), with additional constraints pertaining to the elas-

ticity of the impact. We focus discussion and our own modeling efforts on inelastic collisions, which

are well defined in the single-impact case via the constraint Jn,iv
+ = 0. Each discussed model

makes its own generalization of this concept to simultaneous impacts, and there is in general no

single accepted rule (Stewart, 2000). In Chapter 7 we will consider and combine concepts from two

families of such models: algebraic and differential. We will discuss how each method makes its own

nuanced translations of the complementarity and maximal dissipation laws for sustained contact,

resulting in distinct theoretical and computational characteristics.

Algebraic methods calculate Λi as the solution to a finite-dimensional system of algebraic equations

(Anitescu and Potra, 1997; Hurmuzlu and Marghitu, 1994; Glocker and Pfeiffer, 1995), which relate

the pre- and post-impact velocities to the impact’s underlying impulses. Such systems of equations

can be approximately computed via numerical optimization.

In some of these models, all impacts are resolved simultaneously. For instance, Glocker and Pfeiffer

(1995) and Anitescu and Potra (1997) solve for an impulse Λ which both prevents penetration and
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(approximately) satisfies linearized Coulomb friction at the post-impact velocity v+:

find v+; {Λi : i ∈ IA} , (2.29a)

s.t. impulse balance (2.28) , (2.29b)

0 ≤ Λn,i ⊥ Jn,iv+ ≥ 0 , (2.29c)

Λt,i ∈ −µiΛn,iUnitD(Jt,iv
+) . (2.29d)

A critical feature of the algebraic formulation (2.29) is the use of linearized Coulomb friction, which

allows it to be cast as a linear complementarity problem (LCP); this class of problems is further

discussed in Section 2.6. We refer the reader to Stewart and Trinkle (1996) for a full description,

but provide a short summary below. Letting λt,i = DλD,i and JD,i = DTJt,i, (2.29d) can be

captured as as the complementarity constraints

0 ≤ λD,i ⊥ JD,i(q+)v+ + 1γi ≥ 0 , (2.30)

0 ≤ γi ⊥ µiλn,i − 1
TλD,i ≥ 0 . (2.31)

For convenience, we define the lumped terms

λD =




λD,1
...

λD,m



, JD =




JD,1
...

JD,m



, (2.32)

λ̄ =



λn

λD


 , J̄ =



Jn

JD


 . (2.33)

This casting of multiple, simultaneous impacts as a single LCP is a significant computational ad-

vantage, as only one, solvable numerical program must be instantiated to calculate the post-impact

velocity. However, the constraints embedded in this problem are often violated in real systems with

16



multiple contacts, in particular the so-called velocity-based complementarity (2.29c) formulation of

inelasticity (Chatterjee, 1999).

An alternative algebraic view of simultaneous impacts that does not require the same velocity-

based complementarity constraints is to resolve multi-impact as a sequence of individual impacts,

as in Ivanov (1995); Smith et al. (2012); Seghete and Murphey (2014); and many other models. To

summarize this technique:

1. Pick a single active contact i ∈ IA(q).

2. Resolve a single impact at i with some impulse Λi, and increment v ← v +M−1JTi Λi.

3. Terminate and take v+ = v if it is non-colliding (v ̸∈ C(q)); otherwise, return to step 1.

Various methods differ in their choice of contact ordering as will as single-impact resolution, resulting

in distinctly different final outcomes to the same initial conditions. Some such methods are only able

to guarantee that the process terminates under significant assumptions, e.g. two or fewer contacts

(Seghete and Murphey, 2014). In Chapter 7, sequences of single impacts resolved using (2.29) will

serve as a point of comparison for a new collision law that we develop. Finally, such methods by

design are unable to directly represent partially-concurrent impacts that occur in real-world systems.

As opposed to algebraic models, differential impact models consider continuous evolution of velocity

from pre- to post-impact velocity, in which the total derivative of v satisfies laws of frictional contact

in some form. In the context of rigid contact models, this derivative dv
ds is with respect to a variable

of integration s which does not correspond to time, but rather measures the impulse accumulated

over an instantaneous collision. At least in a limited capacity, such methods do directly represent

the time-dependence and continual evolution of real-world object velocities during impact, which

in Section 7.4 will allow us to represent partially-concurrent impacts resolving at arbitrary relative

rates. This fidelity however necessitates computationally expensive simulation of non-smooth or

constrained differential equations to resolve impacts, and thus such methods have not been a focus

of modern, efficient simulation.
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Figure 2.2: Velocity through an impact resolved by Routh’s method (adapted from Posa et al.
(2016b)). The extreme rays of the friction cone are shown as solid red arrows. The contact begins
in a sliding regime. When v, shown in the yellow dotted line, intersects Jtv = 0, the contact
transitions to sticking and the impact terminates when Jnv = 0.

We will now describe one of the oldest differential models for a single impact (Routh, 1891), which

we will later extend to the multi-contact case. For a single contact IA(q) = {i}, Routh (1891)

proposed a method which satisfies Coulomb friction differentially. To summarize this technique,

1. Increase the normal impulse Λn,i with slope λn,i = 1.

2. Increment the tangential impulse with slope λt,i satisfying Coulomb friction (2.14) for the

mid-impact velocity v̄ = v +M−1JTi Λi.

3. Stop at the inelastic condition Jn,iv̄ = 0; set v+ = v̄.

As observed in Posa et al. (2016b), this process is equivalent to the DI

dv

ds
∈M(q)−1Fi(q,v(s), 1) . (2.34)

Note that for a frictionless contact (µ = 0), this simplifies to Mv̇ = JTn,i. A diagram depicting the

resolution of a planar impact with this method is shown in Figure 2.2. Solutions may transition

from sliding to sticking, and the direction of slip may even reverse. While the path is piecewise

linear in the planar case, this is not necessarily true in three dimensions. We additionally note that
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while (2.34) predicts “forces” even when v is separating (Jn,iv > 0), Routh’s method is by definition

only used on velocity trajectories starting with Jn,iv ≤ 0 until the first moment that that Jn,iv = 0,

and thus inelasticity is preserved.

Implicit in Routh’s method is an assumption that the terminal condition in step 3) will eventually

be reached; if it is possible to get “stuck” with Jn,iv < 0 forever, then Routh’s method would be

ill-defined and not predict a post impact state. This does not happen in the frictionless case, as

Jn,iv has constant positive derivative Jn,iv̇ = ∥Jn,i∥2M−1 . With more careful treatment capturing

kinetic energy dissipation, a similar result can be shown for the frictional case:

Lemma 1 (Single Impact Termination (Appendix E.2.2)). Let q ̸∈ QP be a non-penetrating config-

uration, and i ∈ IA(q) be an active contact. Then there exists κ(q) > 0 such that for any solution

v(s) : [0, ∥v(0)∥2 κ(q)]→ R
nv of the single frictional contact system (2.34), v(s) exits the impact at

some s∗ ≤ ∥v(0)∥2 κ(q); i.e., Jn,iv(s
∗) ≥ 0.

The implication of Lemma 1 is that a priori, one can determine an s > 0 proportional to the pre-

impact speed ∥v∥2 such that any solution to the DI (2.34) on [0, s] can be used to construct the

post-impact velocity v+. We will see, however, that the extension of this methodology to multiple

concurrent impacts is non-trivial, and that physical systems associated with these models often

exhibit non-uniqueness.

2.5.3. Initial value problems through impact

Any complete solution to continuous-time IVP’s for rigid bodies undergoing impacts must somehow

combine the sustained-contact and instantaneous impact models described above. We highlight

three properties that such a model would ideally have:

1. Complete consistency: Solutions to IVP’s should exist from any initial condition.

2. Full specification: Essential characterizations of contact behavior should be specifiable,

including friction laws or impact (in)elasticity.

3. Wide scope: The large majority of multi-body systems should be captured by the framework.
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These and similar ideals have been pursued for over a century; see Stewart (2000) for a comprehensive

overview. We highlight a few recent and seminal advances towards these properties.

Early hybrid-system formulations generate impacts if and only if a collision occurs. Such laws were

determined to lead to non-existence issues under high friction (Jellet, 1872; Painlevé, 1895). Recent

advancements in hybrid systems guarantee existence, but instead require all contacting bodies to be

nearly-massless (Johnson et al., 2016; Burden et al., 2016). Building on the early ideas of Lecornu

(1905), Moreau (1977) developed an alternative measure differential inclusion (MDI) formalism

which permits non-zero impulses in FC(q) to occur over an infinitesimal time period dt. However,

the preeminent IVP existence proof for general multi-contact MDI’s forgoes specification of impact

elasticity (Stewart, 1998).

In Section 7.3, we derive a DI model which generally applies to multi-body systems; specifies impacts

to be inelastic; and guarantees existence of solutions under similar conditions to Stewart (1998) (see

Assumption 2). While DI’s have long been used in rigid-body dynamics Leine and van de Wouw

(2008), this thesis and recent work (Nurkanović et al., 2021a,b) are the first to solve IVPs through

impacts via adding time as a state. This work is the first such DI to capture inelasticity and friction

in impact. We will also develop our own discrete-time simulator in Section 7.4, which shares a

similar LCP structure to Stewart and Trinkle (1996).

2.5.4. Discrete-time simulation

When simulating the continuous-time dynamics (2.8), (2.2) in discrete-time, it is important to note

the interplay between the dynamics, non-penetration constraints, and friction. In particular, many

contact forces λ may comply with normal complementarity (2.10) and Coulomb friction (2.14) at

a given time. However, picking one arbitrarily and simulating (2.8) forward with common ODE

integration schemes (e.g. an Euler step) may lead to penetration at the very next time step. Some

approaches resolve this issue with a constrained semi-implicit Euler scheme (Stewart and Trinkle,

1996). The essential idea is to integrate the manipulator equations (2.8) to relate a change in

velocity to net contact impulses, and to apply the contact constraints (2.10), (2.14) at the end of

the time step. In summary, a simulation step maps the current state x = [q;v] and input u to the
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next state x′ = [q′;v′] = [q +∆q;v +∆v] by solving

find ∆q; ∆v; {Λi : i ∈ IA} , (2.35a)

s.t. M(q)∆v = Fs(x,u)∆t+
∑

i

JTi Λi , (2.35b)

∆q = Γ(q)v′∆t , (2.35c)

0 ≤ Λn,i ⊥ φi(q) +
∂φi(q)

∂q
∆q ≥ 0 , (2.35d)

Λt,i ∈ −µiΛn,iUnit(Jt,iv
′) . (2.35e)

We note that (2.35d) contains a linearization of the change in interbody signed distance over the

timestep:

φ̄i(q,v
′) = φi(q) +

∂φi(q)

∂q
∆q = φi(q) + Jn,iv

′∆t ≈ φi(q′) (2.36)

This numerical program appears quite similar to the instantaneous impact resolution (2.29). Com-

putationally, the methods have similar properties. Due to the linearization in (2.35d), with the

linearized linearized coulomb law, Stewart and Trinkle (1996) seminally demonstrated that (2.35)

can also be approximately cast as a solvable LCP. However, conceptually, the meaning of Λi has

changed. In (2.29), Λi is an instantaneous impulse that describes an impact, whereas Λi in (2.35)

represents the total impulse over the time-step, with contributions coming both from sustained

contact forces and impacts.

2.6. Optimization-Based Dynamics

We have seen how rigid-body simulation can be formulated as numerical optimization in (2.35).

Such models lie in a more general class of optimization-based dynamics, in which the mapping from

the current state and input to the next state is formulated as an optimization problem over some

hidden variables Λ. For second-order systems, these formulations have the form

v′ = gθ(x,u,Λ
∗) , (2.37a)

Λ
∗ ∈ arg min

Λ∈K
hθ(x,u,x

′,Λ) . (2.37b)
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This format decouples the dynamics into a system of equations: one algebraic, describing the state

update x′ as a function of the hidden variables Λ∗; and the other expressing constraints relating the

hidden variables and the state update as a minimization. In general, to compute forward predictions

for such systems, the update function gθ is embedded into optimization objective hθ:

Λ
∗ ∈ argminhθ(x,u, gθ(x,u,Λ),Λ) . (2.38)

2.6.1. Rigid-body Simulation as Optimization-based Dynamics

In the particular case of rigid-body simulation (2.35), Λ = [Λ1; . . . ;Λm] represents the contact

impulses. The set of admissible impulses K is given by the Coulomb friction admissible set K =

L1 × · · · × Lm, where Li =
{
Λi : ∥Λt,i∥2 ≤ µiΛn,i

}
is the (µi-scaled) Lorentz cone. gθ is the

manipulator equations:

gθ = v +M−1
(
Fs∆t+ J

T
Λ
)
. (2.39)

Finally, hθ represents contact constraints. While there are multiple valid choices of hθ, we note one

in particular:

hθ(x,u,v
′,Λ) =

∑

i

1

2
neg(φ̄i(q,v

′))2 + ci(q,v′) ·Λi + di(v
′) ·Λi , (2.40a)

ci(q,v
′) =



pos(φ̄i(q,v

′))

0


 , (2.40b)

di(v
′) =



∥Jt,iv′∥2
1
µi
Jt,iv

′


 . (2.40c)

With this construction, (2.38)–(2.39) and (2.35) are equivalent. We highlight that hθ(x,u,v
′,Λ)

as described in (2.40) is convex in Λ, which would suggest that the forward simulation problem

is tractable. Unfortunately, as seen in (2.38), during forward prediction, Λ also enters into the

third argument of h, and it is this joint dependence that can cause the prediction problem to be

non-convex and even NP-Hard (Baraff, 1991). We finally note that for most rigid-body systems, the
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forward-simulation problem is always solvable Stewart and Trinkle (1996), and thus we may assume

that the optimization of hθ is equivalent to a constraint-satisfaction problem:

Assumption 3. For the rigid-body dynamical system described in (2.38)–(2.39),

min
Λ∈K,x,u,v′

hθ(x,u,v
′,Λ) = min

Λ∈K,x,u
hθ(x,u, gθ(x,u),Λ) = 0 . (2.41)

2.6.2. Solving Forward Simulation with Linear Complementarity

As discussed in Section 2.5.4, forward simulation can be cast as a non-convex linear complementarity

problem (LCP). We now briefly define and describe this problem class. We refer the reader to

Cottle et al. (2009) for a complete description, and to Stewart and Trinkle (1996) for details on

how rigid-body problems are encoded as an LCP.

Definition 4. The linear complementarity problem with parameters W ∈ R
n×n and w ∈ R

n is the

constraint satisfaction problem

find z ∈ R
n , (2.42)

subject to zT (Wz +w) = 0 , (2.43)

z,Wz +w ≥ 0 , (2.44)

for which the set of solutions is denoted LCP(W ,w). (2.43)–(2.44) are often abbreviated as 0 ≤

z ⊥Wz +w ≥ 0.

For LCPs related to frictional behavior, W is often copositive (i.e. xTWx ≥ 0 for all x ≥ 0). This

property provides a sufficient condition for LCP feasibility and computability:

Proposition 3 (Cottle et al. (2009)). Let w ∈ R
n, and let W ∈ R

n×n be copositive. If

wTLCP(W ,0) ≥ 0 ,
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then LCP(W ,w) contains a solution which Lemke’s Algorithm can find in finite time.

Finding a solution to such problems is in general not easy, and it is known that even with the

structure that frictional contact affords, that solving LCP’s is an NP-Hard problem (Baraff, 1991).

While solution uniqueness is not guaranteed, if mapping the solution through a matrix A produces

uniqueness, it also produces Lipschitz continuity:

Proposition 4 (Facchinei and Pang (2003)). For all matrices W ∈ R
n×n, A ∈ R

m×n, if the

function f(w) = ALCP(W ,w) is unique over a convex domain Ω ⊆ R
n, it is also Lipschitz on Ω.

As mentioned in the previous subsection, LCP’s are in general hard to solve, and even the copositive

structure in frictional contact LCP’s is not enough to avoid NP-Hardness Baraff (1991). However,

some classes of LCP’s are more tractible; namely, for positive semi-definiteW , any LCP LCP(W ,w)

can be either solved or certified to be unsolvable by solving a single convex QP in polynomial time

Cottle et al. (2009). Pursuant to these properties, Anitescu (2005) developed an approximation to

the LCP of Stewart and Trinkle (1996) which approximates normal complementary and maximal

dissipation with the cone complementarity constraints

Li ∋ Λi ⊥ φ̃i(q,v′) ∈ dual(Li) , (2.45)

φ̃i(q,v
′) =



φi(q)

0


+ Jiv

′∆t , (2.46)

which can be captured and tractibly solved as a convex second-order cone program. This program

can also be described in the context of optimization based dynamics, with the same g and K as

Stewart and Trinkle (1996) and

hθ(x,u,v
′,Λ) =

∑

i

1

2
Dist(φ̃i(q,v

′), dual(Li))2 + c̃i(q,v′) ·Λi + di(v
′) ·Λi , (2.47a)

ci(q,v
′) =



max(

∥∥φ̄i(q,v′)
∥∥ , ∥Jt,iv′∥2∆t)

1
µi
Jt,iv

′∆t


 , (2.47b)
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where di is the same as in (2.40).

2.7. Empirical System Identification

System identification (sysID), or model learning, is the process by which a model’s parameters θ are

fit to data D = {(x,u,x′)i}i∈1...N . In general, a finite amount of training data Dtrain is available

for this process. A ubiquitous method for recovering θ from data is to empirically minimize the

discrepancy, or prediction error, between the model’s predictions and the training data:

θ∗ = argmin
θ
Lprediction(fθ,Dtrain) , (2.48)

Lprediction(f ,D) =
1

|D|
∑

i

∥∥x′
i − f(xi,ui)

∥∥2
2
. (2.49)

(2.48) is often intractable to solve exactly, particularly when the dimension of θ is large and when

Lprediction(fθ,Dtrain) is non-convex. In practice, this objective is only approximately minimized

via some variant of stochastic gradient descent (SGD). In this algorithm, datapoints (x,u,x′)i are

iteratively chosen at random and θ are updated via

θ ← θ − α∇θ

∥∥x′
i − fθ(xi,ui)

∥∥2
2
,

where α > 0 is called the learning rate or step size. After this optimization process, the model (2.3)

is embedded into robotics planning and control algorithms, in which the robot decides to encounter

test-time trajectories Dtest. A critical assumption of these methods are that models that fit the

training data well (e.g. have low prediction error) will also fit the test data similarly well. The

discrepancy between the two is called the generalization error, equal to

Lprediction(fθ,Dtest)− Lprediction(fθ,Dtrain) . (2.50)

2.8. Data-Driven Modeling with Neural Networks

One popular design choice for learning robot dynamics is to model fθ directly as a deep neural

network (DNN). One simple type of DNN is a fully-connected feed-forward neural network, also
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called a Multilayer Perceptron (MLP). Such networks map their inputs r ∈ R
m to their outputs

y ∈ R
n via

z1 = σ(Wr,1r + b1) ∈ R
w , (2.51a)

zk = σ(Wz,kzk−1 +Wr,kr + bk) ∈ R
w , (2.51b)

y =Wr,dzd−1 +Wr,dr + bd , (2.51c)

Wr,k,Wz,k are parameter matrices called weights; and bi ∈ R
w are parameter vectors called biases;

and w and d are called the width and depth of the network. σ is an element-wise nonlinear function

called an activation. Such DNN’s are known to be universal function approximators, in that any

function can be approximated to arbitrary precision by a DNN of sufficient size with a particular set

of parameters. A a corresponding challenge in applying DNN’s to system identification is that many

distinct sets of parameters may fit the training data well, despite having very different predictions on

the test data. DNN architectures and training schemes typically have an inductive bias by which a

particular set of parameters is chosen. Common training techniques like stochastic gradient descent

(SGD) as well as common regularizers such as weight-decay and spectral normalization typically

have an inductive bias towards the smoothest function that fits the training data Belkin et al.

(2019); Ribeiro et al. (2020); Zhang et al. (2019); Miyato et al. (2018).

2.9. Set Approximation via Sampling

Problems in robotics can often be approximately solved with arbitrary precision via stochastic sam-

pling (e.g. planning with RRT* (Karaman and Frazzoli, 2011)). When the output to be captured

is a set, precise approximation may be captured as an ε-net :

Definition 5. For ε ≥ 0, an ε-net of a set X is a set X ′ ⊆ X such that for each x ∈ X , ∃x′ ∈ X ′

with ∥x− x′∥2 ≤ ε.

In the spirit of probabilistic completeness, in Chapter 7 we will compute sampling-based approxi-

mations of set-valued model predictions. We will prove this by leveraging a similar behavior for the

image of a box under a Lipschitz continuous function:
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Proposition 5 (Dense Sampling (Appendix E.2.1)). Let g(x) : Rn → R
m be Lipschitz with constant

L. Consider a set of N uniform i.i.d. samples X = {x1, . . . , xN} from [0, h]n. Then g(X ) is an

ε-net of g([0, h]n) with probability at least

1− (1− Ω)N

Ω
, Ω =

⌈
hL
√
n

ε

⌉−n
. (2.52)
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CHAPTER 3

Related Work

3.1. Physics-based System Identification of Stiff Contact Dynamics

Modeling robots as rigid-body systems, and fitting parameters such models to data, has a long his-

tory in robotics; for an overview, see Khalil and Dombre (2002). Classical methods were primarily

concerned with identifying scalar-valued inertial parameters such as link lengths; masses; and mo-

ments of inertia (Khosla and Kanade, 1985) of a robot making no contact with its environment, such

as a robot arm moving in free space. Recent work has focused on both learning these parameters

through contact interactions, as well as learning parameterizations of contact itself. As described

in Section 2.7, such methods typically cast the sysID process as an optimization problem minimiz-

ing prediction error. When the model fθ is a physics simulator, this process is also referred to as

differentiable physics. It has been long observed that minimizing prediction error through contact

behaviors is numerically challenging (Kolev and Todorov, 2015; Fazeli et al., 2017b; Heiden et al.,

2020; Le Lidec et al., 2021). Typically, methods overcome this challenge with advanced optimiza-

tion techniques, such as second-order (Kolev and Todorov, 2015); constrained (Fazeli et al., 2017b);

or global (Heiden et al., 2020; Antonova et al., 2023) methods. These methods are not tractable

when applied to high-dimensional optimization. As a result, successful application of these meth-

ods have so far been limited to scenarios where the number of unknowns is small. By contrast

to these methods, this work will use simple, tractable, first-order SGD-based optimization for the

sysID problem, and instead overcome numerical challenges by replacing prediction error with an

alternative objective that has a better-behaved optimization landscape.

3.2. Combining Physical Modeling with Neural Networks

As in this thesis, much recent work has concerned combining the structure of physics-based models

and simulators with the flexibility of empirical deep learning. Such methods typically follow a grey-

box modeling paradigm, in which part of the structure is learned, while another is derived from

physics. Much of these methods are ultimately complementary to the work in this thesis, and we
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highlight the potential relationships.

Some methods focus on structured learning of the continuous terms (i.e. M(q)−1Fs(x,u)) in the

dynamics. Lutter et al. (2019) and Gupta et al. (2020) for instance induce the Lagrangian structure

on neural network representations of M and Fs. This can manifest for instance by enforcing M ’s

positive definite structure by learning its Cholesky decomposition, or by learning potential forces

as the gradient of a potential energy neural network U(q). This work by contrast focuses on novel

representations for the contact terms, and such models could readily be used in conjunction with

one another by combination in the manipulator equations (2.8).

Other work focuses not on learning the parametrization of an individual system, but on higher-

accuracy or lower-computational-burden laws of motion to which known physical parameters are

inputs. In particular a number of of works have built off of Interaction Networks (Battaglia et al.,

2016), which encodes objects into Graph Neural Networks (GNN’s) as nodes valued as their phys-

ical properties and states. Much recent work has built on this idea, in which high-accuracy,

reusable, GNN-based physics laws for interacting rigid objects are developed. These methods

rely on explicit parameterizations of object geometries as a group of particles (Li et al., 2019;

Sanchez-Gonzalez et al., 2018, 2020) or meshes (Allen et al., 2022, 2023). The goal pursued in

this work by contrast is partially to identify representations from object geometries, which might

then be exported into practical or mesh format for use with these learned physical laws.

Other methods consider residual learning (Heiden et al., 2020; Ajay et al., 2018; Zeng et al., 2019;

Fazeli et al., 2017c, 2020a) in which the error between a calibrated physical model and the real-world

is learned as an unstructured model, such as a neural network or Gaussian process. The goal of this

augmentation is to capture effects not captured in the physical model due to a lack of fidelity or

precise identification. Our methods output such physical models that may serve as inputs to these

methods.
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3.3. Implicit Neural Representations of Object Geometries

By philosophical contrast to the methods described in the previous section, the culmination of our

work is to approximate physically-grounded, infinite-dimenioal unknowns with neural networks, such

as object geometries. Our work comes in context of much work in the computer vision community

on implicit representation of geometries via neural networks. Deep Signed Distance Fields (SDF’s)

(Park et al., 2019) for instance learn the distance to an object in 3D space as a DNN. Neural

Radiance Fields (NeRF’s) (Mildenhall et al., 2020) alternatively directly learn the distribution of

opacity and color properties of a scene. While they do not strictly coincide, opacity is correlated

with the occupancy of space with material, and this correlation has been used to embed static

ground-truth NeRFs into simulation (Cleac’h et al., 2023). Most recently, real-world quasi-static

object interactions were learned by combining a GNN structure similar to interaction networks with

learned NeRF representations of a small group of objects (Driess et al., 2023).

As we detail in Chapter 6, we choose a novel, convex support function-based representation which

similar to these representations is best suited for its application. SDF’s and and NeRF’s by their

structure are naturally suited for rendering, whereas our representation is designed for use in physical

simulations, which themselves typically encode objects via convex decomposition Coumans (2015).

Most similar to our representation is CvxNet (Deng et al., 2020), which also models convex decom-

positions via a DNN. CvxNet focuses on discovering a low-dimensional, latent shape space for a

class of similar objects, such as chairs. Each object instance can be given to the network as a shape

vector, an the output is an explicit, static number of hyperplane inequalities which parameterize

the convex parts of the shape. By contrast, we focus on high-fidelity identification of individual

shapes from motion capture data. We therefore instead use a novel DNN to flexibly capture each

convex shape by directly modeling its support function.
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CHAPTER 4

Empirical Challenges in Deep Learning for Stiff Contact Dynamics

Parts of this chapter were previously published as parts of Mihir Parmar*, Mathew Halm*, and

Michael Posa. Fundamental Challenges in Deep Learning for Stiff Contact Dynamics. In IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), March 2021. URL https:

//ieeexplore.ieee.org/document/9636383, ©IEEE 2021. Mihir Parmar conducted the numerical

experimentation and visualization, and wrote a large portion of Sections 4.3.1 and 4.3.2. The high-

level experimental direction; conceptual and quantitative analysis; and remaining discussion were

original contributions.

4.1. Introduction

As discussed in Chapter 1 and Sections 2.7 and 2.8, deep neural networks offer a simple and flexible

way to synthesize an empirical model of a dynamical system. However, they present two main

challenges when the dynamical system of interest is driven by stiff contact behavior. First, the model

fitting process is typically conducted with stochastic gradient descent, a first-order optimization

method not well-suited to fitting data from a stiff dynamical system. Second, DNN’s typically

extrapolate from training data to test data using a smoothness prior, in direct conflict with the

nearly-discontinuous nature of the true dynamics. This smoothing effect is particularly harmful

when available data is sparse, as can be see in a 1D example in Figure 4.1. If stiffness indeed

significantly influences the performance of deep learning, then serious questions must be raised not

only about robotic learning methods, but also the relevance of simulated results to the robotics

community. Many simulators, such as MuJoCo (Todorov, 2014), allow users to specify mechanical

stiffness; properly used, simulation can produce physically-accurate behaviors Kolev and Todorov

(2015); Erez et al. (2015). However, ubiquitous benchmarking suites often use software default

values for stiffness, rather than values tuned for realism Brockman et al. (2016). The idea that

unrealistic contact settings can generate a gap between simulated and real-world performance is an

existing intuition in the robotics community (Tedrake).
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(a) (b)

Figure 4.1: Challenges of learning stiff dynamics are shown on a 1-D example. (a): A point mass
(blue) falls from an initial height zt = 1 toward compliant ground (yellow), modeled as a spring-
damper system. (b): For each of two stiffnesses (k), 100 predictive models are trained on noisy
data to predict the next velocity żt+1 from different initial velocities żt. Learning performance is
heavily degraded on the stiffer k = 2500 system, despite meticulous hyperparameter optimization;
training loss, ground-truth prediction error, and inter-model variance are 197%, 413%, and 309%
higher than for k = 100. Details of this experiment may be found in Appendix B.1.

In this chapter, we contribute an empirical quantification and isolation of the detrimental effects

of stiffness on deep learning performance. We begin by describing how stiffness enters into the

equations of motion of a simple simulated system in MuJoCo in Section 4.2, and show that default

settings are significantly less stiff than many real systems. In Section 4.3, we propose a testing

methodology to examine the negative effects of stiffness on inherent unpredictability, training process

degradation, generalization, and long-term prediction. As is common intuition, our results (Section

4.4) show that raising stiffness degrades ground-truth model predictions as the underlying system

becomes more sensitive to noise. However, we find that stiffness induces multiple pathological

behaviors beyond this effect:

1. The training error of learned models degrades with stiffness nearly twice as fast as the ground-

truth model, even for single-step predictions.

2. While generalization error can be eliminated for non-stiff systems with ample training data,

test error stays significantly higher than training error for stiff systems.

3. Data-efficiency degrades 100-fold for our stiffest models when evaluated on long-term predic-

tion.
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These results raise serious questions about whether existing methods effectively utilize deep learn-

ing’s most powerful and essential behaviors, and whether typical simulated environments faithfully

capture essential challenges of real-world physics. In Section 4.6, we suggest opportunities for further

experimentation in this area.

4.2. Example System

We now describe a simple example system and associated data generation methodology, for which

we will isolate the effects of stiffness on learning performance.

4.2.1. Simulation Environment

While the many uncontrollable factors of real-world experiments offer a challenging environment to

test newly-developed algorithms’ performance, the primary goal of this chapter is instead to isolate

the effects of stiffness on commonplace methods in robotics. Unmodeled material complexities

and unknowable noise distributions in a real robotic system would therefore befuddle the results

presented here, rather than strengthen them. We therefore conduct our experiments in a simulated

environment, which allows them to be easily repeated or used as a benchmarking task in future

research. We conduct our experiments MuJoCo (Todorov, 2014), because it allows for direct control

over contact stiffness. Using MuJoCo also enhances the relevance of our results to ubiquitous

benchmarking suites which use the simulator (Brockman et al., 2016; Tassa et al., 2020).

While MuJoCo models objects as being exactly rigid, it allows for an interpretation of mechanical

stiffness by using a “soft contact” model similar to the one used in Figure 4.1; a detailed discussion

can be found in Todorov (2014) and in the online MuJoCo documentation1. MuJoCo solves for

appropriate contact forces with a convex optimization problem, and thus there is no closed form

expression for the forces as a function of the current state. However, when an object makes contact

with a static environment, inter-body penetration φ approximately2 obeys

φ̈ ≈ −bdφ
dt
− kφ . (4.1)

1http://www.mujoco.org/book/computation.html
2A more detailed treatment of this behavior can be found in Appendix B.2.
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Figure 4.2: Sensitivity to initial conditions and near-instantaneous impact of a 2D block on flat
ground are shown. (left) Two trajectories begin from nearly identical initial conditions, where the
block (blue) contacts the ground (yellow) at 1 corner; the center of mass is left of the contact point
in the upper trajectory and to the right in the lower one. (center) after some time has elapsed, the
state of the cube differs drastically in the two trajectories. (right) the velocity of the cube jumps
to zero abruptly as it hits the ground in both cases.

Here, the “stiffness” k is the primary mechanism resisting penetration, and the damping ratio ζ =

b

2
√
k

controls elasticity of impacts. Similar techniques have long been used for stable simulation of

constrained dynamical systems, dating back to Baumgarte (1972). We note that the units of k are

N
kgm , whereas mechanical stiffness is typically expressed in N

m units. MuJoCo’s default values for k are

in the 2000–2500 N
kgm range. However, as we will discuss in Section 4.2.3, the corresponding contact

behavior is far softer than that of many real-world objects, including common robotic platforms.

4.2.2. System Description

High-dimensional systems, much like real-world environments, are also commonly used to stress-

test new robot learning algorithms (Brockman et al., 2016). By contrast, in this chapter, picking

a simple, low-dimensional system instead allows us to more thoroughly and tractably analyze the

effects of stiffness under reduced computational and sample complexity. We follow previous studies

(Jiang et al., 2018; Fazeli et al., 2020a), and choose a “die roll” system, in which a single, rigid

cube makes contact with the ground. Despite being low-dimensional, the cube exhibits many of

the hallmark challenges in contact modeling: stick-slip transition, discontinuous impact, multiple

contact points, and extreme sensitivity to initial conditions; Figure 4.2 illustrates some of these

behaviors in 2D.
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Our 3D die system has a 13-dimensional state

x =

[
p ; q ; ṗ ; ω

]
, (4.2)

where p ∈ R
3 is the center of mass position; q ∈ S3 is the orientation of the cube, expressed as a

quaternion; The generalized velocity v = [ṗ ;ω] contains the world-frame c.o.m. velocity ṗ ∈ R
3

and body-frame angular velocity ω ∈ R
3. Similar to the construction in Section 2.5.4, MuJoCo

approximates the manipulator equations (2.8) in discrete-time with a semi-implicit formulation

Todorov (2014). As this system has no inputs, its dynamics have the form

xt+1 = f(xt) , (4.3)

where t denotes the time index. For a symmetric cube3, f has the simplified form

m(ṗt+1 − ṗt) = (F(xt)−mg)∆t , (4.4)

I(ωt+1 − ωt) = T (xt)∆t , (4.5)

pt+1 − pt = ṗt+1∆t , (4.6)

q−1
t ⊗ qt+1 = Q(ωt+1∆t) , (4.7)

where ∆t is the time-step duration; m and I are the cube’s mass and inertia; g is the gravitational

acceleration vector; and F and T are the average contact force and torque over the time step.

Q(r) = [cos
∥r∥2
2 ; r̂ sin

∥r∥2
2 ] is the quaternion corresponding to a rotation of angle ∥r∥2 about axis

r̂ = r
∥r∥2

and ⊗ is the quaternion product. We use system parameters that closely match the real

system used in (Pfrommer* et al., 2020); a full list can be found in Table 4.1.

4.2.3. Data Generation

In order to isolate how different stiffnesses k generate different behaviors, for each of 3 stiffnesses

listed in Table 4.2, we generate a dataset {τ} of “dice roll” trajectories τ =
{
x0,x1,x2, ...xtf

}
with

3the symmetry assumption implies that the Coriolis forces are zero, as the inertia tensor is a multiple of the
identity matrix.
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Table 4.1: Simulated Die Roll Parameters for Empirical Study

Constant Symbol Value Units

mass m 0.37 kg
inertia I 6.167× 10−4 kgm2

side length l 0.1 m

gravity g 9.81 m
s
2

friction coefficient µ 1 (none)

stiffness k (varies) N
kgm

damping ratio ζ 1.04 (none)
time-step ∆t 6.74× 10−3 s

an identical process, summarized here and detailed further in Appendix B.2. We refer to the three

stiffnesses as Hard, Medium and Soft.

We instantiate the system for a given stiffness in MuJoCo with the parameters in Table 4.1; the

damping coefficient b is selected to keep the damping ratio ζ consistent between stiffnesses. Initial

states are sampled uniformly around a nominal state x0,ref . From the initial state, we simulate

forward in time with MuJoCo’s dynamics (4.4)–(4.7) until the cube impacts the ground and comes

to rest.

In the real world, position and orientation of similar systems are commonly tracked via computer

vision, which can incur a small amount of slowly-drifting measurement noise (Pfrommer* et al.,

2020). To approximate this error, for each trajectory, we add a small, uniformly random offset

to the entire trajectory, and a second round of smaller noise independently to each datapoint.

Finally, velocity states are reconstructed using the finite difference equations (4.6)–(4.7) on the

noisy configurations. The total noise injected through this process on position, orientation, linear

velocity, and angular velocity is on the order of 1 mm, deg, mm
s , and deg

s , respectively.

For each stiffness setting, we collect 10, 000 trajectories {τ}train for hyperparameter optimization and

training purposes, and 1, 000 more trajectories {τ}eval for evaluation of the optimized models. To

evaluate physical realism of each of these settings, we also compute the maximum ground penetration

of the die, averaged over trajectories (Table 4.2 and Figure 4.3). Even for the Hard stiffness, which

is comparable to MuJoCo’s default, we observe ground penetration of around 10% of the die body-
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Table 4.2: Stiffnesses and Ground Penetration for Simulated Die Rolls

Stiffness Setting k
(

N
kgm

)
Max Penetration (mm)

Hard 2500 12
Medium 300 26

Soft 100 40

length. By comparison, deformations on real-world objects are often imperceptible to the human

eye. Thus, even our Hard model is far less stiff than the real-world dynamics upon which our system

was based (Pfrommer* et al., 2020).

Figure 4.3: From left to right, illustration from MuJoCo demonstrating the variation in the amount
of ground penetration for Hard, Medium, and Soft settings, respectively. These visualizations are
captured from trajectories with identical initial states.

4.3. Experimental Procedure

We now describe in detail the process of learning a dynamical system from data; hypothesis about the

specific effects that stiffness has on dynamics learning; and motivate the design of our experiments.

The Pytorch codebase is accompanied by further details and experiments online4.

4.3.1. Representing Second-order Systems with Recurrent Neural Networks

We consider the approach previously discussed in Chapter 1 and Sections 2.7 and 2.8, in which the

entire dynamics update function is learned as a DNN.

We consider two common neural network types applied to this domain. The first and most elemen-

tary, as discussed in Section 2.8, is to map xt to xt+1 with a simple multilayer perceptron fθ(xt)

4https://sites.google.com/view/contact-learning-bias
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(Janner et al. (2019); Nagabandi et al. (2019)). However, this method has been shown to struggle

with noisy data in a manipulation setting Ajay et al. (2019); Ajay et al. (2018), an expected behav-

ior given the sensitivity of contact dynamics Kolev and Todorov (2015). An intuition in robotics

is that better estimates of the current state can be generated by fusing multiple sensor readings.

Correspondingly, a common approach is to use recurrent neural networks (RNN’s) fθ (xt−h+1:t),

which instead take as input a time window xt−h+1:t = (xt−h+1, . . .xt) with history length h > 1

Ajay et al. (2019); Ajay et al. (2018), We will also therefore consider three common RNN variants

as well: Long Short Term Memory (LSTM ) (Hochreiter and Schmidhuber, 1997), Gated Recurrent

Units (GRU ) (Cho et al., 2014) and Bi-directional LSTM (BiLSTM ) (Graves et al., 2005).

Much like the method described in Section 2.5.4, MuJoCo predicts the next velocity vt+1, and

then constructs the next configuration using the finite-differencing method given by (4.6)–(4.7)

Todorov (2014). Since our velocity data is generated with the same finite-difference, it is sufficient

to output either fθ (xt−h+1:t) ≈ vt+1 or fθ (xt−h+1:t) ≈ ∆v = vt+1−vt from the network, and then

reconstruct the next configuration with (4.6)-(4.7) as MuJoCo does. Via extensive hyperparameter

optimization, the optimal network structure and target variable choice for all stiffness setting were

determined to be GRU and vt+1 respectively, as listed in Table 4.3. A detailed explanation of the

process is given in Appendix B.3.

4.3.2. Training Process

To train one of our networks, we first aggregate a set of N trajectories {τ1:N} randomly sampled

from {τ}train and slice them into training data inputs {xt−h+1:t} and corresponding outputs {vt+1}.

To improve numerical conditioning during training, we follow a standard procedure of normalizing

the input data to have zero mean and unit variance Nagabandi et al. (2019). We further split the

sliced data {(xt−h+1:t, vt+1)i} in 70:20:10 proportions into training (Dtrain), validation (Dvalid) and

test (Dtest) sets.

For a datasetD, as our models only output velocity variables, it is sufficient to consider the prediction
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Table 4.3: Optimized Hyperparameters for Learning Simulated Cube Dynamics

Hyperparameter
Stiffness Setting

Hard Medium Soft

Network architecture GRU GRU GRU
Target variable vt+1 vt+1 vt+1

learning-rate 1e-4 1e-5 1e-5
hidden-size 128 128 128

history-length 16 16 16
weight-decay 0 4e-5 4e-5

loss over D for a model f as

Lprediction(f ,D) =
1

|D|
∑

i

∥(vt+1)i − f ((xt−h+1:t)i)∥22 (4.8)

Accordingly, we train our dynamics models using the Adam optimizer (Kingma and Ba, 2015), a

state-of-the-art extension of SGD, to minimize Lprediction(fθ,Dtrain). We terminate training with

early stopping with a patience of 30 epochs, and save the model with the lowest validation loss

Lprediction(fθ,Dvalid). Test set error Lprediction(fθ,Dtest) is then used as the metric during hyperpa-

rameter optimization. To provide an optimistic perspective on how the dynamics of each stiffness

setting can be learned, we optimize separate hyperparameters for each stiffness. This process is

detailed in Appendix B.3, and Table 4.3 specifies the final set of selected hyperparameter values for

each of the stiffness setting.

4.3.3. Measuring Stiffness’s Effect on Learning Performance

To perform an optimistic analysis on how well learning algorithms perform on systems with different

stiffnesses, we focus performance analysis on our hyperparameter-optimized models in three settings:

the effectiveness of Adam in minimizing the training set loss; generalization performance; and long-

term prediction performance.

Broadly, the goal of supervised learning methods, including our dynamics learning process, is to

generate accurate outputs for unseen inputs. In dynamics learning, this behavior is typically quan-

tified as low test error Lprediction(fθ,Dtest). Our discussion in Chapter 1 suggests that the test error
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will increase for higher stiffness settings, but it is important to note that the test set error can be

driven up by many mechanisms. Inspired by the separate treatment of approximation, estimation,

and generalization error common in statistical learning theory (Poggio and Smale, 2003), we now

define, motivate, and hypothesize about the following decomposition of the test error:

Lprediction(fθ,Dtest) = Lprediction(foracle,Dtrain)

+ (Lprediction(fθ,Dtrain)− Lprediction(foracle,Dtrain)) (4.9)

+ (Lprediction(fθ,Dtest)− Lprediction(fθ,Dtrain)) .

As discussed in Section 4.1, it is important to acknowledge that even if the exact MuJoCo model

used to generate the data is simulated from a noisy initial condition, it will make an imperfect

prediction of the future states. Furthermore, it is well known that stiff dynamics will exacerbate

this issue (Chatterjee, 1997; Kolev and Todorov, 2015; Pfrommer* et al., 2020). We capture this

effect with the first term in the test error decomposition (4.9), Loracle = Lprediction(foracle,Dtrain). To

be precise, our MuJoCo oracle model foracle(xt−h+1:t) predicts the next velocity vt+1 with MuJoCo

using the current noisy state xt and the Netwton-Euler equations (4.4)-(4.5). As the MuJoCo oracle

captures the underlying true behavior of the system, it serves as a natural, optimal baseline for the

learned models.

Since prediction loss can be poorly conditioned when learning stiff dynamics (Heiden et al., 2020;

Pfrommer* et al., 2020), we hypothesize that Adam will have difficulty in converging to good minima

consistently; therefore, the training loss at convergence of stiffer models is likely to have higher mean.

To test this hypothesis, we train models on data with different stiffnesses and dataset sizes, and

then observe how much the resulting training error is degraded in comparison to the performance

of the MuJoCo oracle: (Lprediction(fθ,Dtrain)− Lprediction(foracle,Dtrain)).

Deep learning is biased towards fitting a smooth interpolator on the data Belkin et al. (2019);

Ribeiro et al. (2020); however, as we noted in Chapter 1, the underlying behavior of contact is

non-smooth. Hence, at equal training set sizes, we expect that DNNs fit to stiffer systems’ data will
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suffer worse generalization error. We examine this hypothesis by comparing the generalization error

(Lprediction(fθ,Dtest)− Lprediction(fθ,Dtrain)) of learned models corresponding to different stiffnesses

and dataset sizes.

While we have followed a commonly used approach by training our models on single-step predic-

tions (e.g. Chua et al. (2018); Nagabandi et al. (2019); Tedrake), long-term prediction quality is

essential for model-based control methods, such as MPC Chua et al. (2018). We therefore addition-

ally evaluate our models’ long-term prediction capability. For a particular ground-truth trajectory

τ ∈ {τ}eval, we use the initial (h) ground-truth states {xt}t=h−1
t=0 ∈ τ as input for the learned model

and recursively construct predicted trajectory for next t̂f time-steps {x̂t}t=h+t̂f−1
t=h . We report the

temporally-averaged absolute position and rotation error for each model:

epos =
1

t̂f

h+t̂f−1∑

j=h

∥p̂j − pj∥2 , erot =
1

t̂f

h+t̂f−1∑

j=h

|angle (q̂j , qj)| ,

where, angle(·, ·) represents the relative angle between two quaternions.

To make a fair evaluation for models with different history length and simultaneously ensure that

the prediction horizon is long enough to capture ground impact and block tumbling, we use t̂f = 50

(a 337 ms duration) in our experiments.

4.4. Results

In Table 4.4 we report MuJoCo oracle’s performance on the single-step velocity prediction Loracle

task across different stiffnesses. As expected, we observe that the single-step prediction performance

of the MuJoCo oracle improves as the contact is made softer.

Table 4.4: MuJoCo oracle Prediction Performance

Stiffness Setting Loracle epos (% width) erot (deg)

Hard 0.0836 ± 1.8× 10−3 4.31± 0.13 3.98± 0.03
Medium 0.011 ± 1.8× 10−4 3.57± 0.08 3.26± 0.03

Soft 3.19× 10−3 ± 1.9× 10−5 2.92± 0.04 2.77± 0.03

While the single-step oracle error for Hard contact is nearly 20x higher when compared to Soft
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contact, we find that it only accounts for approximately half of the training error. Fig. 4.4a

demonstrates the difference in the converged training loss of learned models and the oracle single-step

errors (Lprediction(fθ,Dtrain)− Lprediction(foracle,Dtrain)) across different dataset sizes and different

contact settings. The resulting values were right skewed and non-negative; therefore, we assume

their distribution to be log-normal and construct its 95% confidence interval using Cox’s method

(Land, 1972). Stiffer models show worse average training loss across all tested dataset sizes with

high confidence, with nearly 10x gap between the Hard and Soft models in the high data regime.

Furthermore, there is a large data efficiency gap; Hard models trained on 5000 trajectories perform

worse than both Medium and Soft models trained at just 100 trajectories.

In Fig. 4.4b, we plot the generalization error of the learned models with their 95% log-normal

confidence intervals. Similar to the trends noted in Fig. 4.4a, we observe that the generalization

error also exhibits a 10x gap in the high data regime, and that again Hard models perform worse

than their Medium and Soft counterparts do with 50x less data. Additionally, while Medium and

Soft models improve generalization by over a factor of 100 as the dataset size increased from 50 to

5000 trajectories, Hard models by contrast improve by less than a factor of 10.

We capture the long-term prediction errors (epos, erot) of the MuJoCo oracle in Table 4.4 and that

of the learned models in Fig. 4.4c–4.4d. The MuJoCo oracle errors are at least 10x smaller than

the learned models for both metrics. We also observe that for both MuJoCo oracle and the learned

models, the errors increase for stiffer models. In the case of learned models, the Hard models

perform worse when trained on up to 5000 trajectories than the Soft models perform only for 50, a

data-efficiency gap of at least 100x.

4.5. Discussion

Our results provide compelling evidence that deep learning methods are negatively impacted by

stiffness induced by contact. Of particular note is that this effect is significant when compared to

the inherent uncertainty of predicting stiff dynamics for noisy data; training set error grows nearly

twice as fast with stiffness as the MuJoCo oracle model (Fig. 4.4a). We also see in Fig. 4.4b that

stiff dynamics can violate the common intuition that generalization error vanishes as the training
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(a) (b)

(c) (d)

Figure 4.4: We compare the quality of learned models across stiffness settings and dataset sizes.
We plot several metrics with 95% log-normal confidence intervals. (a): As stiffness increases, the
gap between the training error and the oracle’s error grows. (b): Stiffer models show a significantly
higher average generalization error across dataset sizes. (c,d): We compare the performance of our
optimized networks on long-term prediction of position and orientation. Data-efficiency of learning
Hard models is at least 100x worse than for Soft models.

set size approaches infinity. While our softer models clearly behave as such, a 100x increase in

training set size made little impact on generalization for Hard models.

It is also vital to understand how learning performance affects the downstream robotics task. Often,

a goal in robotics is to gain an accurate enough model as fast as possible to use for long-term

prediction. The bottleneck in this scenario is often training data collection (Nagabandi et al., 2019).

From this data-efficiency perspective, increased stiffness has degraded learning performance 100-

fold, as that the Hard models are still worse than the Soft models with 100 times more data (Fig.

4.4c–4.4d).
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It is worth noting that long-term prediction performance can decorrelate from short-term predic-

tions, especially for stiff dynamics Ajay et al. (2019); Halm and Posa (2019). Training directly on

multi-step prediction error is therefore desirable. However, the stiffness of the training optimization

problem grows exponentially in the prediction horizon Ribeiro et al. (2019), and we have seen here

that even a prediction horizon of 1 is challenging on stiff systems.

4.6. Conclusion and Future Work

In this chapter, we have outlined a fundamental conflict between the dynamics of contact and

common deep learning approaches, which significantly degrade the performance of learned models.

While compelling, these results are only an initial study. Notably, our system has no actuation,

and has lower dimensional state than many robotics tasks; the performance gap between hard and

soft contact could be even wider for more complex systems. Future studies into more complex

systems are vital to understanding this relationship. Additionally, as MuJoCo’s compliant contact

is only a coarse approximation of real-world deformation dynamics, real-world experiments which

compare the dynamics of objects with different mechanical stiffness would strengthen the relevance

of these results to real robotic systems. Data efficiency has also been a primary focus of several recent

contributions to robotic learning. Some approaches have focused on training on long-term prediction

Ajay et al. (2018); Ajay et al. (2019); and locally-accurate, task-specific models Chua et al. (2018).

While none of these methods attempt to handle the conflict between stiffness and deep learning

directly, examining effects of stiffness on these algorithms would strengthen the relevance of our

results to the state-of-the-art.
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CHAPTER 5

A Mechanics-inspired, Non-stiff Loss for Learning Stiff Contact Dynamics

Parts of this chapter were previously published as parts of Bibit Bianchini, Mathew Halm, Nikolai

Matni, and Michael Posa. Generalization bounded implicit learning of nearly discontinuous func-

tions. In Proceedings of The 4th Annual Learning for Dynamics and Control Conference (L4DC),

volume 168 of Proceedings of Machine Learning Research, pages 1112–1124. PMLR, 23–24 Jun 2022.

URL https://proceedings.mlr.press/v168/bianchini22a.html. Bibit Bianchini conducted a previous

version of the numerical analysis on the 1-D example explored in Section 5.2. The remaining in-

cluded portions represent original contributions.

5.1. Introduction

In Chapter 4, we have observed that prediction error induces poor numerical conditioning into the

training process of data-driven models. As a result, models optimized with stochastic gradient de-

scent may become stuck in local minima, and fail to even fit training data well. In this chapter,

we raise questions about whether prediction error is even a high-quality metric of model quality

for stiff systems. We begin by demonstrating pathologic behaviors of prediction error gradients on

a 1D example (Section 5.2). We then provide a computational and statistical perspective on the

shortcomings of prediction error as a suitable metric for stiff, optimization-based dynamics (Sec-

tion 5.3). Inspired by recent work in control and planning through contact, we then propose a

novel, mechanics-inspired alternative prediction error, and prove a statistical connection to clas-

sical errors-in-variables modeling (Cifarelli, 1988; Adcock, 1878) (Section 5.4), original derived in

Pfrommer*, Halm*, and Posa (2020) and Bianchini, Halm, Matni, and Posa (2022). We demon-

strate the superior optimization characteristics on a rigid, simulated example, analogous to the

die roll system in Chapter 4 (Section 5.5). We conclude with some directions for future work in

Section 5.6.
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(a) (b)

Figure 5.1: Illustration of various model-fitting objectives on a 1D example. (a): A point mass (blue)
falls from an initial height z and velocity towards rigid, flat ground at height zg = 0. The mass
makes an impact with the ground before the next time-step. (b): For the problem of estimating
the ground height as a learnable parameter ẑg from this single state transition, we display the
optimization landscape the behaviors of 3 candidate losses, each of which equal 0 if and only if
ẑg = zg. Almost the entire landscape of prediction error (red) is either completely flat (zero
gradient) or extremely stiff (near-infinite gradient), where as graph distance and our proposed loss
are comparably well-conditioned.

5.2. Gradient Pathologies on a One Dimensional Example

To illustrate the difficulty of optimizing prediction error for rigid-body systems with contact, we

consider the one-dimensional rigid contact system in Figure 5.1a. This system consists of a point

unit mass at height z above flat ground at heigh zg = 0, and has state [z; ż]. As there is no lateral

movement, we may forgo analysis of friction and simplify the dynamics (2.35) to

find ż′;Λn , (5.1a)

s.t. ż′ = ż − g∆t+Λn , (5.1b)

0 ≤ Λn ⊥ (z + ż′∆t)− zg ≥ 0 . (5.1c)

These dynamics are have the unique analytical solution

fθ(z, ż) = ż′ = ż − g∆t+ pos

(
−ż + g∆t+

zg − z
∆t

)
. (5.2)
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On inspection, we can see that these dynamics are stiff for small ∆t, specifically in the sense that

the Lipschitz constant both with respect to initial condition z and parameter zg is 1
∆t . Consider

a single initial state with sufficient downward velocity to cause an impact: [z; ż] =
(
∆t
2 , g∆t− 1

)
.

Solving (5.2) results in ż′ = −1
2 . We consider the 1-D identification problem of finding an estimate

ẑg of zg from this single datapoint, where ∆t is set to 20[ms]. The standard method as described

in Section 2.7 would be to do so with gradient descent w.r.t. θ = ẑg on the prediction error

Lprediction(fθ, {[z; ż], ż′}). The 1-D setting allows to plot the loss landscape for visualization, shown

in red in Figure 5.1b. Here, we highlight two key challenges in this optimization process:

1. Zero gradients: When the modeled objects are much farther apart than the ground-truth

geometries, predicting forward in time from even a noiseless initial condition may fail to

observe that the objects can affect each others’ motion. This corresponds to the left region of

Figure 5.1b, where the predicted next state, and therefore the prediction error, is invariant to

the geometric parameters. Examining (5.2), this is because, pos
(
ż + g∆t+

zg−z
∆t

)
has zero

gradient in this region. Locally, ∇θLprediction = 0. As a result, large regions in parameter

space where SGD may become stuck (i.e. local minima) may exist.

2. Near-infinite gradients: When the modeled objects are much closer together than the

ground-truth, the model interprets the initial condition as deep interpenetration. As such

conditions are inherently non-physical, any predicted behavior by the model is also necessarily

non-physical and may be considered a simulation artifact. In particular, many simulators

respond to interpenetration with normal impulses that scale exceedingly quickly with the depth

(in the case of Stewart and Trinkle (1996) with slope ∼ 1
∆t ; see the right side of Figure 5.1b

and (5.2)), resulting in extremely large gradients ∥∇θLprediction∥2 >> 1. Gradient descent in

these regions is likely to be numerically challenging, and require exceedingly small step sizes

to avoid missing the often-narrow region (in the 1D case, near ẑg = zg = 0) where informative

gradients could bring the training process to the true global optimum.

47



5.3. Suitability of Prediction Error for Stiff, Optimization-based Dynamics.

Given the difficulty of optimizing prediction error, we will seek in this chapter to develop an al-

ternative model-fitting objective. In this section, we argue for a particular statistical analysis of

model-fitting objectives, graph distance, which motivates low prediction error as a strong indicator

of model quality. We then then use this analysis to qualify conditions by which alternatives to pre-

diction error might achieve superior optimizability, while retaining a firm statistical interpretation.

Consider a dataset D = {(xi,ui,v′i)}. For real-world robotic systems, the input ui is driven by

software decisions, and therefore often known exactly. However, the state information xi,v
′
i is

often reconstructed from noisy sensor measurements, and in general not exactly equal to the true

underlying states. If the noise component of likely to be small (e.g., when xi and v′i have Gaussian

white noise), then a necessary condition for datapoint i to match the model fθ well is that there

exists a pair (x̄′
i, v̄

′
i) ≈ (xi,v

′
i) such that (x̄i,ui, v̄

′
i) lies in the graph of Graph(fθ) of fθ:

Graph(fθ) =








x

u

v′



: v′ = fθ(x,u)




. (5.3)

Graph distance squared (GDS) is therefore a natural metric to capture model accuracy:

Lgraph(fθ,D) =
1

|D|
∑

i

Dist
(
[xi; v

′
i],Graph(fθ(·,ui, ·))

)2
, (5.4a)

=
1

|D|
∑

i

min
x̄i

∥∥∥∥∥∥∥




x̄i − xi
v′i − fθ(x̄i,ui)




∥∥∥∥∥∥∥

2

2

. (5.4b)

It is often reasonable to believe there are similar noise distributions the current and next state, and

thus weight the difference in xi and v′i equally in (5.4). By contrast, prediction error (2.49) only

considers noise in the next state, replacing the minimization over x̄i with the constraint x̄i = xi.

While GDS is a less ubiquitous performance metric than prediction error, it has a rich history in

statistical analysis through errors-in-variables modeling (Cifarelli, 1988), dating as far back as a
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method for linear regression proposed by Adcock (1878). One potential reason GDS-type objectives

are not more widely used is the complexity introduced in the form of an optimization problem

(5.4) embedded in the objective itself, turning the training process (2.48) into a complex, bilevel

optimization problem. For non-stiff systems, it is not clear that this complexity is warranted; in

fact, for fθ with a small Lipschitz constant, prediction error and GDS are equal up to a small

constant:

Lemma 2. If fθ is Lf -Lipschitz in x, Lprediction(fθ,D) ≥ Lgraph(fθ,D) ≥ Lprediction(fθ ,D)

1+L2
f

.

Proof. See Appendix C.1.

Figure 5.2: Illustration of the discrepancy between graph distance squared and prediction error,
adapted from Bianchini et al. (2022). Geometrically, graph distance is measured between datapoints
(gray dots) and the closest point on the model (blue dashed lines), whereas prediction error is the
vertical distance to the model (red solid lines). For datapoints near a smooth/non-stiff region of the
model (left), these two quantities are similar. By contrast, for datapoints near a stiff/nearly-vertical
region of the model (right), a drastic disparity between these metrics occurs.

In particular, the upper bound on GDS in Lemma 2 does not depend on Lf . As the training

process consists of minimizing Lprediction, regardless of the particular value of Lf , low prediction

error implies low graph distance, implying that the model well-explains the training data.

However, we find that stiff, optimization-based models, such as those for simulating rigid-body

dynamics, obey a unique combination of properties that make prediction loss a less practically

desirable tool for analysis. First, the model already embeds an optimization problem in prediction
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loss. It is then unclear without analysis of the particular structure of the dynamics that the problem

embedded in Lgraph is more computationally difficult than forward prediction. Second, the stiffness

of the model can induce a large discrepancy between prediction loss and graph distance, which scales

with the square of the Lipschitz constant Lf of fθ (Lemma 2). This can result in large prediction

error even when the model closely matches the data (see Figure 5.2 for a graphical explanation).

As the Lipschitz constant of the 1-D system is 1
dt , the discrepancy is on the order of 1

dt2
>> 1 (see

Figure 5.1b). In contrast to prediction error, the optimization landscape of GDS (shown in blue

dashes) has large, smooth basin around the correct model. It therefore seems advantageous in this

example, as well as rigid-body identification in general, to use an alternative approximation of GDS,

which we hope could more closely inherit its optimization landscape.

5.4. An Alternative Objective via Constraint Violation Penalization

We now describe the inspiration and construction of a novel alternative objective to prediction error,

and prove its relationship to GDS.

We turn to recent work in planning and control for robotic systems, where plans and controllers

are reliably derived, despite similar gradient pathologies with respect to control inputs (Posa et al.,

2013; Aydinoglu et al., 2023; Wensing et al., 2022). In such methods, one approach is to turn the

optimization into a large, uni-level optimization problem, in which states; inputs; and contact

forces are jointly optimized, subject to dynamics; input; and planning/control constraints. In such

constructions, the contact constraints embedded in the dynamics may be temporarily replaced

with a penalty or looser constraint. For instance, in Posa et al. (2013), the no-force-at-a-distance

constraint Λn,iφi = 0 is replaced with Λn,iφi ≤ ε; and in Aydinoglu et al. (2023), the constraint

is replaced with a penalty during one alternation of ADMM on each solver iteration. As a result

of this flexibility, these algorithms can reliably discover plans involving new contact modalities in

their optimization process.

Our goal is to replicate this process in the system identification setting, by developing a model

objective which effectively conducts an inference over contact modes at each gradient step. We

note that the GDS indirectly achieves this goal due to its optimization over the initial condition
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(5.4). However, by leveraging the optimization-based structure (2.37) of our dynamics of interest, we

can construct an alternative objective Lviolation which performs this inference explicitly by replacing

the h = 0 constraint (see Assumption 3) with a penalty on its violation:

Lviolation(fθ,D) =
1

|D|
∑

i

min
Λ∈K

lθ(xi,ui,v
′
i,Λ) , (5.5a)

lθ(x,u,v
′,Λ) =

1

2

∥∥v′ − gθ(x,u,Λ)
∥∥2
2
+ hθ(x,u,v

′,Λ) . (5.5b)

In the particular case of rigid-body dynamics (2.39)–(2.40), the first term in this minimization

can be thought of as analogous to prediction error, in which contact forces are partially inferred

by minimization violation of the manipulator equations; and the second term is a violation of the

complementarity and dissipation laws of contact.

We note that a unique insight into our construction is the use of the datapoint’s next velocity v′i in

hθ, rather than the model prediction g(xi,ui,Λ). As a result, unlike for forward prediction (2.38),

the optimization problem is a tractable, convex, second-order cone program Boyd and Vandenberghe

(2004), rather than a non-convex LCP. Consequently, this formulation has the potential to be less

computationally burdensome than forward simulation and therefore prediction error.

In Figure 5.1b, we plot this loss on the 1D example (green dotted/dashed line), and we find that

it appears to more tightly approximate GDS, and by virtue inherits a large basin of attraction to

the true model parameters. Due to Assumption 3, we additionally know that this loss does not

introduce unwanted bias in the sense that it’s minimum value is 0, and that Lviolation = 0 if and

only if Lgraph and/or Lprediction are also 0. It is also clear on this particular plot and system that

Lviolation ≥ 1
2Lgraph. Thus, in a similar manner to prediction error, low violation loss Lviolation

guarantees low GDS. It is not immediately clear however if outside of the window plotted, or for

other, more complex systems, that Lviolation ≳ Lgraph. We conclude this section with a proof of such

a bound in certain scenarios:

Theorem 1 (Violation loss bounds GDS). Assume the following:
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1. ∆t ≤ 1
4 [s].

2. Γ(q) = I; that is, v = q̇.

3. J(q) and Fs(x,u) are constant in x = [q;v].

4. M(q) = I.

Let σmin be the minimum singular value of JnJ
T
n and σmax the maximum singular value of JTJ.

Then for any dataset D and model parameters θ for the rigid-body dynamics fθ defined by (2.38)–

(2.39),

Lviolation(fθ,D) ≥ kLgraph(fθ,D) , (5.6)

k =
σmin

8max(1, σmax)
. (5.7)

Proof. See Appendix C.3.

We conclude this section with a discussion of the limitations of Theorem 1.

We first examine the four assumptions in the theorem statement. The first assumption in Theo-

rem 1 is made for convenience in the proof process, and is simply that the timestep duration ∆t

is reasonably small; in typical robotics scenarios, ∆t will be much smaller than the stated value.

However, the later assumptions may be significantly limiting, and in general are violated by 3D

articulated systems. Our current view is that these constraints aid in the proof process, and are

not necessarily fundamental limitations in the loss. Future work may investigate relaxation of these

assumptions in favor of norm bounds and smoothness properties of Γ, Fs, and M . For now, this

theorem is used to practically guide the scaling of various terms in (2.40) inside the loss (5.5).

Under this guidance, we will see that it performs well in both simulation and real-world scenarios.

Additionally, the looseness factor k in the bound above is essentially the inverse of the conditioning

of J; in many cases in robotics, this term may be considerably less than 1.

It is worth noting that Theorem 1 only demonstrates that our violation loss is at least as large as
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Lgraph. It does not guarantee that Lviolation can’t grow much larger than Lgraph. We do see that

in at least some system, such as in the 1D plot shown in Figure 5.1b, the violation loss is often

significantly less than prediction error, and has favorable practical qualities for optimization.

Finally, we note that the second-order cone program in (5.5) has identical dimension; constraints;

and curvature to the convex approximation of Anitescu (2005) discussed in Section 2.6.1 (both have

objectives with quadratic form 1
2Λ

TJM−1JTΛ), providing for nearly identical solving infrastruc-

ture and characteristics. Furthermore, as Anitescu’s approximation has a similar representation as

optimization-based dynamics (2.47) to Stewart and Trinkle (1996) (2.40), the violation loss can be

easily adapted to this formulation. While we do not provide a detailed proof, we note that a directly

equivalent result to Theorem 1 can be derived with nearly identical algebra.

5.5. Experimental Analysis

We now directly analyze the practical optimizability of our novel loss Lviolation on a more complex

3D system. While our discussion has focused on characterizing the gradients of various losses

with respect to their parameters, the ultimate purpose of this analysis to to hypothesize about

the performance of (stochastic) gradient descent in effectively globally optimizing the parameters.

To test this property directly, we again consider a simulated system, such that the true optimal

parameters θ∗ are known exactly. We now discuss the details of the setup of our experimentation

and the differing results.

5.5.1. Example System

We once again consider the die roll system similar to that Chapter 4, with the following changes:

• Contact simulation is perfectly rigid, and conducted by our own numerical implementa-

tion of Anitescu (2005), which is solved and differentiated with the method and software

of Agrawal et al. (2019).

• The ground-truth physical parameters are exactly the hand-identified ones of the real system

used in Pfrommer* et al. (2020); see Table 6.2.
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• No noise is added to the data, such that the ground-truth parameters are the global optimum

of both Lprediction and Lviolation.

We collect 512 training trajectories of 80 timesteps from a similar random initial conditions to

Chapter 4, and similar to Section 4.3 split the dataset 50:50 by trajectories into hyperparameter

optimization and evaluation sets.

5.5.2. Learning Process

We consider identification of the friction coefficient µ and geometry of the die. The die is modeled

as a convex polytope with 8 vertices pi, such that

θ =

[
µ̂ p̂1 . . . p̂8

]
∈ R

25 . (5.8)

For each training instance, θ is initialized in the range of 10-30% initial relative error, described

precisely in Section 5.5.3.

Training via minimization of Lprediction and Lviolation are compared over repeated trials. Trajec-

tory sets are further split 50:25:25 into train, validation, and test sets, and trained with Adam

(Kingma and Ba, 2015) with early stopping when the validation set loss no longer decreases. The

learning rate and weight decay parameters used in these experiments come from brute-force op-

timizaiton for each method over 100 trials on the hyperparameter trajectory set via the Optuna

library’s (Akiba et al., 2019) implementation of the Hyperband optimizer (Li et al., 2018).

5.5.3. Performance Metric

At the conclusion of training, we check the relative parameter error between the identified θ and

the true friction coefficient geometry. As the true parameters θ∗ are the global minimizer of each

loss, comparing the distance in parameter space to them provides a fair comparison between the

optimizability of each loss.
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The relative error for the friction coefficient is straightforwardly calculated as

eµ =
|µ̂− µ|
µ

. (5.9)

For the geometric parameters, we consider the true volume occupied by the shape S, as well as the

learned shape volume Ŝ = co ({p̂i}) implied by the learned vertices, and calculate a relative error

volumetrically:

eS =
Vol

(
(S \ Ŝ) ∪ (Ŝ \ S)

)

Vol(S) . (5.10)

The total parameter error is then reported as erel =
1
2(eµ + eS).

5.5.4. Results

In Figure 5.3, we compare the values of erel at the initialization and conclusion of the model-fitting

process. For each loss and model, the model-fitting process significantly decreased the relative

error, showing the conceptual validity of both our loss and prediction error for recovering system

parameters. However, in 13 out of 30 trials, prediction error failed to recover the true systems

parameters to reasonable numerical precision (erel = 1%). This supports our hypotheses that the

gradient pathologies detailed in Section 5.2 lead to poor empirical system identification, even on

noiseless data. By contrast, in every trial (30/30), our loss effectively globally optimized θ to

recover the die’s true shape and coefficient of friction. This comparison supports our hypothesis

that allowing the inference over modes in Lviolation (5.5) allows for more effective fitting of stiff

rigid-body models to data.

5.6. Discussion

The experimental results in Section 5.5 and theoretical results in Section 5.4 provide strong evidence

that our novel loss Lviolation is a well-reasoned objective for fitting physical model parameters to

data. While the our results focused on rigid-body modeling, we note that many other physical

models, such as some capturing solid-mechanical deformation, have a similar optimization-based

structure (Han et al., 2023). Future work may investigate a formulation of Lviolation to identify

parameters of such systems, paired with similar theoretical results to Theorem 1.
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Figure 5.3: Initial and final relative parameter error is compared for fitting 3D die roll system
parameters to date. We compare the effectiveness of optimizing via our novel loss Lviolation (green)
to a prediction error Lprediction baseline (red). In 30/30 trials, our loss recovered the true frictional
and geometric properties of the cube to numerical precision (1%). By contrast, over half (16/30) of
the prediction error-optimized trials recovered the true parameters, becoming stuck in local minima.

Additionally, our subsequent work Jin, Aydinoglu, Halm, and Posa (2022) examined applying a sim-

ilar loss to Lviolation for Linear Complementarity Systems, a local approximation of rigid-body models

(Aydinoglu et al., 2023). These models can be used by robotics applications involving rigid-body

systems that only require local accuracy, such as task-driven, model-based reinforcement learning

(Jin and Posa, 2022).

Finally, the ultimate goal of our better-conditioned loss is to scale identification problems like that

in Section 5.5 to the high-dimensional setting, e.g. identification in the space of all possible shapes.

Our subsequent work will detail a method in pursuit of this goal by parameterizing geometries as

deep neural networks.
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CHAPTER 6

ContactNets: Learning Rigid Body Dynamics with Arbitrary Geometries via Implicit

Neural Modeling

Parts of this chapter were previously published as parts of Samuel Pfrommer*, Mathew Halm*, and

Michael Posa. ContactNets: Learning of Discontinuous Contact Dynamics with Smooth, Implicit

Representations. In The Conference on Robot Learning (CoRL), 2020. URL https://proceedings.

mlr.press/v155/pfrommer21a.html. Samuel Pfrommer conducted the real-world data collection de-

scribed in Section 6.4, and the remaining reproduced portions represent original contributions.

6.1. Introduction

As we discussed in Chapter 1, our results in Chapter 5 as well as prior study (Heiden et al., 2020;

Fazeli et al., 2017b; Kolev and Todorov, 2015) show that a small number of parameters of rigid-body

models can be effectively fit to data. However, in robotics we would like to build entire models from

scratch, automatically, from limited data. In Chapter 4, we saw that while purely emirical DNN-

based models in theory have the flexibility to accomplish this, in practice they are hampered by poor

numerics and inductive biases. In this chapter, we combine our previously-discussed research with

a novel, implicit representation to take a significant step towards building rigid-body models from

scratch. Specifically, we seek to learn arbitrary object geometries without significant priors from

small datasets. This setting is difficult, as the parameter space of geometries is infinite-dimensional

in general. A successful method of doing so can enable robotic manipulators to quickly understand

and utilize rigid and articulated objects in their environments.

In Section 6.2, we discuss how DNN’s can be used in a “white-box” manner to paramterize arbitrary

object geometries. Taking inspiration from the convex-decomposition representation embedded in

common robotics simulators, we parameterize object shapes implicitly as a union of convex shapest.

Each convex part is capture as a DNN modeling its support function, which is continuous and

therefore well-utilizes DNNs’ capabilities to perform smooth extrapolation. We derive a new, novel

DNN architecture to this end, H-FICNN’s, which we rigorously prove to universally approximate any
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shape. In Section 6.3, we detail ContactNets, our method of embedding and training such DNN’s

inside rigid-body models, such that they can be made compatible with state-of-the-art robotic

simulation, planning, and control environments. In Section 6.4, we demonstrate ContactNets’ ability

to recover high-quality models from real-world motion capture data of a die-roll system similar to

the one explored in previous chapters. Finally in Section 6.5, we discuss the implications of our

results and future directions for research.

6.2. Representing Arbitrary Shapes with Deep Neural Networks

In this section, we establish a theoretically-proven method of approximating arbitrary shapes as

neural networks. We consider a bounded shape S ⊆ R
3. The problem which we would like to solve

is to implicitly parameterize the shape with a DNN with a finite-dimensional basis. That is, we

would like to define a family of neural networks sθ : Rn → R with parameters θ ∈ R
nθ such that

each selection of θ defines an sθ(·) that corresponds exactly to a single learned shape Sθ ⊆ R
3. We

desire this representation to have the following properties:

1. There must be an efficient way to compute mesh approximations of the learned shape, a format

compatible with many robotics applications including popular simulation and visualization

environments.

2. The representation should be continuous with a reasonably-small Lipschitz constant for arbi-

trary shapes, such that the smooth interpolative power of DNN’s is well-utilized.

3. The representation must have sufficient flexibility to approximate any shape. That is, for

some neural network sθ, there exist parameters θ ∈ R
nθ such that the learned shape Sθ and

true shape S have arbitrarily-small discrepancy.

We now show how a concept from convex analysis, support functions, can satisfy each of these

properties.
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6.2.1. Convex Polytopes as Support Functions

We first consider the case where S = co ({pi : i ∈ 0, . . . ,M − 1}) is a convex polytope with a

finite set of vertices pi ∈ R
3. Such shapes are implicitly parameterized by their support function

s : S2 → R (Bazaraa et al., 2006):

s(r̂) = max
i
pi · r̂ . (6.1)

s(r̂) implicitly defines a hyperplane-intersection representation of S:

S =
⋂

∥r̂∥2=1

{p : r̂ · p ≤ s(r̂)} . (6.2)

The gradient5 of s is equal to a support point of the shape (Bazaraa et al., 2006). This point is the

element p ∈ S that is farthest in the r̂ direction—i.e., p · r̂ = s(r̂). These points can be used to

construct a convex hull representation of the polytope:

∇r̂s(r̂) = argmax
pi

pi · r̂ , (6.3)

S = co


 ⋃

∥r̂∥2=1

∇r̂s(r̂)


 . (6.4)

The relationship between S, r̂, s(r̂) and ∇r̂s(r̂) is illustrated in Figure 6.1.

Equations (6.2) and (6.4) together constitute a computational framework to approximately extract

S via sampling s(r̂) and its gradient. Such operations are computationally tractable and highly par-

allelizable for most DNN architectures. By randomly sampling unit directions r̂1, . . . , r̂K , replacing

the infinite intersection and union in (6.2) and (6.4) with finite ones results in outer- and inner-

approximations Souter ⊇ S ⊇ Sinner. The resulting shapes are a finite intersection of hyperplanes

and the convex hull of a finite vertex collection. These are standard “H-” and “V-” representa-

tions from which surface and volume meshes can be computed with standard libraries, e.g. qhull

(Barber et al., 1996). The error in this approximation of S can then be quantified by inspection of

5
s is in general not differentiable; for geometries with sharp corners, many points may be equally far in the r̂

direction. In this case, the same relationship can be made with the Fréchet subgradient of s(r̂) (Bazaraa et al., 2006).
For more details on subgradient calculus, see Appendix A.2.1.
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Figure 6.1: Illustration of the support function of a convex shape S. Given an outward unit normal
r̂, s(r̂) is how far the shape extends in this direction. p = ∇r̂s(r̂) is equal to the point on the
shape’s boundary that lies as far as possible in this direction. We then have that p · r̂ = s(r̂).

Souter \ Sinner. It is also clear from (6.3) that s(r̂) is continuous with Lipschitz constant maxi ∥pi∥2.

6.2.2. Support Function Approximation with Input-Convex Neural Networks

We have seen in the previous section that for convex polytopes, support functions satisfy the first

two desired properties for our shape representation. We now demonstrate how support functions can

be represented as neural networks. Support functions have an equivalence property with positively

homogenous convex functions (Schneider, 1993). That is:

• Any positively homogeneous and convex function is the support function of a unique compact-

convex shape.

• Every compact-convex shape’s support function is positively homogeneous and convex.

Therefore, if convexity and positive homogeneity are guaranteed for a given neural network architec-

ture, then any learned parameters will correspond to a unique compact-convex shape. We propose

such an architecture, which extends the Fully-connected Input-Convex Neural Network (FICNN)

architecture presented in Amos et al. (2017). FICNN’s are convex in their inputs (Amos et al.,

2017, Proposition 1). They achieve this with a similar structure to the simple feedforward network

discussed in (2.51), with the following modifications:
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• The hidden-layer weight matrices Wz,k must have non-negative entries. This can be done

for instance by parameterizing them with the element-wise logarithms of their values, i.e.

Wz,k = exp(W̄z,k).

• The activation function σ(·) is element-wise convex and monotonically increasing. For instance

the popular (Leaky) rectified linear unit

LeakyReLU(y)i





yi yi ≥ 0 ,

αy yi < 0 ,

(6.5)

with (constant) leaky fraction α ∈ [0, 1) satisfies this property. The simplified case α = 0 is

called ReLU(y) = pos(y) .

In this work, we propose two additional constraints, which turn the FICNN layers into a nested

sequence of positively homogeneous functions:

• The activation σ is also positively homogeneous; (Leaky)ReLU activations also have this

property.

• Each bias bk is set to zero.

We call networks meeting this full set of constraints a Homogenous FICNN (H-FICNN). As the

composition of positively homogeneous functions is also positively homogeneous, each H-FICNN

meets all structural requirements to be the support function of a unique compact-convex shape. We

now show by proof that the converse is true: any convex polytope’s support function can be exactly

represented as an H-FICNN with ReLU activations.

Theorem 2. Consider a bounded convex polytope S = co ({pi : 0 ∈ 1, . . . ,M − 1}) with support

function s(r̂). Then, there exists an H-FICNN sθ(r̂) with width and depth M and ReLU activations

such that sθ(r̂) = s(r̂) everywhere and thus Sθ = S.

Proof. See Appendix D.1.
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Along with the discussion in Section 6.2.1, this proof guarantees that support functions represented

as H-FICNN’s meet all three of the desired properties for shape representation in the domain of

convex polytopes.

We not that another possibility would simply be to represent the polytope directly as the vertices

{pi}. We find H-FICNN parameterizations advantageous in that they can achieve a more dense

representation of complex geometries. For a parameterization θ ∈ R
nθ that can represent up to M

vertices, we define its density as M
nθ

. For instance, representing the polytope directly as M vertices

requires 3M parameters, and thus has density 1
3 . In comparison, the approximately M3 parameters

of the network in Theorem 2 seems to imply that H-FICNNs are a less dense representation. How-

ever, universal approximation theorems like Theorem 2 don’t necessarily represent the true limits

on complexity of the underlying architecture. In fact, it is known that for fully connected DNN’s

with ReLU activations of input dimension 3; width 3w; and depth d < 3w, the parameter density is

at least w3(d−1)

9 (Montúfar et al., 2014). In practice, we therefore opt for network widths and depths

in the ranges [64, 256] and [2, 4], respectively. When embedded in rigid-body models, we find that

networks of such size are evaluated quickly enough to make negligible contributions to the total

computational burden of simulation. At the same time, the size of these networks allow them to

approximate essentially any polytope, and thus it is not necessary to know or hard-code the number

of vertices M beforehand.

6.2.3. Shape Approximation as Convex Polytope Decomposition

We have shown that H-FICNN’s meet all of our desired properties for exactly representing convex

polytopes. We now extend this idea to generic bounded shapes.

It is well known that any bounded shape S can be approximately decomposed into a finite collection

of convex shapes S1, . . . ,SN . Such decompositions can be computed to arbitrary precision:

Theorem 3. For any D, ε > 0 and compact shape S ⊆ [−D,D]3, there exists a finite collection of
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convex polytopes S̄ = ∪i∈1,...,N Si such that

max

(
max
p∈S

Dist(p, S̄),max
p̄∈S̄

Dist(p̄,S)
)
< ε . (6.6)

Proof. See Appendix D.2.

It immediately follows that any compact shape can be arbitrarily approximated by a finite collection

of H-FICNN’s.

6.3. Embedding Learned Support Functions into Rigid Body Simulation in ContactNets

The previous section described a novel, theoretically-proven method to represent arbitrary shapes

as DNN’s. In this section we motivate and detail ContactNets, our proposed method by which these

representations can be embedded into physics simulation; an overview of the process involved is

given in Figure 6.2.

6.3.1. Simulating Contact with Support Functions

When popular simulation environments like Bullet (Coumans, 2015) import non-convex shapes for

collision geometries, they opt to approximate them with a collection of convex shapes, in exactly

the sense described in Theorem 3 Mamou and Ghorbel (2009). A primary motivation for this

computation step is, in fact, to gain access to the support functions s(r̂) of each convex. The robotics

and video game communities has for decades relied on collision detection and signed distance φ(q)

calculation algorithms, seminally including the method of Gilbert, Johnson, and Keerthi (1988)

(GJK) and the Expanding Polytope Algorithm (EPA) (Van den Bergen, 2001), which internally

represent shapes by their support functions. These methods take as input the relative rotation and

translation (R1
2, t

1
1,2) between two bodies defined by shapes S1,S2; and interfaces to compute the

body-frame support function sk(r̂) and support points pk = ∇r̂sk(r̂). As central subroutines to

countless robotics; gaming; and graphics algorithms, a large quantity of work has been conducted on

maximizing accuracy and efficiency of the approximate convex decomposition (Mamou and Ghorbel,

2009; Mamou, 2016); collision detection (Liu et al., 2008; Wei et al., 2022); and signed-distance

calculation (Fares and Hamam, 2009) process inside simulation. As a result, it is known that the
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contact dynamics even of pathologically concave objects like bowls can be reliably and quickly

simulated as unions of convex shapes.

We briefly describe how these algorithms lead to a construction of the contact geometry terms

φi(q),Ji. Collision detection algorithms output a pair of world-frame (w) witness points p̄w1 (θ),p
w
2 (θ)

representing the closest pair of points on the bodies (if they are not touching) or the deepest pair of

interpenetrating points (if the bodies occupy the same space); as well as the outward normal n̂w(θ)

of S1 at p̄w1 (θ). We note that these quantities are dependent on the shape parameters θ. The

contact dynamics terms φi,θ(q),Ji,θ(q) are algorithmically constructed using the following steps:

1. Calculate φi,θ(q) = n̂
w(θ) · (p̄w2 (θ)− p̄w1 (θ)).

2. Construct the rotation matrix between the contact frame c and world frame Rc
w(θ) such that

the first row (x̂wc -axis) is n̂w(θ).

3. Using forward kinematics (which does not directly depend on the collision geometry), calculate

Jwk (p̄
w
k (θ)) ∈ R

3×nv , the world frame velocity Jacobian of d
dt p̄

w
k (θ) w.r.t. v.

4. Calculate the contact Jacobian as Ji,θ(q) = R
c
w(θ)(J

w
2 (p̄w2 (θ))− Jw1 (p̄w1 (θ))).

6.3.2. Training and utilizing learned geometries with ContactNets

We now detail ContactNets, our method of fitting arbitrary geometries in rigid-body models to to

data.

Input Data

As in typical empirical system identification (Section 2.7), we consider identification of rigid-body

dynamics parameters from a finite collection of state trajectories Dtrain = {(x,u,x′)i}. For real-

world systems, such information may be recorded for instance via a combination of proprioception

and motion capture.
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Figure 6.2: Overview of the proposed method for constructing physics-based models from state
trajectories. Left: Motion capture data is collected from real-world objects as they move through
the environment. Center: geometries of objects are parameterized as H-FICNN’s representing
their convex decomposition. These networks are fit to data via the mechanics-inspired violation
loss Lviolation discussed in Chapter 5. Right: The geometries can then be extracted to a simulator
configuration file, such as a URDF. This file can then be loaded by various robotic simulation,
planning, and control environments.

Model Representation

Topological and discrete information such as the number of bodies in the environment and robot

joint arrangement are assumed to be known a priori. Typical scalar-, vector-, and tensor-valued

quantities like mass; link-lengths; coefficients of friction; and inertia may be parameterized with

standard methods, e.g. Rucker and Wensing (2022). Unknown geometries are represented as

unions of convex shapes, which are parameterized as H-FICNN’s; the number of convexes in each

decomposition is fixed. While learning inertial quantities is not explored in this text, our re-

cent extensions of ContactNets have successfully learned inertial and contact terms simultaneously

(Bianchini, Halm, and Posa, 2023).

Training and Inference

Models are fit to data using via stochastic descent on the violation loss Lviolation derived in Chap-

ter 5. In each of our experiments, we used the Adam optimizer (Kingma and Ba, 2015). Once

a set of parameters are fit, because even our novel deep-learned geometries may be converted to

standard meshes, the learned model may then be exported as a URDF, MJCF, or SDF file. These

representations may then be imported by the most ubiquitous robotics simulators, including Drake

(Tedrake, 2014), Bullet (Coumans, 2015), and MuJoCo (Todorov, 2014). Futuremore, popular plan-
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ners (Posa et al., 2016a) and controllers (Aydinoglu et al., 2023) for rigid-body system with contact

can accept URDF models via the Drake library, allowing the learned model to be used directly by

these algorithms as well.

6.4. Experiments

(a) (b)

Figure 6.3: Our real-world system designed to replicate the complex, three dimensional contact
explored in Chapters 4 and 5. (a): A cube was tossed against the planar ground, producing impacts
and both sticking and sliding frictional contact. Cube position and orientation are tracked by three
cameras, outlined in blue. (b): A trace of c.o.m. position and block orientation is superimposed on
a typical tossing behavior learned by our method, ContactNets. In both real and predicted (green)
behavior, the block impacts the ground on a corner and tumbles onto its side before coming to rest.

The ultimate goal of our modeling methods is to be able to construct accurate models of real-

world systems from as little data as possible. We thus choose in these experiments to evaluate

the abilities of our method on a representative real-world canonical system. Specifically, we test

ContactNets’ ability to model a real-world object’s dynamics by reconstructing its geometry from

motion capture data. Beyond the benefits of being compatible with state-of-the-art robotics planners

and controllers, we hypothesize that both the physics-based modeling structure as well as the use of

our novel violation loss Lviolation aid in finding an accurate dynamical model from less data. To test

this, we conduct an ablation study on these components. Over varying dataset sizes, we compare

the long-term predictive ability of learned models on a real-world analogue of the die rolling system

explored in previous chapters.
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Table 6.1: Examined Model-fitting Methods

Method Name Model Parameterization Training Loss

ContactNets (ours) Rigid-Bodies w/ DNN Shapes (ours) Lviolation (5.5) (ours)
Deep Differentiable Physics (ours) Rigid-Bodies w/ DNN Shapes (ours) Lprediction (2.49)

End-to-End Fully-learned DNN fθ(x,u) Lprediction (2.49)

6.4.1. Compared Methods

We compare the predictive performance of the following three model-fitting methods, summarized

in Table 6.1:

• ContactNets (ours): This method is the full proposed method, which represents shapes as

unions of convex H-FICNN’s; and is trained by minimization of our novel loss Lviolation.

• Deep Differentiable Physics (ours): This method is the same novel shape parameteriza-

tion as ContactNets, but follows standard practice of training to minimize prediction error

Lprediction. Given the poor landscape of Lprediction described in Chapters 4 and 5, we ex-

pect this method to struggle with local minima, and consistently converge to poor model

parameters regardless of the dataset size.

• End-to-end : This method follows the standard practice to learn the mapping x′ = fθ(x,u)

entirely as a single DNN, in this case an MLP. We expect this method to suffer from the same

stiffness-induced challenges explored in Chapter 4.

6.4.2. Example System

In theme with Chapters 4 and 5, we consider as real analogue to the “die roll” system, shown in

Figure 6.3a. A 10 [cm] acrylic cube is tossed onto a wooden surface, which produces nearly instan-

taneous (i.e., sub-timestep) impact behaviors, including tumbling, sliding, and multiple impacts in

a single timestep. In order to protect the cube from damage over many impacts, each corner is

covered with a thin film of soft material. Physical paramters of this system are listed in Table 6.2.

While real world systems often have frictional behaviors that diverge significantly from Coulomb

friction, we provide a least-squares fit to the kinetic coefficient of friction to provide coarse intuition
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Table 6.2: Real-world Die Roll System Parameters

Constant Symbol Value Units

mass m 0.37 kg
inertia I 8.1× 10−4 kgm2

side length l 0.1048 m

gravity g 9.81 m
s
2

friction coefficient µ 0.208 (none)
time-step ∆t 6.8× 10−3 s

about the contact behavior.

Each side of the cube features four unique AprilTags tracked by three 148 [Hz] PointGrey cameras

using TagSLAM (Pfrommer and Daniilidis, 2019). Object configurations are recorded as [t; R]

consisting of the world-frame center of mass position t and rotation matrix R, and velocities are

constructed by finite difference. 550 high-quality tosses are recorded.

6.4.3. Learning Process

For the rigid-body models, the identified parameters are the coefficient of friction µ and geometry

of the die. The die is modeled as a single convex shape, with parameterization as an H-FICNN

with width 256 and depth 2. For each training instance, θ is initialized in the range of 10-30%

initial relative error, described previously in Section 5.5.3. 256 tosses are reserved for hyperparam-

eter optimization. The learning rate; weight decay; and minibatch size parameters are brute-force

optimized for each method over 100 trials via Hyperband (Li et al., 2018), in the same manner as in

Chapter 5. The MLP’s in the End-to-end models additionally have their width and depth optimized

by the same process.

The remaining trajectory sets are further split 50:25:25 into train, validation, and test sets. All

models are trained with Adam (Kingma and Ba, 2015) and early stopping when the validation set

loss no longer decreases.

Inside each loss Lprediction, Lviolation, there is a prediction component scaling with ∥v∥22. We take

note that there is an implicit mixing of linear and angular units here that may lead to poor numerical
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scaling. We find that superior performance can be achieved when positions are normalized by a

characteristic length similar to the side length of the cube. In these experiments, we specifically use

lchar =
√

I
m

= 4.68 [cm]6. This is equivalent to scaling the velocity prediction error as ∥v∥2M(q).

6.4.4. Performance Metric

While the previous study in Chapter 5 examined ground-truth parameter error, this study faces

two issues in applying the same metric. The first is that End-to-end models are non physically

structured; and the second is that some parameters like the Coulomb friction component do not

have a real value. We therefore examine empirical accuracy of the methods as their metric of

quality. Given the length scaling described in Section 6.4.3, we propose to evaluate the long-term

prediction of the position of the cube in these units. For each trajectory in the training and test

sets, we initialize each model to the ground-truth initial condition; simulate forward in time to

record [t̂n, R̂n] at each time n; and calculate the time-averaged discrepancy with the ground truth

[tn,Rn]:

epred =
1

N

N∑

n=1

|angle(R̂n,Rn)|+
1

lchar

∥∥t̂n − tn
∥∥
2
[rad] . (6.7)

Above, angle(R̂n,Rn) is the angle of the angle-axis rotation from R̂n to Rn.

The value epred takes over the test trajectory set is our primary metric of predictive performance

for each model. We additionally quantify epred over the training set as well to aid in understanding

why some methods have better test set performance than others.

6.4.5. Results

In Figure 6.4, we compare the long-term prediction error epred between ContactNets and our baseline

methods across several dataset sizes. Similar to Chapter 4, we overlay log-normal 95% confidence

intervals, estimated from 30 trials per method and dataset size.

We find that with only 32 training tosses tosses, ContactNets reliably and significantly outperforms

both baselines. By comparison, Deep Differentiable Physics models have the poorest training and

test set errors, and do not significantly improve with added data. In Figure 6.5, for both types of

6The intuition in this scaling is that inertia scales as ∼ ml
2
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(a)

(b)

Figure 6.4: We compare the long-term test-set (a) training-set (b) prediction error epred between
ContactNets and two baseline methods, with overlayed 95% confidence intervals. (Green line): with
only 32 training tosses tosses, ContactNets reliably and significantly outperforms both baselines.
(Red dashes): By comparison, training the same model with prediction error in Deep Differentiable
Physics results in the training process becoming stuck in local minima, and poor performance
regardless of dataset size. (Blue dots): End-to-end perform similarly or worse than ContactNets
on test data, especially in the middle-to-high data regime. These models have by far the largest
discrepancy in performance between the training set and test set, meaning that their generalization
error is largest.
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Figure 6.5: The ability of learned ContactNets and Deep Differentiable Physics models (both in
blue blue) to recover ground-truth geometry (red) is compared. For each method and dataset size,
the best- and worst-performance models are shown. Regardless of dataset set, ContactNets’ best
model recovers the ground-truth shape to high precision; at 128 tosses, all models converge to the
true geometry. By contrast, Deep Differentiable Physics consistently, largely underestimates the
cube’s volume.
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rigid-body models, we display snapshots of these trajectory rollouts, with learned (blue) and ground-

truth (red) geometries visualized. For each method and dataset size, we show a snapshot from both

the best- and worst- performing of 30 trials. Deep Differentiable Physics models always fails find

the correct geometry, and instead find a round object inscribed in the true ground-truth shape. By

contrast, even on just 8 training tosses, the best-performing ContactNets model recovers the ground

truth geometry to high precision. Additionally, for 128 training tosses, the worst-performing model

over 30 trials also recovers the geometry similarly well.

Across dataset sizes, both types of rigid-body models have excellent match between training and

test set performance, implying that they both generalize well to unseen data, even when trained on

just a few rollouts.

End-to-end models perform similar or worse than ContactNets on test data, despite superior per-

formance in the low-data regime on training data. This means that these pure-DNN models, which

lack physical structure, require a large amount of data to effectively achieve low generalization error.

6.5. Discussion

Discontinuous and non-unique impact and stiction underpin essential robotics tasks—thus capturing

these phenomena in learned models is crucial for their effective use in the real world. Our method,

ContactNets, presents a novel and theoretically-proven approach to resolving fundamental problems

in representing these behaviors with neural networks, and produces realistic dynamics from limited

training data. On a real-world example, we have demonstrated that both the novel representation

and training objective embedded in ContactNets lead to improved accuracy of learned models across

a wide range of dataset sizes.

The primary limitation of our model is the constrictive nature of its priors: namely that the analyt-

ical contact-free dynamics are known and exact; collisions are inelastic; and objects are rigid. Ad-

ditionally, further experimentation involving a manipulator interacting with more complex objects

would allow us to evaluate our formulation’s ability to capture multi-body contact. To these ends,

our current work (Bianchini, Halm, and Posa, 2023) is focused on integrating residual and inertial-
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parameter learning into the ContactNets formulation, and application of the upgraded method to

articulated objects thrown by a robot arm. Subsequent work may focus on verifing the quality of

our learned models for executing robotic tasks by utilizing them in planning and control algorithms.

Additionally, as real-time data of object poses is unavailable in some applications, natural exten-

sions could involve embedding our formulation into dynamical models based on visual data. Recent

advances in keypoint-based approaches Manuelli et al. (2019) suggest a promising intermediate rep-

resentation for inferring contact geometry from video. Additionally, point-cloud data from RGB-D

sensors may be utilized for warm-starting or sensor fusion with our geometric representations, po-

tentially enabling faster training convergence and higher-quality geometry estimation.
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CHAPTER 7

Set-valued Rigid-body Dynamics for Simultaneous, Inelastic, Frictional Impacts

Parts of this chapter were previously published as parts of Mathew Halm and Michael Posa. Model-

ing and Analysis of Non-unique Behaviors in Multiple Frictional Impacts. In Robotics: Science and

Systems (RSS), Freiburg im Breisgau, Germany, 2019. URL http://roboticsproceedings.org/rss15/

p22.pdf. The included portions represent original contributions.

7.1. Introduction

In Chapters 5 and 6, we focused on the process of recovering rigid-body model parameters from

data. In this chapter, we consider that even if such estimated parameters are precisely identified,

the rigid-body models built from them will never perfectly predict the outcome of every real-world

scenario.

Real-world robotics systems must rely on state estimation method to approximately recover the

system’s current state. As discussed in Chapter 1, under the extreme sensitivity to initial conditions

induced by contact, even slight errors in the state estimate may produce large prediction error. A

familiar occurrence of this sensitivity is the unpredictability of billiards breaks and dice rolls, though

even a single object impacting flat ground (Figure 7.1) is difficult to model. Unfortunately, sensitive,

simultaneous impacts regularly occur in robotics (see Section 7.2.1).

This sensitivity is highly dependent the rapid ordering or sequencing of impact forces between the

various colliding bodies, where are in turn extremely sensitive to the initial condition (Chatterjee,

1999; Hurmuzlu and Marghitu, 1994; Ivanov, 1995; Smith et al., 2012; Uchida et al., 2015; Wang et al.,

1992). In reality, this ordering emerges from material properties and deformation dynamics (Chatterjee,

1999; Nguyen and Brogliato, 2018), which are generally not tractable to fully identify or simu-

late in real-world robotics scenarios. Instead, robotics methods rely on the rigid-body models

discussed in this thesis, which inherently do not capture true impact physics; instead, typical

models select a single outcome according to one of many heuristics, including maximum dissipa-
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(a) Initial condition (b) Symmetric impact (c) A-then-B sequential impacts

Figure 7.1: (a) A rectangular block (yellow) with velocity v is dropped onto flat ground (gray),
colliding at two corners; multiple physically-realistic results may emerge from these simultaneous
impacts. (b) As the system is symmetric about the vertical axis, one possibility is that the phone
comes to rest; the model in Anitescu and Potra (1997) produces this outcome. (c) With sufficient
friction, any impact at a single corner can stick. If point A impacts first, the phone pivots counter-
clockwise, causing a a second impact at B, which then causes the phone to pivot about B with A
lifting off the ground. If the impacts are instead ordered B-then-A, then by symmetry is A pivots
and B lifts off.

tion (Drumwright and Shell, 2010), minimum potential energy (Uchida et al., 2015), and symmetry

(Smith et al., 2012). Other models (e.g. the LCP-based ones discussed in Section 2.5.4) have a

handful of non-unique solutions, but rely on a numerical solvers which may be biased toward a

particular solution (Anitescu and Potra, 1997; Stewart and Trinkle, 1996; Horak and Trinkle, 2019;

Remy, 2017; Anitescu, 2005). Under restrictions on the systems and mechanics involved, such as

massless limbs and no kinetic friction, such models may lead to useful, accurate modeling of robotic

systems and tasks (Johnson et al., 2016; Burden et al., 2016). However, both simple and complex

robotics systems violate these assumptions, and different heuristics inevitably produce disagreeing

or unrealistic predictions (Remy, 2017; Fazeli et al., 2020b). Furthermore, their single-outcome na-

ture does not reflect the large uncertainty generated from the practically-unknowable sequencing of

impacts.

This chapter takes a fundamentally different perspective, in which we propose the development

of set-valued rigid-body models that attempt to generate all physically-reasonable outcomes, by

capturing all possible orders of impacts. Though some predictions from such a model may not
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ultimately occur, controllers guaranteed to stabilize the model—and learned policies trained on the

model’s predictions—are well-positioned to perform reliably in the real world. While non-unique

predictions through randomly-sequenced individual impacts has existed conceptually for decades

(Ivanov, 1995), such methods do not capture the subtleties of partially-concurrent impacts, and

feasible computation of the entire set of possibilities has remained an open problem (Stewart, 2000).

In the domain of inelastic impacts, we tackle both of these issues by developing a differential impact

model which allows impacts to resolve at arbitrary relative rates, first conceptually explored in

Posa et al. (2016b). This construction is similar mathematically to other recent methods, including

Darboux-Keller (Keller, 1986) and LZB (Nguyen and Brogliato, 2018) approaches, in that it extends

Routh’s original method for inelastic impact (Routh, 1891); such extensions have so far however

been focused on producing a single outcome when well-identified material properties are available

(Nguyen and Brogliato, 2018).

A prior version of this work was published in Halm and Posa (2019), provided the first detailed

theoretical analysis of this construction, by encapsulating the resulting dynamics as a differential

inclusion. This work supplements this work by embedding these impact dynamics into the con-

tinuous time evolution of rigid body systems, as well as a new numerical technique for tractable

approximation of the set of outcomes to simultaneous impacts. The chapter is organized as follows:

• In Section 7.2, we provide a simplified theoretical analysis of the set-valued impact model

in Halm and Posa (2019), with proven existence of solutions (Lemma 3); energy dissipation

(Lemma 5) impact termination (Theorem 6). We include new motivating examples highlight-

ing the inconsistencies between existing models of simultaneous impact.

• In Section 7.3, we unify set-valued impacts and continuous-time evolution into a single model,

with guaranteed existence of solutions (Theorem 7) and time advancement (Theorem 10).

• In Section 7.4, we formulate time-stepping simulation of the impact model as a linear comple-

mentarity problem (LCP). We provide bounds on computation time for both sampling from

(Theorem 13) and global approximation of (Theorem 14) the feasible post-impact velocity set.
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• In Section 7.5, we apply our model to several examples from robotic locomotion and manip-

ulation.

7.2. Simultaneous Impact Model

(a) Initial condition (b) Simultaneous algebraic impacts

Figure 7.2: (a) A compass gait walker, consisting of two legs attached with a hinge joint at the
hip, takes a step with hip velocity v and excites non-uniqueness in the model of Anitescu and Potra
(1997). (b) A single impact at that the leading foot (point A) can cause the trailing foot (point
B) to lift off the ground. Alternatively, impacts at both feet can cause the trailing foot to slide or
come to rest.

(a) Initial condition (b) Simultaneous impact (c) B-then-A sequential impact

Figure 7.3: Subtly different solutions for a box sliding into a wall with velocity v (a) are shown. (b)
When a simultaneous impact is generated via Anitescu and Potra (1997), the box comes to rest.
(c) When point B has an impact before point A, point A instead continues sliding, while point B
lifts off the wall.

While Figure 7.1 demonstrates that simultaneous collisions can excite meaningful disagreement

between common impact models, making two points collide at exactly the same is unlikely in real

life. However, as shown on a real-world system by Chatterjee (1999), even a single collision can

result in multiple outcomes depending on the ordering of impulse accumulation between contacts.

In this section, we first offer two additional examples of this type—one related to legged locomotion

and the other to manipulation; technical details can be found in Appendix E.1. We then describe a

model that captures the non-uniqueness due to impulse ordering by extending Routh’s method to

multiple contacts with arbitrary relative rates.
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7.2.1. Motivating Examples

A ubiquitous model of bipedal walking is the compass gait walker, which consists of two rods (legs)

connected with a revolute joint at the hip. Bipedal walking involves stepping with a leading foot

while a trailing foot rests on the ground, as shown in Figure 7.2. As observed by Remy (2017),

if a wide step (156◦ between the legs) is taken by the model, then the simultaneous method of

Anitescu and Potra (1997) results in three categorically different solutions. In one case, there is

only an impact at the leading foot, and the trailing foot lifts of the ground. In two others, impacts

at both feet can result in the trailing foot sliding or coming to rest.

In the second example, motivated by non-prehensile pushing of an object, we consider a box which

slides on one corner on a floor before impacting a wall (Figure 7.3). If a single impact occurs between

the box and the wall, it will trigger a second impact against the floor. Due to the position of the

center of mass of the box, both impacts add counter-clockwise rotational momentum to the box,

causing the contact with the wall to lift off. Alternatively, if both of these impacts are resolved

simultaneously, the box comes to rest under sufficient friction.

7.2.2. Simultaneous Impact Model Construction

We have previously demonstrated that some simultaneous impact models are sensitive to impulse

ordering. As predicting this ordering demands precise knowledge of initial conditions and material

properties beyond the fidelity of robotic sensors and simplified rigid-body models, we instead seek

to predict the set of outcomes that result from arbitrary impulse orders.

The foundational concept of this model is that while Routh’s method models impacts as instan-

taneous (Routh, 1891), the variable of integration s provides a natural way to specify the relative

rates of impulse accural between concurrent impacts. A similar model, without theoretical results

or a detailed understanding, was proposed by Posa et al. (2016b) where it proved useful for sta-

bility analysis of robots undergoing simultaneous impact. We consider the following extension to

Routh’s method which at any given instant during the resolution process, the impacts are allowed

to concurrently resolve at any relative rate:
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1. Increase Λn,i on each non-separating (Jn,iv ≤ 0) active contact i ∈ IA(q) at rate λn,i ≥ 0

such that
∑

i

λn,i = ∥λn∥1 = 1 . (7.1)

2. Increment each tangential impulse with slope λt,i satisfying Coulomb friction (2.14) at v̄ =

v +M−1JTΛ.

3. Terminate when all Jn,iv̄ ≥ 0, i.e. v̄ ̸∈ C(q). v+ = v̄.

We can understand the constraint (7.1) on λ as choosing a net force that comes from a convex

combination of the forces that Routh’s method might select for any of the individual contacts

i ∈ IA(q). In particular, we note that step 1 restricts the normal forces to be dissipative, i.e.

λn,i · Jn,iv ≤ 0 . (7.2)

As before, we can capture this behavior as a DI:

v̇ ∈ Dq(v) =M
−1co


 ⋃

i∈Iq(v)
Fi(q,v, 1)


 , (7.3)

Iq(v) =





{i ∈ IA(q) : Jn,iv ≤ 0} v ∈ clC(q) ,

argmini∈IA(q) Jn,iv otherwise .

(7.4)

While non-physical, the behavior outside of clC(q) has been chosen to preserve upper semi-continuity,

and is not encountered when resolving impacts due to the termination condition v ̸∈ C(q). The con-

struction of (7.3) is similar to that of the single contact system (2.34); it is furthermore equivalent

to (2.34) and therefore Routh’s method when only one contact is active.

7.2.3. Properties

We now detail properties of our multi-contact impact system that are useful for analyzing its solution

set.

79



Existence and Closure

For any configuration q ∈ QA, Dq(v) is non-empty, closed, uniformly bounded, and convex. There-

fore by Proposition 2, we obtain the following:

Lemma 3 (Existence of Solutions (Appendix E.3.1)). For all configurations q ∈ QA, velocities v0,

and compact intervals [a, b], SOL (Dq, [a, b]) and IVP (Dq,v0, [a, b]) are non-empty and closed under

uniform convergence.

Homogeneity

As the set of allowable contact forces are only dependent on the direction of v, Dq(v) is positively

homogeneous in v, i.e., ∀k > 0,v ∈ R
nv , Dq(v) = Dq(kv). Positive homogeneity induces a similar

property on the solution set to the differential inclusion:

Lemma 4 (Homogeneity (Appendix E.3.2)). For all q, k > 0, and [a, b] compact, if v(s) ∈

SOL (Dq, [a, b]), kv(
s
k
) ∈ SOL (Dq, [ka, kb]).

Energy Dissipation

An essential behavior of inelastic impacts reflected in our model is that they dissipate kinetic energy.

By construction of (7.3), the kinetic energy K(q,v(s)) is continually non-increasing during impact

(i.e. when v(s) ∈ clC(q)) as normal forces are constrained to be dissipative (7.2) and frictional

forces are naturally, maximally dissipative:

Lemma 5 (Dissipation (Appendix E.3.3)). Let q ∈ QA, and let [a, b] be a compact interval. If

v(s) ∈ SOL (Dq, [a, b]) and v([a, b]) ⊆ clC(q), then ∥v(s)∥M is non-increasing.

K has total derivative

K̇ = vTJTλ , (7.5)

and it will strictly decrease unless the velocity is constant:

Theorem 4 (Strong Dissipation (Appendix E.3.4)). Let q ∈ QA, and let [a, b] be compact. If

v(s) ∈ SOL (Dq, [a, b]) and v ([a, b]) ⊆ clC(q), ∥v(s)∥M constant implies v(s) constant.
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One might then wonder if K strictly decreases during impact; certainly, this would not be the

case if v(s) could stay constant. Therefore, solutions to the differential inclusion must not be

permitted to select v̇ = 0, i.e., 0 ̸∈ Dq(v) for every v ∈ clC(q); As Dq(v) ⊆ M−1FC(q), this

property is guaranteed by the pointed friction cone assumption (Assumption 2). Assumption 2

covers most situations in robotics—including grasping and locomotion—with the notable exception

being jamming between immovable surfaces. Furthermore, it guarantees strict dissipation during

the impact process:

Theorem 5 (Strict Dissipation). Let q ∈ QA \ QP and [a, b] be a compact interval. If v(s) ∈

SOL (Dq, [a, b]) and v([a, b]) ⊆ clC(q), ∥v(s)∥M is strictly decreasing.

Proof. As v is never constant on clC(q) via Assumption 2, ∥v(s)∥M strictly decreases by Theorem

4 and Lemma 5.

7.2.4. Linear Impact Termination

While solutions to the underlying DI are guaranteed to exist in the simultaneous impact model, we

have yet to prove that they terminate the impact process, as in Routh’s single-contact method. We

now discuss a similar linear-duration condition:

Proposition 6 (Finite Termination). For any configuration q ∈ QA \ QP and pre-impact velocity

v(0), the DI (7.3) resolves the impact within a duration proportional to ∥v(0)∥M .

We will prove this claim as a consequence of kinetic energy decreasing fast enough to force termi-

nation, a significant expansion of Theorem 5. Even though K always decreases, Theorem 5 does

not forbid K̇ from getting arbitrarily close to zero. For example, consider a 2 DoF system with

2 frictionless, axis-aligned contacts (M = Jn = I2). For any ϵ > 0, we can pick a velocity and

impulse increment which satisfy K̇ > −ϵ:

vϵ =
−1− ϵ

2



1

ϵ


 ∈ C(q) , JTn



ϵ

1




1

1 + ϵ
∈ Dq(vϵ) . (7.6)
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However as we take ϵ → 0, vϵ converges to a non-impacting velocity; thus, K̇ only remains small

for a short duration before impact termination. It remains possible that the aggregate dissipation

over an interval of nonzero length can be bounded away from zero. We define this quality as

α(s)-dissipativity:

Definition 6 (α(s)-dissipativity). For a positive definite function α(s) : clR+ → [0, 1], the system

v̇ ∈ Dq(v) is said to be α(s)-dissipative if for all s > 0, for all v ∈ SOL (Dq, [0, s]) s.t. v ([0, s]) ⊆

clC(q), if ∥v(0)∥M = 1, ∥v(s)∥M ≤ 1− α(s).

α(s)-dissipativity can be understood as a homogeneous dissipation rate. It therefore induces the

desired linear-duration termination in Proposition 6:

Lemma 6 (Termination via Aggregate Dissipation (Appendix E.3.5)). Let q ∈ QA and let v̇ ∈

Dq(v) be αq(s)-dissipative. Then if v(s) ∈ SOL (Dq, [0, s
∗]) and v([0, s∗]) ⊆ clC(q),

s∗ ≤ inf
s>0

s ∥v(0)∥M
αq(s)

.

Under Assumption 2, every q ∈ QA \ QP exhibits α(s)-dissipativity, a direct proof of Proposition

6:

Theorem 6 (Aggregate Dissipation (Appendix E.3.6)). For every configuration q ∈ QA \QP there

exists an αq(s) such that v̇ ∈ Dq(v) is αq(s)-dissipative.

The u.s.c. structure of Dq has the additional implication that nearby configurations obey a uniform

dissipation rate:

Corollary 1 (Uniform Aggregate Dissipation (Appendix E.3.7)). For compact Q ⊆ QA \QP , there

exists a single αQ(s) such that v̇ ∈ Dq(v) is αQ(s)-dissipative for all q ∈ Q.

7.3. Continuous-Time Dynamics Model

We now describe how the simultaneous impact DI can be embedded into a full, continuous-time

dynamics model. As the impact model integrates over a variable other than time, rather than
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switching between integration spaces, we define time advancement t as a variable in an augmented

state x̄(s):

x̄(s) =



x(s)

t(s)


 =




q(s)

v(s)

t(s)



∈ R

nq+nv+1 . (7.7)

For any state x̄(s) we can extract the relevant configuration, velocity, and time as by selecting the

appropriate indices, e.g. as q(x̄(s)). For notational compactness, whenever clear, we will write this

construction in the shortened form q(s). We will also frequently make use of the sets

X̄A = {x̄ : q(x̄) ∈ QA} , X̄P = {x̄ : q(x̄) ∈ QP } . (7.8)

7.3.1. Model Construction

We now construct the dynamics model as a differential inclusion d
ds x̄(s) ∈ D(x̄(s)). Under this

formulation, the velocity v(s) is continuous with respect to s, but can be discontinuous with respect

to time t(s) in the sense that v can evolve while t is held constant. To make the system autonomous,

we represent the external forces u as set-valued, time-varying full-state feedback U(x̄). In order for

the system to be well-behaved, we assume that the convex-compact u.s.c. properties exploited in

the impact dynamics carry over into the continuous time case, because U itself has these properties:

Assumption 4. Fs(x,U(x̄)) is convex-compact u.s.c. in x̄.

We identify three behaviors that ˙̄x ∈ D(x̄) should obey:

No Contact Forces

Whenever all active contacts have separating velocities (and when no contacts are active), i.e.

x̄(s) ∈ X̄S = {x̄ : v(x̄) ∈ S(q(x̄))} , (7.9)
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x̄(s) should evolve according to (2.8) with no contact forces (λ = 0), in the sense that

M(q)dv ∈ Fs (x,U(x̄)) ds , ds = dt . (7.10)

these equations can be packaged into DI form as

˙̄x ∈ DS(x̄) =




Γv

M−1Fs(x,U(x̄))

1



. (7.11)

Collision

Whenever v(s) is colliding over [a, b], i.e.

x̄([a, b]) ⊆ X̄C = {x̄ : v(x̄) ∈ C(q(x̄))} , (7.12)

t and q should be constant, and v should obey our simultaneous impact model:

˙̄x ∈ DC(x̄) =




0

Dq(v)

0



. (7.13)

Sustained Contact

The model must capture continuous state evolution with respect to time under sustained contact,

as in (2.8). Additionally, proving that our model is well-behaved requires that D(x̄(s)) be convex.

Conveniently, sustained contact can be represented as a convex combination of contactless and

collision dynamics:

˙̄x(s) ∈ co (DS(x̄) ∪DC(x̄)) . (7.14)
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To demonstrate this property, we consider that (2.8) dictates that the state q, v under sustained

contact obeys

dq = Γvdt , Mdv ∈
(
JTλ + Fs

)
dt , (7.15)

for finite, non-zero contact forces λ = [λn; λt]. Letting λ̃ = λ
∥λn∥1

, our impact model would allow

Mdv ∈ JT λ̃ds at q,v. Thus selecting ṫ = 1
1+∥λn∥1

∈ (0, 1), we rewrite (7.15) as

dq = ((1− ṫ)0+ ṫΓv)ds , (7.16)

Mdv ∈
(
(1− ṫ)JT λ̃ + ṫFs(x,U(x̄))

)
ds , (7.17)

dt = ((1− ṫ)0 + ṫ1)ds . (7.18)

The convex combination DI (7.14) can then generate sustained contact with this choice of ṫ. As a

result, t(s) neither evolves directly with s nor remains constant; effectively, solutions of (7.14) slow

down time by a factor of (1 + ∥λn∥1). We will show that this factor is bounded on average under

mild assumptions.

We now combine these three modes into a single differential inclusion. While we might easily chose

the contactless mode when x̄ ∈ X̄S , arbitrating between impact and sustained contact when the

velocity is non-separating is less obvious, particularly as Painlevé’s Paradox (see Stewart (2000) for

details) might require impact dynamics even without a collision. Furthermore, almost all selections

of ˙̄x from co (DS(x̄) ∪DC(x̄)) will correspond to non-physical behavior; a particular ˙̄x must be cho-

sen to maintain contact by exactly counteracting forces such that inter-body distance is identically

zero during contact.
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We resolve these issues in an implicitly in the full DI

˙̄x ∈ D(x̄) =





DS(x̄) x̄ ∈ X̄S ,

DC(x̄) x̄ ∈ int(X̄C) ,

co (DS(x̄) ∪DC(x̄)) otherwise .

(7.19)

We will show that in this model, φ(q) = 0 is effectively a barrier : solutions beginning at a non-

penetrating configuration are forced to never penetrate.

7.3.2. Properties

Existence and Closure

As we previously reviewed, existence guarantees for continuous-time evolution through impact have

thus far been severely limited. We now show that our philosophy of including a wide set of behaviors

leads to existence of solutions via Proposition 2, and the only additional assumptions required are

that energy and inputs are bounded (Assumptions 5 and 6). The continuous-time DI (7.19) directly

exhibits many of the properties required for Proposition 2. B its construction, at any x̄, D(x̄) is

non-empty, compact, and convex. We will additionally see that it is u.s.c. in our proof of Theorem

7. However, as Coriolis components of Fs can grow quadratically, D is often not uniformly bounded;

thus Proposition 2 cannot be directly used to prove existence of solutions. However, nearly identical

properties of IVP’s can still be established in the following manner. Suppose first that smooth forces

can only input power at a bounded rate:

Assumption 5. ∃c > 0, v · Fs(x,U(x̄)) ≤ c ∥v∥M .

This condition is widely satisfied by many robotic systems, including those with globally bounded

controllers and potential gradients (such as gravity). Assumption 5 implies that x̄ cannot diverge

to infinity over a finite horizon. Furthermore, we will assume that if x̄ is bounded, ˙̄x is bounded as

well:

Assumption 6. Over any compact set X̄ , Fs(x,U(x̄)) is bounded, and therefore D(X̄ ) is compact.
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Assumptions 5 and 6 imply that over a finite interval, the solutions x̄(s) beginning from a compact

set X̄ have bounded derivative and therefore inherit the key existence, closure, and u.s.c. structure

of globally bounded DI’s:

Theorem 7 (Existence of Solutions (Appendix E.4.1)). Let X̄ be a compact set and [a, b] be a

compact interval. Then IVP
(
D, X̄ , [a, b]

)
is compact and IVP (D, x̄, [a, b]) is non-empty, closed,

convex, and u.s.c. in x̄ over X̄ .

(a) 1D ball-ground system (b) 1D system phase portrait

Figure 7.4: (a) A simple, 1D system of a non-rotating ball falling under gravity with configuration
q = z = φ(z) is shown. (b) A phase plot demonstrates why our DI prevents penetration; an
example trajectory is shown in white. Penetration corresponds to crossing from the right-half- to
the left-half-plane. This cannot happen on the top half of the vertical axis (φ = 0, ż ≥ 0), as the
flow by definition points right. The cross also cannot happen on the bottom half of the axis, as the
quadrant III has purely-vertical flow (dφ = żdt = 0).

Non-Penetration

While there is no structure in D(x̄) that explicitly prevents penetration, φ(q) ≥ 0 is naturally,

implicitly preserved, as the DI requires φi(q(s)) to be constant under penetration. A graphical

argument is given in Figure 7.4.

Theorem 8 (Non-Penetration (Appendix E.4.2)). Let x̄0 ̸∈ X̄P be non-penetrating, let [a, b] be a

compact interval, and let x̄(s) ∈ IVP (D, x̄0, [a, b]). Then x̄(s) ̸∈ X̄P for all s ∈ [a, b].
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Correct Mode Selection

Our requirements dictate that solutions x̄(s) containing only separating velocities (x̄ ∈ X̄S) should

comply with contactless dynamics, and likewise with impact dynamics when x̄(s) contains only

impacting velocities and non-penetrating configurations (x̄ ∈ X̄C \X̄P ). The former is a trivial result

of the construction of D, but the latter is only similarly trivial when x̄ ∈ int(X̄C)\ X̄P . However, all

states x̄ ⊆ X̄C have penetrating velocity, and thus any contactless dynamics component in ˙̄x would

by definition cause x̄ to penetrate (i.e. enter X̄P ), allowing a proof by contradiction:

Theorem 9 (Impact Dynamics (Appendix E.4.3)). Let [a, b] be a compact interval and x̄(s) ∈

SOL (D, [a, b]) with x̄([a, b]) ⊆ X̄C \ X̄P . Then x̄(s) ∈ SOL (DC , [a, b]).

7.3.3. Linear Time Advancement

While Theorem 7 guarantees existence of solutions over any interval of s, practical application often

requires reasoning about solution sets over intervals in time (over t(s)). To do so, solutions of the

model must significantly advance time—i.e. for any time duration tf , all solutions of the model

have t(sf ) − t(0) > tf for large enough sf . For small enough tf , this property only requires the

solution to exit the impact dynamics regime, which by Theorem 6 is guaranteed to occur:

Theorem 10 (Time Advancement (Appendix E.4.4)). Let X̄ ⊆ X̄ cP be a compact set with no

penetrating configurations. Then there exists s∗(X̄ ), t∗(X̄ ) > 0, such that for all sf > s∗(X̄ ), if

x̄(s) ∈ IVP
(
D, X̄ , [0, sf ]

)
, then t(sf )− t(0) > t∗(X̄ ).

If t(sf ) − t(0) > t∗ is guaranteed over a set X̄ , then t(s) must at least advance at rate t∗

s∗
over

arbitrarily long horizons:

Corollary 2 (Amortized Advancement (Appendix E.4.5)). Let X̄ ⊆ X̄ cP be a compact set with no

penetrating configurations, such that

X̄ (sf ) =
{
x̄(·) ∈ IVP

(
D, X̄ , [0, sf ]

)
: x̄([0, sf ]) ⊆ X̄

}
, (7.20)
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is non-empty for all sf > 0. Define s∗(X̄ ), t∗(X̄ ) > 0 as in Theorem 10, and let

tf (sf ) = min
x̄(·)∈X̄ (sf )

t(x̄(sf ))− t(x̄(0)) . (7.21)

Then, lim infsf→∞
tf (sf )
sf
≥ t∗(X̄ )

s∗(X̄ )
.

7.4. Discrete Impact Integration

Section 7.2 provides a rigorous theoretical framework guaranteeing existence of solutions to our

impact model. In this section, we now develop a computational framework that allows this model to

be applied to two key settings. In the first, we consider embedding this model into an “event-based”

discrete-time simulation environment, such as the one developed in Anitescu and Potra (1997),

where collisions are resolved instantaneously via an update function

v+ ← ImpactLaw(q,v) . (7.22)

Faithful capture of the non-uniqueness in our model means that ImpactLaw should be capable of

returning a set of different values for v+; simulation will be considered as sampling stochastically

from this set. Our second application, reachability analysis, is to approximate the entire set of

possible outcomes for a given initial condition. In pursuit of both applications, we develop an LCP-

based integration scheme for our impact DI (7.3). We will bound the number of LCP solves required

for each of these applications.

7.4.1. Model Construction

Just as forward Euler integration can cause penetration in continuous-time simulators (?), it can

also break the inelastic condition if applied to our impact model (7.3). To rectify this issue, we

develop an approximate, implicit, and discrete integration scheme. Our method takes a simulation
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step by finding a small contact impulse increment λ, such that

find v′; {λi : i ∈ IA} , (7.23a)

s.t. impulse balance (2.28) , (7.23b)

λn,i ≥ 0 and λn,iJn,iv
′ ≤ 0 , (7.23c)

λt,i ∈ −µiλn,iUnitD(Jt,iv
′) . (7.23d)

where the dependence of J on q = q0 is suppressed.

Conceptually, our model can be understood as differential, as it closely mirrors our impact DI (7.3)

which selects v̇ ∈ M−1FC(q). The primary changes are that (7.23) approximates the derivative

with a finite difference; enforces Coulomb friction (7.23d) and inelasticity (7.23c) at the incremented

velocity v′; and replaces Coulomb friction with its linear approximation. However, computationally,

our method seems most similar to the LCP-based algebraic method (2.29), and we will show the

each increment (7.23) can also be solved as an LCP. Despite this similarity, the are significant philo-

sophical differences between (2.29) and (7.23) that lead to qualitatively different predictions. As

opposed to the unrealistic velocity-based complementarity constraint (2.29c), the termination condi-

tion Jn,iv
′ ≥ 0 is removed from (7.23c), and thus it may take many increments of our model to reach

post-impact velocity. Furthermore, the removal of this constraint makes (7.23) underconstrained,

and thus allows significant freedom for selection of the normal impulse increments.

As our model intentionally captures a set realistic outcomes, we frame resolving an impact as

sampling from that set. We parameterize the sampling process with a normal impulse distribution

p(λn) over the unit box; step size h > 0; and (possibly infinite) max iteration count N . We compute

samples from our discrete approximation of Routh’s method (Algorithm 1) as follows:

1. Generate a non-zero, maximum normal impulse increment λn,max ∼ h · p(λn).

2. Find a set of forces λ ̸= 0 with normal component λn ≤ λn,max that solves (7.23); Increment

v ← v +M−1JTλ.
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3. Terminate and take v+ = v if it is non-colliding (v ̸∈ C(q)) or the iteration limit is reached;

else, return to 1.

While our theoretical results extend to any finite-density p(λn), we assume in this section that p(λn)

is the uniform distribution for simplicity. For notational simplicity, we assume that all contacts are

active and non-penetrating (φ(q) = 0).

A difficulty in step 2) above is that λ = 0 solves (7.23), and makes no progress towards impact

termination. Additionally, it is possibile that no solution to step 2) allows λn = λn,max. We

therefore add constraints that encourage λn to be large:

0 ≤ β ⊥ λn,max − λn ≥ 0 , (7.24)

0 ≤ λn ⊥ Jnv′ + β ≥ 0 . (7.25)

Together, (7.24)–(7.25) enforce (7.23c); λn ≤ λn,maxi ; and either λn,i = λn,maxi or contact i has

terminated.

Similar to the methods of Glocker and Pfeiffer (1995) and Anitescu and Potra (1997) described in

Section 2.5.2 (see also (2.30)–(2.31)), we transcribe our model as LCP(Wq0 ,wq0(v,λn,max)):

z =




β

λ̄

γ



, wq(v,λn,max) =




λn,max

J̄v

0



, (7.26a)

Wq =




0 −I 0 0

I Jn(q)M(q)−1Jn(q) Jn(q)M(q)−1JD(q) 0

0 JD(q)M(q)−1Jn(q) JD(q)M(q)−1JD(q) E

0 µ −ET
0




, (7.26b)

v′(λ̄) = v +M−1J̄
T
λ̄ , (7.26c)

where q is the configuration at impact; µ = diag(µ1, . . . ,µm); and E = blkdiag(1, . . . ,1). We
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note in particular that the columns and rows of Wq associated with [λ̄;γ] above are identical to

the LCP matrix from Anitescu and Potra (1997).

Algorithm 1: Sim(h,x0, N)

Input: step h, initial state x0 = [q0;v0], max iterations N

Output: final velocity v

1 (v, i)← (v0, 0);

2 while v ∈ C(q0) and i ≤ N do

3 λn,max ∼ h · p(λn);

4 Select z = [β; λ̄;γ] ∈ LCP(Wq0 ,wq0(v,λn,max));

5 (v, i)← (v +M(q0)
−1J̄(q0)

T λ̄, i+ 1);

6 end

7.4.2. Properties

Existence

The most essential property of our integration step is that, becauseWq is copositive, we can leverage

Proposition 3 to show that the constituent LCP has a solution:

Theorem 11 (Single-Step Existence (Appendix E.5.1)). LCP(Wq,wq(v,λn,max)) is non-empty

for all states [q; v], and normal impulse λn,max ≥ 0.

Dissipation

As discussed in Section 7.2.3, an essential property of inelastic impacts is energy dissipation; because

solutions to our model approximate the DI, each integration step cannot increase kinetic energy:

Theorem 12 (Dissipation (Appendix E.5.2)). Let [q; v] be any state with active contact, and let

λn,max ≥ 0 be a normal impulse. Then all impulses λ̄ generated by the impact constraints

LCP(Wq,wq(v,λn,max)) dissipate kinetic energy:

K(q,v′(λ̄)) ≤ K(q,v) . (7.27)
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Impulse Advancement

If λn = 0 were allowed by the LCP at a penetrating velocity v ∈ C(q), then v = v′ could be selected

in an infinite loop, and Algorithm 1 might never terminate. The structure of the normal impulse

constraints (7.24) and (7.25) prevents this behavior by design for λn,max > 0:

Lemma 7 (Impact Advancement (Appendix E.5.3)). Let [q; v] be colliding (v ∈ C(q)), and

λn,max > 0. Let λ̄ = [λn; λD] be an impulse generated by LCP(Wq,wq(v,λn,max)). Then ei-

ther some contact i activates fully (λn,i = λn,maxi), or all contacts terminate (Jnv
′(λ̄) ≥ 0).

However, preventing the infinite loop also requires the stricter condition that the net impulse J̄
T
λ̄

be non-zero. Assumption 2 in fact yields a stricter condition: the change in velocity M−1J̄
T
λ̄

moves linearly in ∥λn∥1 in a particular direction r(q):

Lemma 8 (Net Force Bound (Appendix E.5.4)). Consider a configuration q ∈ QA \ QP . There

exists a nonzero r(q) ∈ R
nv , such that for any λ̄ = [λn; λD] obeying (2.31),

r(q) ·M−1J̄(q)T λ̄ ≥ ∥λn∥1 . (7.28)

We briefly note that r(q) is computable as a linear program, as it arises from minimization over a

polygonal set, LFC.

7.4.3. Linear Impact Termination

We now show that Algorithm 1 likely terminates in a small number of steps, allowing it to be used

to implement ImpactLaw(q,v). Let the random variable Z(h, q0,v0) be the number of LCP solves

required for Sim(h, [q0; v0],∞) to terminate. Given that multiple impacts might occur in a single

time-step, it is crucial that Z(h, q0,v0) be as small as possible. Consider that Lemma 8 implies that

the velocity takes large steps in the r direction with high probability, yet total movement in any

direction is bounded by 2 ∥v0∥M as kinetic energy is non-increasing (Lemma 7). We can therefore

show that with high probability, Z grows linearly with ∥v0∥M :
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Theorem 13 (Discrete Termination (Appendix E.5.5)). Let q0 ∈ QA \QP have m active contacts.

Pick σ such that M(q0) ⪰ σI; pick r(q0) as in Lemma 8; let h > 0 be a step-size. Let

c = 4
⌈
(m+1)∥r(q0)∥2

h
√
σ

⌉
. (7.29)

Then for all k ∈ Z
+, v0 ∈ C(q0),

P (Z(h, q0,v0) > c ⌈∥v0∥M⌉+ k) ≤ e−
k

(m+1)2 . (7.30)

As the probability density of Z exponentially decays, it has finite moments (including mean and

variance).

7.4.4. Post-Impact Set Approximation

We now describe a method to approximate the set of outcomes to simultaneous impacts as modeled

in our DI (7.3), which culminates in probabilistic guarantees on densely sampling this set via

Proposition 5.

In order for computation of the set of possible outcomes of Algorithm 1 to be well-posed, we must

consider a key practical ramification of the LCP solve on line 4: numerical LCP solvers typically

only find a single solution, and may be systematically biased in their selection among multiple

solutions. For all claims in this section, we therefore make the additional assumption that this

selection process does not affect the outcome of an individual integration step:

Assumption 7. Consider a configuration q ∈ QA \ QP . For each velocity v and normal impulse

increment λn,max ≥ 0, every λ̄ generated by (7.26) results in the same incremented velocity v′.

Equivalently, there exists a function fq : Rnv × cl(Rm+)→ R
nv , such that

v′(λ̄) = v +M−1J̄
T
λ̄ = fq(v,λn,max) . (7.31)
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This assumption can be verified via Semidefinite Programming (Aydinoglu et al., 2022). We note

that v′(λ̄) under Assumption 7 is only unique given λn,max; different velocity increments can be

While Assumption 7 is violated for at least some systems (e.g. for compass gait and RAMone in

Section 7.5), it implies useful properties including Lipschitz continuity:

Lemma 9. For each configuration q ∈ QA \ QP , fq(v,λn,max) is Lipschitz continuous.

Proof. Because v′(λ̄) is unique, we must have that

J̄
T
λ̄ =

[
0 J̄

T
0

]
LCP(Wq,wq(v,λn,max)) , (7.32)

is a singleton over the convex domain wq(R
nv , cl(Rm+)). Therefore by Proposition 4, fq is Lipschitz

continuous.

We will also make use of two scenarios where the integration step LCP is guaranteed select zero

impulse:

Lemma 10. Consider a configuration q ∈ QA \ QP and λn,max ≥ 0. Then if either Jnv ≥ 0 or

λn,max = 0,

v = fq(v,λn,max) . (7.33)

Proof. Observe that if either λn,max = 0 or if v is not impacting (Jnv ≥ 0), we can select zero

normal impulse (λn = 0, thus v′ = v) and satisfy the normal complementary equations (7.24)–

(7.25). Setting λD = 0; γ = 0; and β as the negative part of Jnv constitutes a full solution to the

LCP.

The continuity of fq allows for expansion of the Jnv ≥ 0 case; if v is almost terminated, then only

a single simulation step with a small λn,max is required to end the impact:
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Lemma 11 (Single-Step Termination (Appendix E.5.6)). For all configurations q ∈ QA \ QP ,

velocities v, and ε > 0, there exists δ(ε,v), such that for any almost-separating velocity v̄ (Jnv̄ ≥

−δ(ε,v)) that is sufficiently small (∥v̄∥M ≤ ∥v∥M ), a small impulse can terminate the impact:

fq(v̄, ε1) ̸∈ C(q).

We now iteratively define the reachable set of Alg. 1. Let VN (x0, h) be the set of possible outputs

of Sim(h,x0, N). Then we have that

V0(x0, h) = {v0} , (7.34)

VN (x0, h) = fq(VN−1(x0, h), [0, h]
m) , (7.35)

VN (x0, h) ⊇ VN−1(x0, h) . (7.36)

Here, we used Lemma 10 to ignore early termination (i.e. Jnv ≥ 0 before N loop iterations) in

(7.35), and to establish the monotonic growth in (7.36). We construct the entire set of reachable

velocities as

V∞(x0, h) = ∪N∈NVN (x0, h) . (7.37)

VN (x0, h) can approximate V∞(x0, h) with arbitrarily well:

Lemma 12. Consider a configuration q0 ∈ QA \ QP ; velocity v0, and step-size h ≥ 0. Then for

each ε > 0, there exists an N , such that VN ([q0; v0], h) is an ε-net of V∞([q0; v0], h).

Proof. VN ([q0; v0], h) is a monotonic (7.36) and uniformly bounded (via Theorem 12) sequence of

sets. It is then convergent in the ε-net sense to ∪NVN = V∞([q0; v0], h).

Similarly, the post-impact reachable set is simply the reachable velocities which are non-penetrating:

Sim(h,x0,∞) ∈ V∞(x0, h) \ C(q0) . (7.38)
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Algorithm 2: Approximate(h,x0, ε,N,M)

Input: step size h, initial state x0 = [q0; v0], approximation

ε ∈ (0, h), trajectory length N , trajectory count M

Output: post-impact set approximation Ṽ+

1 Ṽ+ ← {};

2 ψ ← σmax

(
M−1J̄

T
)
m(1 + maxi µi) + 1 ;

3 for i = 1 to M do

4 v ← Sim(h,x0, N);

5 Ṽ+ ← Ṽ+ ∪
{
fq0(v,

ε
3ψ1m)

}
;

6 end

7 Ṽ+ ← Ṽ+ \ C(q0);

We can finally use the above derived properties to construct a method, Algorithm 2, for approx-

imating the post-impact set. Lemma 12 and Proposition 5 together show that M samples from

Sim(h,x0, N) well-approximate V∞, and can be forced to terminate with only a small additional

step (Lemma 11). Therefore, Algorithm 2 is approximately complete:

Theorem 14. Consider an initial configuration q0 ∈ QA \ QP , initial velocity v0 ∈ R
nv , and step-

size h > 0. For all ε, δ > 0, there exists N,M > 0, such that Approximate(h,x0, ε,N,M) returns

an ε-net of V∞(x0, h) \ C(q0) with probability at least 1− δ.

Proof. See Appendix E.5.7

7.5. Numerical Examples

We now show several examples of the post-impact velocity sets generated by our model; complete

details are provided in Appendix section E.1. The MATLAB code is available online7, and LCP’s

were solved via the PATH solver (Dirkse and Ferris, 1995). We analyze the three examples shown

thus far (Figs. 7.1, 7.2, 7.3), along with two more complex systems. For each system, we plot

the evolution of the velocity through the impact process with lines, projected onto the contact

7https://github.com/mshalm/routh-multi-impact
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Figure 7.5: Evolution of the block-ground impact, displayed as the normal velocities of the two
points (top), and the normal and tangential velocity of point A (bottom). Our method generates
all three outcomes from Figure 7.1, as well as intermediate results between the symmetric and
sequential impacts.

frames. Our method is shown in gray and simultaneous resolution via Anitescu and Potra (1997)

is shown in blue. For two-contact impacts, we show the two sequential resolutions (A,B,A, . . . )

and (B,A,B, . . . )in red and yellow. We show samples of the post-impact velocity sets generated

via Algorithm 2, as dark gray circles. For some examples, axes of symmetry were used to duplicate

samples.

7.5.1. Block Drop

We revisit dropping a narrow, rectangular object onto flat ground (Fig. 7.1), which may either

result in the object coming to rest or pivoting on a corner. As shown in Figure 7.5, our method

produces each of these symmetric and sequential outcomes. The real-world analogues of these three

outcomes are that the short but non-zero duration impacts either happen at the exact same time

and rate or sequentially with no overlap. Our model also produces analogues to where there is some

partial overlap in these durations, for which scaled-down versions of the purely-sequential outcomes

(i.e., rolling on one foot with a smaller angular velocity) is the final result.

7.5.2. Compass Gait

We revisit the compass gait walker model taking a wide step (Fig. 7.2). Previously, we showed that

the model of Anitescu and Potra (1997) predicts that the leading foot sticks (point A), while the

trailing foot (point B) could slide, stick, or lift off. Our model generates each of these outcomes,
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Figure 7.6: Evolution of the compass gait step. The center plot compares the normal velocities of
the two contacts, while the left and right show velocities of points A and B, respectively. Our model
produces the three outcomes in Figure 7.2b, as well as all reasonable intermediate velocities of point
B. Furthermore, oscillation of impact between the feet allows point A to slide or lift off, while point
B maintains contact.

as well as various convex combinations of these results (Figure 7.6). It also generates oscillatory

behavior where impulses at points A and B alternate during the impact process. This can potentially

cause A to lift off, and B to remain on the ground instead.

7.5.3. Box and Wall

We examine our model’s predictions on the scenario described in Figure 7.3, where a box impacts

a wall (at point B) while sliding along flat ground (at point A). Simultaneous resolution with

Anitescu and Potra (1997) predicted that the box came to rest, while sequential resolution predicts

that A continues sliding and B lifts off. As in the previous examples, our model reproduces both

behaviors, as well as convex combinations of them (Figure 7.7). Additionally, some sequences allow

A to slide even faster, while others allow B to slide instead of lifting or sticking.

7.5.4. RAMone

In this example, we examine a footstep of a more complex 5-link bipedal robot, RAMone, origi-

nally considered by Remy (2017). As shown in Figure 7.8, much like the compass gait example,

Anitescu and Potra (1997) always predicts that the leading foot sticks, while the trailing foot can

stick, slide, or lift. Our model reproduces the same results, as well as ones where the final contact

velocities are scaled down.
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Figure 7.7: Evolution of the box-wall impact. The center plot compares the normal velocities of the
two contacts, while the left and right show velocities of points A and B, respectively. Our model
produces both the simultaneous and sequential outcome in Figure 7.3, as well as all reasonable
intermediate velocities where A still slides and B lifts off. Furthermore, results are also generated
where B slides instead of sticking or lifting off.

7.5.5. Disk Stacking

In this example, we demonstrate our ability to generate non-unique results in a multi-object scenario

motivated by manipulation: stacking disks. A tower of 3 discs (Figure 7.9) is created by dropping a

disk on two others, which rest on the ground. The only prediction for this 5-contact collision offered

by Anitescu and Potra (1997) is the entire tower coming to rest. While we cannot be sure that the

numerical results cover all possible outputs of our model, we are able to generate various outcomes

in which the tower falls apart. Figure 7.9b shows how the post-impact normal velocities compare

in the left and right sides of the tower. The top ball always maintains contact with at least one of

the left or right balls, and one of those balls always stays on the ground.

7.6. Discussion

Non-unique behavior is a pervasive complexity that is present in both real-world robotic systems and

common models capturing frictional impacts between rigid bodies—and thus accurate incorporation

of such phenomena is an essential component of robust planning, control, and estimation algorithms.

Our model presents a state-of-the-art theoretical foundation for capturing these set-valued outcomes.

Despite the high versatility of allowing impacts to resolve at arbitrary relative rates, both the

continuous-time formulation and simulation method have termination guarantees.
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(a) RAMone initial
condition (b) Footfall impact resolution process

Figure 7.8: Evolution of a footfall (a) of the RAMone robot. (b) Similar to the compass gait example,
Anitescu and Potra (1997) predicts that the leading foot, point A, comes to rest, while point B may
come to rest, slide, or lift off. All results from our model produce intermediate outcomes between
these three results, and point A remains in stiction for the entire duration of the impact.

(a) Disk stack initial con-
dition

(b) Normal impact resolution process comparing left
and right sides

Figure 7.9: Evolution of a stack of disks (a) as the top disk fall on the bottom two.
Anitescu and Potra (1997) only predicts that the entire system comes to rest. (b) Our method
additional predicts several scenarios where the top disk remains in contact with only one of the
bottom two disks, while the other may roll away or even lift off the ground slightly.

Future development of our model will focus on capturing a wider array of contact-driven behaviors;

improved theoretical guarantees; and more efficient computational approaches. For instance, while

many models in robotics assume impacts are inelastic, capturing restitution would increase the

accuracy of our model for some systems. Additionally, while approximation of the post-impact

set is probabilistically complete, there is currently no available method to compute the provided

bounds. Furthermore, the he bounds were not tight enough to inform tractable computation in our

examples. Future research could develop outer approximations of the post-impact set via Lyapunov

reachability and semidefinite programming (Posa et al., 2016b).
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CHAPTER 8

Conclusions and Future Work

In this thesis, we examined both diagnoses of and solutions to challenges in accurately modeling

the dynamics of rigid robots interacting with their environments through rigid, physical contact.

We find that perspectives from mechanics, optimization, and machine learning can be combined

to illuminate numerical stiffness as a core challenge to this end. By combining mathematical tools

from each of these areas, we have presented advancements in both parameter identification and

theoretical modeling of the behaviors of these systems. Our contributions and complementary

recent work provide strong evidence that physics-based modeling is a strong paradigm from robotic

identification, simulation, planning, and control (Jin and Posa, 2022; Aydinoglu et al., 2023).

While the entirety of this work has focused on rigid-body systems, and many rigid robots are

currently in use, there a growing focus both on manipulation of soft, deformable objects as well

as robots that are themselves deformable. Such systems are still governed by physical laws which

may be captured as numerical optimization (Han et al., 2023), where numerical stiffness is not

only present, but also directly captured as mechanical stiffness. In addition to high-dimensional

unknown parameters, the state spaces of deformable objects are also in general infinite-dimensional,

posing additional computational challenges. Important questions for future work will center on the

necessity, tractability, and construction of methods similar to our proposed work.

Additionally, high-fidelity sensing is becoming more accessible in the form of RGB(D) sensors,

sometimes integrated with contact sensing in visuotactile sensors (Taylor et al., 2022). These devices

provide rich, local observation not only of object geometries, but also of the contact forces between

manipulands and robots. It is an open question how such data my be best utilized for warm-starting

or sensor fusion with our geometric representations, potentially enabling faster training convergence

and higher-quality geometry estimation. Additionally, while rigid body models may struggle to

predict a single, accurate set of contact impulses in response to a collision, hardware which can

indirectly observe the impulses themselves may prove a particularly useful tool for data-driven
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modeling.
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APPENDIX A

ADDITIONAL THEORETICAL BACKGROUND

In this appendix, we discuss detailed theoretical background and technical lemmas necessary for

detailed understanding of the theoretical results in this thesis. We begin with some essential results

from functional analysis (Section A.1). We then discuss generalizations of derivative calculus (Sec-

tion A.2) and properties of associated inequalities (Section A.3) used in our results in Chapter 5. We

conclude with some technical lemmas on bilevel optimization in support of the proofs in Appendix

C (Section A.4).

A.1. Functional Analysis

The results in this work are derived using tools from measure theory and functional analysis; for

a thorough background, see Rudin (1986, 1991). We equip domains Ω ⊆ R
n with the Euclidean

metric and norm, and the Lebesgue measure by default. The total derivative ḟ(t) of an absolutely

continuous function f(t) is taken in the Lebesgue sense. We make use of the following theorem:

Theorem 15 (Arzelà-Ascoli (Rudin, 1991)). Every uniformly bounded sequence {fn}n∈N of equicon-

tinuous R
n-valued functions on a compact interval [a, b] has a subsequence (fnk

)k∈N that converges

uniformly.

{fn}n∈N is equicontinuous if, for instance, each fn is Lipschitz with the same constant.

A.2. Generalizations of Derivative Calculus

Our theoretical results for Chapter 5 rely on various generalizations of Lebesgue gradients (which

we denote with the operator ∇), each equipped with their own calculus, e.g., addition and chain

rules. We describe the foundations of each used in this thesis.

A.2.1. Fréchet Subgradients

Freéchet subgradients are a type of gradient generalization for non-smooth functions.

Definition 7. The Fréchet subgradient ∂f(z) : R → P (Rn) of a function f(x) : R → R
n, is a set
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valued make containing exactly the solutions s to

lim infy→z,y ̸=z

f(y)− f(z)− (y − z) · s
∥y − z∥2

≥ 0 . (A.1)

f is said to be subdifferentiable at x when ∂f(x) is non-empty.

Basic Fréchet Subgradient Calculus

Fréchet subgradients have a similar calculus to gradients, especially for semiconvex functions:

Definition 8 (Bolte et al. (2010)). A semiconvex function f(z) : R → R
n is one for which there

exists β > 0 such that f(z) + β ∥z∥22 is convex. Semiconcave functions are equal to the negative of

a semiconvex function (Albano, 1999).

We note the following rules for the Fréchet subgradients of various functions f(z), f1(z), f2(z):

• ∂f is always closed and convex (Kruger, 2003, Section 1.1).

• Semiconvex functions are subdifferentiable everywhere. Their subgradients take compact val-

ues, and are upper semi-continuous in z (Albano, 1999, Section 3).

• When f is continuously differentiable at x, ∂f = ∇f (Karimi et al., 2016, Appendix G).

• if f is Lipschitz on a bounded open domain with constant L, then ∥∂f∥2 ≤ L on that domain

(Kruger, 2003, Proposition 1.17).

• When f = f1 + f2 on a neighborhood of x, ∂f = ∂f1 + ∂f2 when both f1 and f2 are

subdifferentiable at x and:

– one of the two is continuously differentiable (Kruger, 2003, Corollary 1.12.2); or

– both are convex (Bertsekas, 2016, Proposition B.24).

We prove for ourselves a version of the chain rule for subgradients:

Theorem 16. let f(z) = g(h(z)) with g semiconvex in h, and h continuously differentiable in z.
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Then

∂f(z) = ∂g(h(z))∇h(z) . (A.2)

Proof. Both ∂f(z) and ∂g(h(z))∇h(x) are closed and convex. Furthermore as g is semi-convex

and continuous, ∂g is also compact. Furthermore, from Kruger (2003, Corollary 1.13.1), as h is

differentiable, it is also locally Lipschitz, and

∂f(z) ⊇ ∂g(h(z))∂h(z) .

The reverse inclusion will therefore suffice. As both sets are convex and the latter is compact, it

is sufficient to use a supporting hyperplane-type argument. That is, for all f∗ ∈ ∂f(x), ∥y∥ = 1 ,

there exists g∗ ∈ ∂g(h(z)) such that

g∗∇h(z) · y ≥ f∗ · y .

Pick f∗,y as such. Then by the definition of Fréchet subdifferential, for any sequence αk → 0,

αk ̸= 0,

lim infk→∞
g(h(z + αky))− g(h(z))− (αky) · f∗

αk
≥ 0 .

Pick β > 0 such that g(h) + β
2 ∥h∥

2
2 is convex in h. By the semi-convexity of g and the definition

of a convex subdifferential, we can select a bounded sequence g∗k ∈ ∇g(h(z + αky)) with

g(h(z + αky))− g(h(z)) ≤ g∗k · (h(z + αky)− h(z)) + β ∥h(z + αky)− h(z)∥2 .

As h is locally Lipschitz and differentiable,

lim
β ∥h(z + αky)− h(z)∥2

αk
= 0 .
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Combining the last three equations,

lim infk→∞g
∗
k

h(z + αky)− h(z)
αk

− y · f∗ ≥ 0 .

WLOG by dropping to a subsequence g∗k converges to g∗ ∈ ∂g(h(z)) by the upper semi-continuity of

∂g. Thus the sequence is composed of the product of two limiting sequences (as h is differentiable).

Thus taking the limit we recover

g∗∇h(z) · y − f∗y ≥ 0 .

Examples

Consider the positive and negative parts of a vector v, i.e.

v = pos(v)− neg(v) . (A.3)

Denote the subgradients P (x) = ∂xpos(x) and N(x) = ∂xneg(x). We have that

P (x) =





0 x < 0 ,

1 x > 1 ,

[0, 1] x = 0 ,

(A.4)

and N(x) = ∂x(pos(x)− x) = P (x)− 1. We also have the identities

pos(x)P (x) = pos(x) , (A.5)

neg(x)N(x) = neg(x) , (A.6)

pos(x)N(x) = 0 , (A.7)

neg(x)P (x) = 0 . (A.8)
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Finally, we note that

∂x
1

2
neg(x)2 = −neg(x) . (A.9)

Consider now the convex function v → ∥v∥2. We have that

∂v ∥v∥2 = Unit(v) =





v̂ v ̸= 0 ,

clBall(1) v = 0 .

(A.10)

A.2.2. Strong and Limiting Slope

We define the strong slope of any continuous function as a bound on the local rate of steepest

descent:

Definition 9. The strong slope ∥∇∥ f of any continuous function f is well-defined and equal to

∥∇∥ f(z) = lim supy→z,y ̸=z

neg(f(y)− f(z))
∥y − z∥2

. (A.11)

When f is semiconvex, mins∈∂f ∥s∥ = ∥∇∥ f (Bolte et al., 2010, Lemma 43).

Definition 10. The limiting slope ∥∇∥ f of any continuous function f is well-defined and equal to

∥∇∥f(z) = lim infy→z ∥∇∥ f(y) . (A.12)

Intuitively, the strong slope defines a pointwise rate of descent, and the limiting slope provides a

local, pessimistic bound on that descent rate. It is well known that there exist curves of limiting

descent under some regularity assumptions:

Theorem 17 (Near-steepest descent curves (Drusvyatskiy et al., 2015)). Let f(x) be continuous.

Assume there exists η, r,K such that

• η < Kr
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• {z : f(z) < f(z0)− η} is non-empty.

• {x : f(z0)− η < f(z) ≤ f(z0)} ∩ (z0 + clBallK) ⊆ {z : ∥∇∥ f(z) ≥ r}

(i.e., the strong slope is large when z is near z0 and f(z) is closely below f(z0))

Then, there exists a near-steepest descent curve, i.e an L > 0 and a 1-Lipschitz z(t) : [0, L] → R
n

such that:

• z(0) = z0

• d
dtf(z(t)) ≤ −∥∇∥f(z(t)) a.e.

• f(z(L)) ≤ f(z0)− η.

A.3. Quadratic Growth and Descent Dominance

In the theoretical results for Chapter 5, we will use relationships between the growth and descent

rates of various functions f(z) with minimal value minz f(z) = 0. In particular, we focus on the

definition of k-Quadratic Growth:

Definition 11. A function f(z) is k-Quadratic Growth (k-QG) if the following global inequality

holds:

f(z)−min f ≥ k

2
Dist (z, argmin f)2 . (A.13)

Intuitively a k-QG function is large for inputs far from its minimizers. Conversely, if the function

is small for a given input, then the input is close to a minimizer:

Dist (z, argmin f) ≤
√
k

2
(f(z)−min f) . (A.14)

One might alternatively intuit that low function values indicate that a minimizer is close if the

function can be descended quickly. We refer to this property as k-Descent Dominance:

Definition 12. A function f(z) is k-Descent Dominant (k-DD) if the following global inequality
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holds:

∥∇∥f(z) ≥
√
2kf(z) . (A.15)

In fact, k-DD is a stronger condition condition than k-QG:

Theorem 18. Let f(z) with minz f(z) = 0. Then f k-DD implies f is k-QG.

Proof. Consider z0 ∈ R
n. We first estimate the distance of z0 to

{
z : f(z) ≤ f(z0)

22n+1

}
. Consider

η =
(
1− 2−2n−1

)
f(z0). Then {z : f(z) < f(z0)− η} is non-empty as minz f(z) = 0. Next,

consider that f(z) ≥ f(z0)
22n+1 implies

∥∇∥ f(z) ≥ ∥∇∥f(z) ≥
√

2kf(z) ≥ 2−n
√
kf(z0) = r. (A.16)

Setting K = 2η
r
, we can apply Theorem 17 to get the existence of a near-steepest descent curve

z(t) : [0, L]→ R
n with z(0) = z0; f(z(L)) ≤ f(z0)

22n+1 ; and

d

dt
f(z(t)) ≤ −

√
2kf(z(t)) . (A.17)

By inequality with the differential equation dy
dt = −2

√
ky
2 , we have that

f(z(t)) ≤
(
√
f(z0)−

√
k

2
t

)2

, (A.18)

on t ∈ [0, L]. Solving the above, we find that the first t at which f(

X(t)) drops below f(z0)
22n+1 obeys

t ≤
√

2f(z0)

k
. (A.19)

Thus as z(t) is 1-Lipschitz, there exists a corresponding zn = z(t) in a ball of radius

√
2f(z0)
k

with

f(zn) ≤ f(z0)
22n+1 . As f is continuous, dropping to a convergent subsequence of zn we determine that

there exists z∞ = limn→∞ zn with

• f(z∞) = 0.
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• ∥z0 − z∞∥2 ≤
√

2f(z0)
k

.

Thus f(z0) ≥ k
2 ∥z0 − z∞∥

2
2 and f is k-QG.

A.4. Bilevel Optimization

This thesis makes frequent used of nested or bilevel optimization problems. We now describe some

theoretical tools for analysis of problems of this type, including variants of the Envelope theorem.

We consider the following domain of convex optimization problems: Let f(z) = minΛ∈K g(z,Λ),

K∗(z) = argminΛ∈K g(z,Λ) with with the following assumptions:

1. K ⊆ R
m is closed and convex.

2. g is convex in z at any Λ ∈ K

3. g is convex in Λ at any z

4. g is jointly semiconvex in (z,Λ) on R
n × R

m

5. g is Lipschitz on any compact domain.

6. g has a finite minimizer (and therefore K∗(z) is closed and nonempty).

7. g has continuous norm bound α(z) on the minimizers K∗(z):

max
Λ∈K∗(x)

∥Λ∥2 ≤ α(z) .

These properties have some immediate implications. As g is jointly semiconvex, it is also subdiffer-

entiable, and ∂g(z,Λ) is u.s.c. in (z,Λ). As g is also locally Lipschitz, ∂g(z,Λ) is locally bounded.

These properties also imply a semi-continuity condition on the strong slope of g:

Lemma 13. ∥∇∥z g(z,Λ) is lower semi-continuous in z, i.e.

∥∇∥z g(z,Λ) ≤ ∥∇∥z lim
y→z

g(z) . (A.20)
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Proof. Follows directly from the local boundedness and upper semicontinuity of ∂g(z,Λ) and the

equality

∥∇∥z g(z,Λ) = min
g∗∈∂zg(z,Λ)

∥g∗∥ .

We now show in detail that f inherits several properties from g. First, we show that the f inherits

continuity from g and thus the strong slope of f is well-defined:

Lemma 14. The restriction of f to any compact domain is Lipschitz.

Proof. It suffices to check the condition on any centered norm ball. Let z ∈ R
n. Let ε > 0. Let

Λmax = max∥z̄∥2≤∥z∥2+ε α(z̄) <∞. Let Lg be the Lipschitz constant of g on {z̄ : ∥z − z̄∥2 ≤ ε} ×

{∥Λ∥2 ≤ Λmax} ∩K. Let ∥z − z′∥2 ≤ ε and let Λ,Λ′ be solutions to the underlying minimizations

in f(z), f(z′). Thus,

−Lg
∥∥z − z′

∥∥
2
≤ g(z,Λ)− g(z′,Λ) , (A.21)

≤ g(z,Λ)− g(z′,Λ′) , (A.22)

= f(z)− f(z′) , (A.23)

≤ g(z,Λ′)− g(z′,Λ′) , (A.24)

≤ Lg
∥∥z − z′

∥∥
2
. (A.25)

Thus f is Lipschitz on {z̄ : ∥z − z̄∥2 ≤ ε} with constant Lg.

The solution set instead inherits semicontinuity:

Lemma 15. K∗(z) is upper semicontinuous.

Proof. As the range of K∗(z) is compact over any compact domain it suffices to show that for any

Λi → Λ, zi → z, Λi ∈ K∗(zi), that Λ ∈ K∗(z).
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Λ ∈ K as Λ is closed. Let Λ̄ ∈ K∗(z). Then g(zi, Λ̄) → g(z, Λ̄) = f(z) by local continuity of

g. But g(zi, Λ̄) ≥ g(zi,Λi) as Λi ∈ K∗(zi). Thus f(z) ≥ g(z,Λ) and by definition of K∗ and f ,

Λ ∈ K∗(z).

Envelope theorems

In its simplest form, the Envelope theorem (Afriat, 1971) states that for smooth f, g, ∇f =

∇g|Λ∈K∗—in other words, f inherits its gradient of g. We will deal with non-smooth optimiza-

tion in Chapter 5, and thus we extend this concept from gradients to strong slopes:

Theorem 19 (Strong Slope Envelope Theorem).

∥∇∥ f(z) ≥ max
Λ∈K∗(z)

∥∇∥z g(z,Λ). (A.26)

Proof. Let Λ ∈ K∗(z). ∥∇∥ f is well-defined due to its local Lipschitz property. ∥∇∥z g(z,Λ) is

also well-defined due to its continuity. By the optimality of the minimization in f , for any y,

f(y)− f(z)
∥y − z∥ ≤ g(y,Λ)− g(z,Λ)

∥y − z∥ . (A.27)

Thus as neg is monotonically decreasing,

neg(f(y)− f(z))
∥y − z∥ ≥ neg(g(y,Λ)− g(z,Λ))

∥y − z∥ . (A.28)

The claim follows from taking the appropriate lim sup of the above expression and using the defini-

tion of strong slope.

Corollary 3 (Limiting Slope Envelope Theorem).

∥∇∥f(z) ≥ min
Λ∈K∗(z)

∥∇∥z g(z,Λ).

Proof. Let zn → z. Then we may construct a convergent Λ(zn) ∈ K∗(zn), and Λ(zn)→ Λ ∈ K∗(z)

by upper semi-continuity of K∗(z) (Lemma 15). Then, ∥∇∥ f(yn) ≥ ∥∇∥z g(zn,Λ(zn)) by strong
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slope envelope dominance. ∥∇∥z g(zn,Λ(zn)) converges to g∗ ≥ ∥∇∥z g(z,Λ) by Lemma 13. The

claim follows as ∥∇∥ f(zn) is bounded below in the limit by g∗.

Descent Dominance

We finally note that f inherits descent dominance properties from g:

Corollary 4 (Inherited Descent Dominance). Assume that minz f(z) = 0. Then f is k-DD if

min
Λ∈K∗(z)

∥∇∥z g(z,Λ) = min
Λ∈K∗(z)

min
g∗∈∂zg(z,Λ)

∥g∗∥2 ≥
√
2kg(z,K∗(z)) . (A.29)

Proof. Follows directly from Corollary 3 and the semicontinuity of g.

The result of the above shows that f is k-DD and therefore k-QG as long as g has large partial

subgradients in z at any solution Λ
∗.
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APPENDIX B

ADDITIONAL EXPERIMENTAL DETAILS FOR CHAPTER 4

B.1. 1D Example

We now detail the prediction task explored in Figure 4.1. The 1D system has state x = [z; ż] and

continuous-time dynamics

z̈ =





−9.81 z > 0 ,

−kz − 2
√
kż − 9.81 z ≤ 0 .

(B.1)

For each stiffness setting, data (żt, żt+1) are selected with an initial velocity żt ∼ U([−3, 5]), and

simulated (B.1) with initial condition [1; żt] for 1 s to generate the final velocity żt+1. We add

gaussian noise (σ2 = .01) to both velocities.

For each stiffness, we train 100 models on different sets of 20 training and 20 validation datapoints

selected from this distribution; one such training set is displayed in Figure 4.1b. Each model is

an MLP with input żt, two hidden layers of width 128, and output żt+1. Models are trained with

prediction error loss, and terminated with early stopping with a patience of 10 epochs. The Adam

optimizer is used, with learning rate and weight decay separately tuned for each stiffness by grid

search on {1 × 10−2, 1 × 10−3, 1 × 10−4} and {1 × 10−2, 1 × 10−4, 0}, respectively, to minimize

ground-truth prediction error. The average prediction of these models with a 1 std. dev. window

are plotted in Figure 4.1b.

B.2. Simulation Details

Here, we provide additional details on the physics of MuJoCo and the data generation process.

B.2.1. Interpenetration in MuJoCo

Here we discussion interpenetration φ(q) in MuJoCo. During contact, φ = 0 may be considered

a constraint which must be stabilized for reliable simulation; the seminal approach of Baumgarte

Baumgarte (1972) is to enforce penetration to obey dynamics inspired by a spring-mass damper:

φ̈B = −(kφ+ bφ̇). To scale this idea to efficient multibody simulation, MuJoCo computes a convex
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optimization-based approximation Todorov (2014):

φ̈ ≈ (1− d(φ))φ̈s + d(φ)φ̈B , (B.2)

where φ̈s is the acceleration due to gravity and inertia (−9.81 for the point mass in Figure 4.1),

and d(φ) ≈ 1 is a user-specified function. A thorough description of this function is available in the

MuJoCo documentation online 8.

B.2.2. Data Generation

To generate an initial state, we generate a perturbation ∆x0 around the nominal state x0,ref , an

initial condition taken from the ContactNets dataset (Pfrommer* et al., 2020):

x0,ref = [0.186, 0.026, 0.122, −0.525, 0.394, −0.296,

− 0.678, 0.014, 1.291, −0.212, 1.463, −4.854, 9.870] ,

where the cube center of mass is ∼ 0.12m above the ground, with initial downward velocity of

∼ 0.2 m
s . This perturbation consists of ∆p0 ∼ U([−0.1, 0.1]3) m

s ; ∆q0 ∼ Q
(
θ r
||r||2

)
, a body-

axis rotation of angle θ ∼ U([−1, 1]) rad and axis r ∼ U([1, 1]3); ∆ṗ0 ∼ U([−0.1, 0.1]3) m
s ; and

∆ω0 ∼ U([−0.1, 0.1]3) rad
s . Since the average trajectory length for the Hard setting is 80 time-steps

(∼ 540ms), we truncate the Medium and Soft trajectories to 80 time-steps to make the amount

of data per trajectory equal across all settings. After a trajectory is generated from this initial

condition, we add two forms of noise to the configurations [pt; qt]. First we add constant-in-

time noise to represent cumulative sensor drift: ∆p ∼ U([1, 1]3) mm and ∆q ∼ Q
(
θ r
||r||2

)
, with

θ ∼ U([−1, 1]) deg and axis r ∼ U([1, 1]3). Then, we add i.i.d. noise to each measurement to

model the small inconsistencies between measurements in the same fashion: ∆pt ∼ U([.01, .01]3)

mm and ∆qt ∼ Q
(
θ r
||r||2

)
, with θ ∼ U([−.01, .01]) deg and axis r ∼ U([1, 1]3). Velocities are

reconstructed from the noisy data by inverting the finite difference equations (4.6)–(4.7). While

measurements have very small relative position noise, finite differencing amplifies the velocity noise

8http://www.mujoco.org/book/modeling.html
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Table B.1: Hyperparameter Search Space

Hyperparameter Values

target variable vt+1 ∆v
learning-rate 1e-3 1e-4 1e-5
hidden-size 128 256 512

history-length 4 8 16
weight-decay 0 4e-5 4e-3

by 1
∆t ≈ 160s−1.

B.3. Learning Details

Our MLPs consist of 4 hidden fully-connected layers with ReLU activations, plus a final linear layer.

Our RNNs maintain a hidden state zt with initial value 0. zt is updated sequentially for each xt as

zt = ψθ(xt, zt−1) from the previous hidden-state zt−1, where ψθ is a learned non-linear function.

By recursively unfolding (visualized in Fig. B.1),

zt = ψθ(xt,ψθ(xt−1, . . .ψθ(xt−h+1,0) . . . )) . (B.3)

Finally, we use a two layer fully-connected network as a decoder ψθ,dec to extract the predicted

velocity vector as vt+1 = ψθ,dec(zt). The decoder consists of a hidden layer of width half the size

of RNN hidden-state followed by ReLU activation units and the output layer. For each MLP and

RNN architecture, we tried different target variables and sweep over different values of learning-rate,

hidden-layer size, and weight-decay, centered around hand-tuned values. While the history-length

is 1 for MLPs, for RNNs we also tried different history-lengths. Table B.1 provides the space of

hyperparameters sweeped over in this process. For each combination of settings, we complete at

least 10 training runs on high data regime of 500 example trajectories, and then select the setting

with the lowest average prediction error over Dtest.

While MLP’s and RNN’s had similar training error and generalization error trends, the long-term

prediction error was noticeably different (see Fig. B.2). To make a fair comparison with our RNN’s

of history-length h = 16, our MLP rollout experiments also start from the 16th time-step. RNN’s

are worse than MLP’s on Hard model rollouts, in spite of their superior performance on single-step
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0

ψθ

zt−h+1

xt−h+1

ψθ

. . .

xt−h+2

ψθ

zt

xt

ψθ,dec xt+1

Figure B.1: The structure of our RNN predictors. ψθ is a recurrent unit (GRU), while ψθ,dec is an
MLP decoder.

Figure B.2: We plot the performance of our optimized MLP networks on long-term prediction of
position and orientation with 95% confidence intervals.

predictions. We speculate that RNN models can exploit temporal consistency between velocities

for smooth systems. After all, if the trajectory is smooth in time, then one can predict the velocity

over a short horizon by simply doing polynomial extrapolation. However, as the velocity is nearly

discontinuous in time for hard models, this intuition may no longer be valid.

118



APPENDIX C

PROOFS FOR CHAPTER 5

C.1. Proof of Lemma 2

As both Lprediction (2.49) and Lgraph (5.4) are averaged over the datapoints in D, W.L.O.G. we may

consider a dataset consisting of a single datapoint (xi,ui,v
′
i). As [xi,ui,fθ(xi,ui)] ∈ Graph(fθ),

the first inequality follows directly:

Lprediction(fθ,D) =

∥∥∥∥∥∥∥




0

v′i − fθ(xi,ui)




∥∥∥∥∥∥∥

2

2

≥ min
x̄i

∥∥∥∥∥∥∥




x̄i − xi
v′i − fθ(x̄i,ui)




∥∥∥∥∥∥∥

2

2

= Lgraph(fθ,D) . (C.1)

To prove the second inequality, we first apply the Lipschitz condition of fθ at xi to give the following:

Graph(fθ(·,ui, ·)) ⊆ G =







x

v


 : ∥v − fθ(xi,ui)∥2 − Lf ∥x− xi∥2 ≤ 0




. (C.2)

We can therefore lower bound Lgraph as

Lgraph(xi,vi) ≥ min
[x; v′]∈G

∥∥∥∥∥∥∥



x− xi
v′ − v′i




∥∥∥∥∥∥∥

2

2

. (C.3)

We can write the KKT conditions of (C.3) with Lagrange multiplier γ ≥ 0 as

0 =



x− xi
v′ − v′i


+ γ



−Lf x−xi

∥x−xi∥2
v′−fθ(xi,ui)

∥v′−fθ(xi,ui)∥2


 , (C.4)

0 ≥
∥∥v′ − fθ(xi,ui)

∥∥
2
− Lf ∥x− xi∥2 , (C.5)

0 = γ
(∥∥v′ − fθ(xi,ui)

∥∥
2
− Lf ∥x− xi∥2

)
. (C.6)
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When v′ ̸= fθ(xi,ui), these conditions are solved by

x∗ = xi + r̂
Lf

1 + L2
f

∥∥v′ − fθ(xi,ui)
∥∥
2
, (C.7)

v∗′ = fθ(xi,ui) + Lf ∥x∗ − xi∥2
v′i − fθ(xi,ui)
∥v′i − fθ(xi,ui)∥2

, (C.8)

γ =
∥x∗ − xi∥2

Lf
, (C.9)

where r̂ is an arbitrary unit direction. Substituting the formulas for x∗ and v∗ into (C.3) yields the

final result.

C.2. Simplifications, lemmas, formulas and additional notation supporting Theorem 1

Without loss of generality, by a change of units in Λt,i from [N] to [µiN], we may assume µi = 1,

and that the feasible set in the loss is

K = Lm , (C.10)

L = {Λ : Λn ≥ ∥Λt∥2} . (C.11)

L is called the Lorentz cone, a convex cone. It is self-dual, such that L = {Λ : Λ · L ≥ 0}, i.e.

L = dual(L). Under the simplifying assumptions in Theorem 1,

gθ(x,u,Λ) = v + τ + JTΛ , (C.12)

φ(q) = c+ Jnq , (C.13)

where τ = Fs∆t and c are constants.

In this section, we will consider evaluation of the Lviolation over single datapoint D = {(x,u,v′)}.

Let Λ∗ be a solution to the minimization in (5.5). As L and therefore K are self-dual convex cones,
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the KKT conditions on Λ
∗ ∈ K∗(x,v′) are

L ∋ Λ
∗
i ⊥ ci + di − Jiṽ ∈ L , (C.14)

ṽ = v − gθ(x,u,Λ∗) = v′ −
(
v + τ + JTΛ∗) . (C.15)

Define also the lumped terms

c =




c1
...

cm



, d =




d1
...

dm



. (C.16)

C.2.1. Problem Class

We now show that the loss is in the problem class of bilevel problems explored in Section A.4, with

z ∼ [x,v′], f ∼ Lviolation(fθ, {·,u, ·}) and g ∼ lθ(x,u,v′,Λ):

1. K = Lm is the Cartesian product of closed Lorentz cones, and therefore is closed.

2. 1
2 ∥v′ − gθ(x,u,Λ)∥22 is jointly convex quadratic in x,v′,Λ from the above equations. As

φ̄(q,v′) is affine in (q,v′) (2.36); pos(·), ∥·∥2, and neg(·) are convex; and Λn ≥ 0 inside K, hθ

is also convex in x,v′ on Λ. Thus, lθ is convex in x,v′ on Λ.

3. hθ is affine in Λ and therefore convex in Λ; thus lθ is also convex in Λ at all x,v′.

4. We can extend hθ (and thus lθ) outside of Rn ×K as

ĥθ =
∑

i

1

2
neg(φ̄i)

2 + ci · Λ̄(Λi) + di · Λ̄(Λi) , (C.17)

Λ(Λi) = [pos(Λn,i);Λt,i] . (C.18)

Λ(Λi) · (ci + di) and neg(φ̄i)
2 can easily be shown to be convex in yi = [Λi; φ̄i;Jtv

′] up to

4 ∥yi∥22. As y is affine in (x,v′,Λ), hθ and therefore lθ are jointly semiconvex in (x,v′,Λ).
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5. lθ is jointly quadratic in
{
yi = [Λi; pos(φ̄i); neg(φ̄i);v;v

′; ∥Jt,iv′∥2]
}
, which is Lipschitz in

x,v′,Λ, and thus lθ is Lipschitz on any compact domain.

6. As the loss is a convex SOCP with an objective that grows unboundedly as ∥Λ∥ → ∞ (see

below), it has a finite minimizer.

7. As the friction cone is pointed (Assumption 2),
∥∥JTΛ

∥∥
2
≥ p ∥Λ∥2 for p > 0 any Λ ∈ Λ.

From the KKT we have

0 ≥ Λ
∗ · (c+ d− Jṽ) , (C.19)

≥ −∥Λ∗∥2
∥∥c+ d− J(v′ − v − τ )

∥∥
2
+ p2 ∥Λ∗∥22 , (C.20)

≥ ∥Λ∗∥2 (−
∥∥c+ d− J(v′ − v − τ )

∥∥
2
+ p2 ∥Λ∗∥2) . (C.21)

Thus we may pick

α(x,v′) =
1

p2

∥∥c+ d− J(v′ − v − τ )
∥∥
2
. (C.22)

C.2.2. Lemmas

Lemma 16. Let Λ∗ be a minimizer of lθ at x,v′. Let t̂i ∈ Unit(Jt,iv
′) and ri = [−1; t̂i]. Then,

Λ
∗
i · di ≤ ∂v′ (Λ∗

i · di) · ṽ . (C.23)

Proof. As Λ
∗
n,i ≥ 0, we have by chain rule that

∂v′ (Λ∗
i · di) · ṽ = Λ

∗T
i



Unit(Jt,iv

′)T

I2


Jt,iṽ . (C.24)

Pick an element t̂i of Unit(Jt,iv
′). Let

ri =



−1

t̂i


 ∈ −L . (C.25)
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We have that di · ri = 0; Λ∗
i · ci = −Λ∗

n,iri · ci; and from the KKT,

ri · (ci + di − Jṽ) ≤ 0 . (C.26)

We then have that

∂v′ (Λ∗
i · di) · ṽ ∋ Λ

∗T
i



0 t̂Ti

0 I2


Jiṽ , (C.27)

= Λ
∗T
i Jiṽ +Λ

∗T
i



−1 t̂Ti

0 0


Jiṽ , (C.28)

= Λ
∗T
i Jiṽ +Λn,ir

T
i Jiṽ , (C.29)

= Λ
∗T
i (ci + di) +Λn,ir

T
i Jiṽ , (C.30)

= Λ
∗T
i di +Λn,ir

T
i (Jiṽ − ci) . (C.31)

= Λ
∗T
i di +Λn,ir

T
i (Jiṽ − ci − di) , (C.32)

≥ Λ
∗T
i di . (C.33)

Corollary 5.

Λ
∗ · d ≤ ∂v′ (Λ∗ · d) · ṽ . (C.34)

Proof. as each Λ
∗
i · di is convex in v′, ∂v′ (Λ∗ · d) = ∂v′

∑
i (Λ

∗
i · di) =

∑
i ∂v′ (Λ∗

i · di), and the

claim follows from the above lemma.

Lemma 17.

Λ
∗ · c ≤ σmax

2
∥ṽ∥22 +

∑

i:φ̄i>0

(Λ∗
n,i)

2 (C.35)
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Proof. Consider contact i’s perpendicularity constraint in the KKT:

0 = Λ
∗
i · (ci + di − Jiṽ) .

As Λ
∗
i ,di ∈ L and L is self-dual, 0 ≥ Λ

∗
i · (ci − Jiṽ). Thus,

Λ
∗
i · ci ≤ Λ

∗
i · Jiṽ , (C.36)

≤ 1

2
∥Λ∗

i ∥22 +
1

2
∥Jiṽ∥22 (C.37)

≤ (Λ∗
n,i)

2 +
1

2
∥Jiṽ∥22 (C.38)

The inequalities above come from, in order: the perpendicularity portion of the KKT; the identity

∥a∥22 + ∥b∥22 ≥ 2a · b; and the Lorentz cone constraint on Λ
∗
i , Λ

∗
n,i ≥

∥∥∥Λ∗
t,i

∥∥∥
2
.

The final inequality follows by

Λ
∗ · c =

∑

i:φ̄i>0

Λ
∗
i · ci , (C.39)

≤
∑

i:φ̄i>0

(Λ∗
n,i)

2 +
1

2
∥Jiṽ∥22 , (C.40)

=
1

2
∥Jṽ∥2 +

∑

i:φ̄i>0

(Λ∗
n,i)

2 , (C.41)

≤ σmax

2
∥ṽ∥22 +

∑

i:φ̄i>0

(Λ∗
n,i)

2 . (C.42)

We finally prove the simple inequality:

Lemma 18. let |δ| ≤ 1
4 and let a, b ∈ R

n. Then

∥b∥22 + ∥a+ δb∥22 ≥
1

2
∥b∥22 +

1

2
∥a∥22 . (C.43)
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Proof. We examine two cases.

Case 1: ∥b∥2 ≥ ∥a∥2. Follows trivially.

Case 2: ∥b∥2 < ∥a∥2. Follows from reverse triangle inequality as

∥a+ δb∥22 >
∥∥∥∥
3

4
a

∥∥∥∥
2

2

=
9

16
∥a∥22 (C.44)

C.3. Proof of Theorem 1

As lθ and therefore Lviolation have minimal value zero, by definiton of quadratic growth, it suffices

to show that Lviolation is 2k-QG. By Corollary 4, this reduces in the 1-datapoint case to

min
Λ∗∈K∗(z)

min
l∗
θ
∈∂zlθ(z,Λ∗)

∥l∗θ∥2 ≥
√
4klθ(z,Λ∗) , (C.45)

(C.46)

Pick arbitrary z = [x; v′]; Λ
∗ ∈ Λ

∗(z); and l∗θ ∈ ∂zlθ(z,Λ
∗). We can reformulate lθ in to

l̃θ(y(z),Λ), where

y(z) =




yv

yv′

yφ̄



=




v

v′

φ̄(q,v′)



, (C.47)

l̃θ(y,Λ) =
1

2

∥∥yv′ − yv − τ − JTΛ
∥∥
2

(C.48)

+
∑

i

1

2
neg(yφ̄i

)2 +Λi · ([pos(yφ̄i
); 0] + [∥Jt,iyv′∥2 ; Jt,iyv′ ]) (C.49)
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Then by the chain and addition rules for convex functions,

∂̂yv l̃θ(y(z),Λ
∗) = −ṽ , (C.50)

∂̂yv′
l̃θ(y(z),Λ

∗) = ṽ + ∂yv′
(Λ∗ · d) , (C.51)

∂̂yφ̄
l̃θ(y(z),Λ

∗) = Λ
∗,T
n P (yφ̄)− neg(yφ̄)

T . (C.52)

y is affine in its inputs with constant Jacobian

∇z =




0 I 0

0 0 I

Jn 0 Jn∆t



. (C.53)

Therefore by the subgradient chain rule Theorem (16), we may select P ∗ ∈ P (yφ̄) such that

l∗θ ∈
[(

Λ
∗,T
n P ∗ − neg(yφ̄)

T
)
Jn −ṽ ṽ + ∂yv′

(Λ∗ · d) +
(
Λ

∗,T
n P ∗ − neg(yφ̄)

T
)
Jn∆t

]
. (C.54)

Thus, the final inequality follows as

∥l∗θ∥22 ≥
1

2

∥∥(Λ∗,T
n P ∗ − neg(yφ̄)

T
)
Jn
∥∥2
2
+ ∥ṽ∥22 +

1

2

∥∥ṽ + ∂yv′
(Λ∗ · d)

∥∥
2
, (C.55)

≥ 1

2

∥∥(Λ∗,T
n P ∗ − neg(yφ̄)

T
)
Jn
∥∥2
2
+ ∥ṽ∥22 + ∂yv′

(Λ∗ · d) · ṽ , (C.56)

≥ 1

2

∥∥(Λ∗,T
n P ∗ − neg(yφ̄)

T
)
Jn
∥∥2
2
+ ∥ṽ∥22 +Λ

∗ · d , (C.57)

≥ σmin

2

∥∥Λ∗,T
n P ∗ − neg(yφ̄)

∥∥2
2
+ ∥ṽ∥22 +Λ

∗ · d , (C.58)

≥ σmin

2

(∥∥Λ∗,T
n P ∗∥∥

2
+
∥∥neg(yφ̄)

∥∥2
2

)
+ ∥ṽ∥22 +Λ

∗ · d , (C.59)

≥ σmin

2


 ∑

i:φ̄i>0

(Λ∗
n,i)

2 +
∥∥neg(yφ̄)

∥∥2
2


+ ∥ṽ∥22 +Λ

∗ · d , (C.60)

≥ σmin

2max(1, σmax)
lθ(z,Λ) . (C.61)

These inequalities follow in order by: Lemma 18; the identity ∥a+ b∥22 ≥ 2a · b; Corollary 5;

JnJ
T
n ⪰ σminI; the identity P (φ̄) · neg(φ̄) = 0; the definition of ∂pos = P ; and the identity
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σmaxI ⪰ JTJ.
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APPENDIX D

PROOFS FOR CHAPTER 6

D.1. Proof of Theorem 2

From (6.1) we have that s(r̂) = maxi pi · r̂. Let Pk ∈ R
M×3 be the matrix with ith row equal to

pi+k(modM). Therefore,

max(P0r̂, . . . ,PM−1r̂) = s(r̂)1M , (D.1)

where max(·) is an element-wise max between each of its inputs. We will make frequent use of the

identity max(a, b) = pos(a− b) + b.

Set the parameters of the H-FICNN as follows:

Wr,k = Pk−1 − Pk , k ∈ 1, . . . ,M − 1 , (D.2)

Wr,M =
1

M
1
T
MPM−1 , (D.3)

Wz,k = IM , k ∈ 2, . . . ,M − 1 , (D.4)

Wz,M =
1

M
1
T
M , (D.5)

Plugging in to the network equations (2.51), we now show by induction that each intermediate layer

has value zk = max(P0r̂, . . . ,Pkr̂)− Pkr̂ for k ∈ 1, . . . ,M − 1.

Base case (k = 1):

z1 = σ(Wr,1r̂) , (D.6)

= pos(P0r̂ − P1r̂) , (D.7)

= max(P0r̂,P1r̂)− P1r̂ . (D.8)

(D.9)
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Inductive case (k − 1 =⇒ k):

zk = σ(Wz,kzk−1 +Wr,kr̂) , (D.10)

= pos(zk−1 + (Pk−1 − Pk)r̂) , (D.11)

= pos(max(P0r̂, . . . ,Pk−1r̂)− Pk−1r̂ + (Pk−1 − Pk)r̂) , (D.12)

= pos(max(P0r̂, . . . ,Pk−1r̂)− Pkr̂) , (D.13)

= max(P0r̂, . . . ,Pkr̂)− Pkr̂ . (D.14)

Therefore,

sθ(r̂) =Wr,MzM−1 +Wr,M r̂ , (D.15)

=
1

M
1
T
M (max(P0r̂, . . . ,PM−1r̂)− PM−1r̂ + PM−1r̂) , (D.16)

=
1

M
1
T
M (max(P0r̂, . . . ,PM−1r̂)) , (D.17)

=
1
T
M1M

M
s(r̂) , (D.18)

= s(r̂) . (D.19)

D.2. Proof of Theorem 3

It is sufficient to rasterize the shape. Let N =
⌈
2D

√
3

ε

⌉3
, and decompose [−D,D]3 into a N

1
3 ×

N
1
3 ×N 1

3 grid of cube voxels S1, . . . ,SN .

Each voxel has side-length ≤ ε√
3
, and thus no two points inside any voxel are more than ε apart.

Consider the union of (convex polytope) voxel cubes

S̄ =
⋃

i:Si∩S̸=∅
Si . (D.20)

It is clear to see that S̄ ⊇ S, so

max
s∈S

Dist(s, S̄) = 0 . (D.21)
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Any s̄ ∈ S̄ is by definition in a voxel Si containing some point s(s̄) ∈ S ∩ Si, and thus

max
s̄∈S̄

Dist(s̄,S) ≤ max
s̄∈S̄

Dist(s̄, s(s̄)) ≤ ε . (D.22)
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APPENDIX E

EXPERIMENT DETAILS AND PROOFS FOR CHAPTER 7

E.1. Example Details

Here, we list relevant details on the examples in Section 7.5. The MATLAB codebase at https:

//github.com/mshalm/routh-multi-impact may be run via Results(). The PATH LCP solver

(Dirkse and Ferris, 1995) must be installed, and pathlcp.m must be available from the MATLAB

path. Geometric, inertial, and simulation parameters of the examples are listed in Tables E.1–E.5,

and the listed symbols match the variable names used in the codebase. Unless otherwise stated,

bodies have uniform density, and links are massless. For the RAMone example, we refer the reader

to Remy (2017) for a full description of the system’s inertial and geometric properties.

Table E.1: Block Drop Parameters

Parameter Symbol Value

Phone width a 7.444 cm
Phone height b 16.094 cm
Phone mass m 190 g
Init. downward vel. v0 14.01 cm s−1

Friction coefficient µ 1
Step size h 0.3N s
Trajectory length N 10
Trajectory set size M 214
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Table E.2: Compass-gait Walker Parameters

Parameter Symbol Value

Leg length l 1m
Mass-to-foot length s∥ 0.5m

Leg mass m 1 kg
Trailing leg pitch φtr 78◦

Leading leg pitch φle −78◦
Trailing leg init. ang. vel. φ̇tr,0 0.5 rad s−1

Leading leg init. ang. vel. φ̇le,0 0.5 rad s−1

Friction coefficient µ 5
Step size h 1N s
Trajectory length N 5
Trajectory set size M 220

Table E.3: Box-Wall Parameters

Parameter Symbol Value

Box side length w 1m
Box mass m 1 kg
Angle from box to ground θ 10◦

Init. horizontal velocity v0 1m s−1

Friction coefficient µ 1
Step size h 2N s
Trajectory length N 5
Trajectory set size M 218
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Table E.4: RAMone Parameters

Parameter Symbol Value

Trunk pitch Φ 16◦

Leading hip angle αle −70◦
Trailing hip angle αtr 70◦

Leading knee angle βle −2◦
Trailing knee angle βtr −92.48◦
Trunk init. x vel. ẋ0 −0.4114m s−1

Trunk init. y vel. ẏ0 −0.2105m s−1

Trunk init. ang. vel. Φ̇0 1 rad s−1

Leading hip init. vel. α̇le,0 0 rad s−1

Trailing hip init. vel. α̇tr,0 0 rad s−1

Leading knee init. vel. β̇le,0 0 rad s−1

Trailing knee init. vel. β̇tr,0 0 rad s−1

Friction coefficient µ 105

Step size h 1N s
Trajectory length N 10
Trajectory set size M 220

Table E.5: Disk Stacking Parameters

Parameter Symbol Value

Disk radius R 1m
Disk mass m 1 kg
Initial vertical velocity v0 −1m s−1

Friction coefficient µ
√
3

Step size h 1N s
Trajectory length N 10
Trajectory set size M 220
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E.2. Background Proofs

E.2.1. Proof of Proposition 5

Let g(x) : Rn → R
m be Lipschitz with constant L and let h > 0. Let X = {x1, . . . , xN} be a set of

uniform i.i.d. samples from [0, h]n. By Lipschitz continuity, g(X ) is a ε-net of g([0, h]n) if X is an

ε
L
-net of [0, h]n; we examine the latter.

Consider regularly-spaced grid points of cardinality Mn:

X ′ =
{

h
2M ,

3h
2M , . . . ,

(2M−1)h
2M

}n
. (E.1)

X ′ is a h
√
n

2M -net of [0, h]n. Thus, setting M =
⌈
hL

√
n

ε

⌉
, X ′ is an ε

2L -net of [0, h]n. Consider the case

where for each x ∈ X ′, X contains an xi with

xi ∈ x+
[
− h

2M ,
h

2M

]n ⊆ [0, h]n , (E.2)

and thus ∥xi − x∥2 ≤ ε
2L . Then by triangle inequality, X is an ε

L
-net of [0, h]n when (E.2) holds for

each xi. For a single x ∈ X ′, as the elements of X are chosen uniform i.i.d, the probability of (E.2)

not holding is (1−M−n)N . The probability of (E.2) holding for every x is at least

1−Mn(1−M−n)N , (E.3)

by union bound. The proof holds as M−n = Ω.

E.2.2. Proof of Lemma 1

We may assume WLOG that M = I by applying a coordinate transformation of M
1
2 to v. Let

R be a matrix with columns that constitute an orthogonal basis of Range
(
JTi
)
. By equivalence of

norms there exists ε > 0 such that

∥Jn,iv∥+ ∥Jt,iv∥2 ≥ ε
∥∥RTv

∥∥
2
. (E.4)
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We will show that κ = (εmin (µi, 1))
−1 satisfies the claim. Let V (s) =

∥∥RTv(s)
∥∥2
2
. Assume WLOG

that v(s) is a colling velocity (v(s) ∈ C(q)) at least until s∗ =
∥∥RTv(0)

∥∥
2
κ ≤ ∥v(0)∥2 κ. Then, on

the interval [0, s∗),

V̇ = 2v̇TRRTv , (E.5)

∈ 2
(
Jn,i − µiUnit (Jt,iv)T Jt,i

)
RRTv , (E.6)

= −2 ∥Jn,iv∥ − 2µi ∥Jt,iv∥2 , (E.7)

≤ −2εmin (µi, 1)
√
V , (E.8)

≤ −2

κ

√
V . (E.9)

The unique solution to the IVP ẋ = − 2
κ

√
x,

x(s) =
(√

x(0)− s

κ

)2
, (E.10)

therefore bounds V from above on [0, s∗). Thus,

V (s∗) ≤
(√

V (0)− s∗

κ

)2

, (E.11)

=
(∥∥RTv(0)

∥∥
2
−
∥∥RTv(0)

∥∥
2

)2
, (E.12)

= 0 . (E.13)

Therefore RTv(s∗) = 0, Jn,iv (s
∗) = 0, and v (s∗) ̸∈ C(q).

E.3. Impact Model Proofs

E.3.1. Proof of Lemma 3

The final claim may be reached via direct application of Theorem 15, as long as Dq(v) is non-empty,

uniformly bounded, closed-valued, convex-valued, and u.s.c. We will demonstrate that each of these

properties hold.

We first observe that the set of contacts Iq(v), used in the construction of Dq(v) in (7.3), is
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non-empty by construction. Furthermore, Iq(v) is u.s.c. in v, because it is constructed from

non-strict inequalities of linear functions of v. Next, we note that for each i, Fi(q,v, 1) is non-

empty, uniformly bounded, closed-valued, and u.s.c. as it is an affine transformation of Unit(·).

Finally, we characterize Dq(v). Dq(v) is non-empty, uniformly bounded, and close-convex valued,

by construction from the convex hull of a non-empty union of Fi(q,v, 1). Now, consider an arbitrary

velocity v0 and neighborhood V̇0 ⊃ Dq(v0). As Iq(v) is u.s.c., we can select a neighborhood V with

Iq(V) ⊆ Iq(v0). Therefore on V ,

Dq(v) ⊆ D0(v) = co
(
∪i∈Iq(v0)Fi(q,v, 1)

)
. (E.14)

D0(v) is u.s.c. as the convex hull of u.s.c. functions, and furthermore Dq(v0) = D0(v0). Therefore

by definition of u.s.c. there exists a neighborhood V0 of v0 such that

Dq(V0) ⊆ D0(V0) ⊆ V̇0 . (E.15)

Dq(V) is therefore by definition u.s.c. and the claim is satified.

E.3.2. Proof of Lemma 4

Consider a configuration q ∈ R
nq and compact interval [a, b]. We first demonstrate that the impact

DI mapping Dq(v) is positively homogeneous in v (Dq(v) = Dq(kv) for k > 0). The DI mapping

Fi(q,v, 1) for contact i is an affine transform of Unit(Jt,iv) and thus positively homogeneous.

Also, the the set of contacts Iq(v) used in the construction of Dq(v) in (7.3), is also positively

homogeneous in v. Therefore, Dq(v) =M
−1co

(
∪i∈IqFi

)
is positively homogeneous.

Now, consider a solution v(s) to the impact DI v̇ ∈ Dq(v) over [a, b], and k > 0. kv( s
k
) is well-

defined and absolutely continuous over the interval [ka, kb], and has derivative equal to v̇( s
k
) a.e.

on [ka, kb]. Then v̇( s
k
) ∈ Dq(v(

s
k
)) = Dq(kv(

s
k
)) a.e., and kv( s

k
) ∈ SOL (Dq, [ka, kb]).

E.3.3. Proof of Lemma 5

Let q ∈ QA, and let [a, b] be a compact interval. Consider a solution of the impact DI v(s) ∈

SOL (Dq, [a, b]) with non-separating velocity (v([a, b]) ⊆ clC(q)). We will show that ∥v(s)∥M is

136



non-increasing by proving that K̇(q,v(s)) is non-positive almost everywhere. Pick any s ∈ [a, b]

where v̇(s) ∈ Dq(v(s)). By construction of Dq(v) (7.3) and the definition of the convex hull, there

exists coefficients ci ≥ 0 such that

Mv̇(s) ∈
∑

i:Jn,iv(s)≤0

ciFi(q,v(s), 1) . (E.16)

We observe by chain rule that

K̇ = vTMv̇ ∈
∑

i:Jn,iv≤0

civ
TFi(q,v, 1) . (E.17)

K̇ is then non-positive as each term in this sum is non-positive by construction of Fi and (7.2):

vTFi(q,v, 1) = v
TJTn,i − µi ∥Jt,iv∥2 . (E.18)

E.3.4. Proof of Theorem 4

Let q ∈ QA be a configuration with active contact, and v(s) ∈ SOL (Dq, [a, b]) a solution to the

associated impact DI with impacting velocity (v([a, b]) ⊆ clC(q)). Let λ(s) be the associated vector

of force variables defined a.e..

Assume that v(s) is non-constant. We may now prove the claim by showing that ∥v(b)∥M <

∥v(a)∥M . As v(s) is continuous, we may select a < s∗ < b such that ∀δ > 0, v(s) is not constant

on [s∗, s∗ + δ]. Let A = {i ∈ IA(q) : Jn,iv(s∗) ≤ 0} be the set of non-separating contacts at s = s∗.

Let B be the set of contacts b ∈ A with zero contact velocity (Jbv(s
∗) = 0). As v(s) is continuous,

∃δε > 0 and ε > 0 such that ∀s ∈ [s∗, s∗ + δε] ⊆ [a, b],

• All i ∈ IA \A separate (Jn,iv(s) > ε)

• All i ∈ A \B move: Jn,iv(s) < −ε or ∥Jt,iv(s)∥2 > ε
µi

.
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Select s from [s∗, s∗ + δε] with v(s) ̸= v(s∗). By Lemma 5,

0 ≥ ∥v(s)∥2M − ∥v(s∗)∥2M , (E.19)

= 2v(s∗)TM (v(s)− v(s∗)) + ∥v(s)− v(s∗)∥2M , (E.20)

= 2 (Jv(s∗))T
∫ s

s∗
λ(σ)dσ + ∥v(s)− v(s∗)∥2M . (E.21)

Therefore, there must exist a contact a ∈ A \B with
∫ s
s∗
λn,a > 0 as (E.21) is non-positive. Finally,

K(v(s)) = K(v(s∗)) +
∫ s

s∗
(Jv(τ))Tλ(σ)dσ , (E.22)

≤ K(v(s∗))− ε
∫ s

s∗
λn,a(σ)dσ , (E.23)

< K(v(s∗)) . (E.24)

Therefore, as K is non-increasing, ∥v(b)∥M < ∥v(a)∥M .

E.3.5. Proof of Lemma 6

Suppose not, so there exists a configuration q ∈ QA, dissipation rate αq(s) such that v̇ ∈ Dq(v)

is αq(s)-dissipative, s > 0 and s∗ > ∥v(0)∥M s
αq(s)

, and v(s) ∈ SOL (Dq, [0, s
∗]) with v([0, s∗]) ⊆

clC(q). Assume WLOG by Lemma 4 that ∥v(0)∥M = 1. By solution homogeneity (Lemma 4) we

have for any sk = sk−1 + s ∥v(sk)∥M ,

∥v (sk)∥M
∥v (sk−1)∥M

≤ (1− αq(s)) . (E.25)

Setting s0 = 0, we thus have

∥v (sk)∥M ≤ (1− αq(s))
k , (E.26)

sk ≤ s
k∑

i=1

(1− αq(s))
k−1 . (E.27)

Therefore s∞ = limk→∞ sk =
s

αq(s)
< s∗ and by continuity of v, v (s∞) = 0. But then by Theorem

5 ∥v(s)∥M must decrease below 0 on [s∞, s∗], a contradiction.
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E.3.6. Proof of Theorem 6

Suppose not. Then there exists a q ∈ QA \ QP , an sf > 0, and a corresponding sequence of

solutions
(
vj(s)

)
j∈N, vj(s) ∈ SOL (Dq, [0, sf ]), all starting with

∥∥vj(0)
∥∥
M

= 1 and never exiting

clC(q), which dissipate less and less energy:

lim
j→∞

∥∥vj(sf )
∥∥
M

= 1 . (E.28)

As Dq is bounded and each solution vj(s) never exits
{∥∥vj(s)

∥∥
M
≤ 1
}

by dissipation (Lemma 5),

the sequence is equicontinuous and bounded. By Theorem 15, a subsequence of vj(s) converges

uniformly to a function v∞(s), with ∥v∞(sf )∥M = 1 by (E.28). Because kinetic energy is non-

increasing, ∥v∞(s)∥M = 1 for all s ∈ [0, sf ]. By Lemma 3 v∞(s) is a solution to v̇ ∈ Dq(v).

Therefore as v∞(s) does not dissipate kinetic energy, it is constant by Theorem 4, and thus 0 ∈

Dq(v∞(s)). But as each vj(s) ∈ clC(q), we must also have v∞(s) ∈ clC(q), which contradicts

Assumption 2.

E.3.7. Proof of Corollary 1

Let Q ⊆ QA \ QP be a compact set of non-penetrating configurations with active contact. We will

construct a suitable αQ explicitly. Let sf > 0. Define the DI



q̇

v̇


 = ẋ ∈ D′(x) =




0

Dq(v)


 . (E.29)

As the set of active contacts IA(q) is u.s.c. and M ,J are continuous, D′ is compact-convex,

uniformly bounded, and u.s.c.. Now consider the sets

X0 =







q0

v0


 : q0 ∈ Q ∧ ∥v0∥M(q0)

= 1




, (E.30)

Xf =
{
x(sf ) : x(s) ∈ IVP

(
D′,X0, [0, sf ]

)}
. (E.31)
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X0 represents all initial conditions with configurations in Q and initial kinetic energy 1
2 , and Xf

is set of states reachable from X0 via solutions to the dynamics (E.29) for a duration sf . As X0

is compact, IVP (D′,X0, [0, sf ]) and therefore Xf is closed and non-empty by Proposition 2. Any

solution [q(s); v(s)] ∈ IVP (D′,X0, [0, sf ]) must have constant q(s) = q(0) ∈ Q, because the

inclusion (E.29) prescribes q̇ = 0. Therefore, v(s) must be a solution to the associated impact

differential inclusion v̇ ∈ Dq(0)(v). Therefore, by Theorem 6,

αQ(sf ) = 1− max
[qf ; vf ]∈Xf

∥vf∥M(qf )
∈ (0, 1] , (E.32)

where the fact that Xf is closed implies the strict inequality αQ(sf ) > 0. Setting αQ(0) = 0

and selecting a configuration q ∈ Q, we now show that v̇ ∈ Dq(v) is αQ(s)-dissipative. Let

sf > 0, ∥v0∥M(q) = 1, and v(s) ∈ IVP (Dq,v0, [0, sf ]). By Definition 2, x(s) = [q; v(s)] ∈

IVP (D′,X0, [0, sf ]) and thus ∥v(s)∥M(q) ≤ 1− αQ(s) < 1 for all s ∈ [0, sf ].

E.4. Continuous-time Model Proofs

E.4.1. Proof of Theorem 7

Let [a, b] and X̄ be compact. As D(x̄) neither depends on t(x̄) nor s, WLOG [a, b] = [0, sf ] and

t(x̄) = 0 for each x̄ ∈ X̄ . We will prove that IVP (D, x̄, [0, sf ]) has the claimed properties in the

following manner:

1. We will bound kinetic energy growth (via Assumption 5), which will guarantee that solutions

starting in X̄ remain in a larger open bounded set, X̄ ′.

2. We will show that, restricted to X̄ ′, ˙̄x ∈ D(x̄) is equivalent to another DI ˙̄x ∈ D̃(x̄) which is

compatible with Proposition 2.

First, we construct a suitable X̄ ′. As X̄ is compact, we may pick c > 0 such that X̄ ⊆ Ballc.

Let x̄(s) ∈ IVP
(
D, X̄ , [0, sf ]

)
. We begin by establishing a bound on v(x̄(s)) over [0, sf ]. Let
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K(x̄) = K(q(x̄),v(x̄)). By Assumption 5, ∃cK > 0 such that for all x̄,

∂K

∂x̄
DC(x̄) = v

TFs(x,U(x̄)) ≤
√
2cK ∥v∥M . (E.33)

As the impact dynamics dissipate energy (Lemma 5),

K̇(x̄(s)) ∈ ∂K
∂x̄

D(x̄) ≤ 2cK
√
K(x̄) . (E.34)

Similar to the argument in Appendix E.2.2, we compare (E.34) to the differential equation ẋ =

2cK
√
x, and upper bound K as

K(q(s),v(s)) ≤
(√

K(q(0),v(0)) + cKs
)2

. (E.35)

Thus, picking cM with c−1
M ∥v∥M ≤

√
2 ∥v∥2 ≤ cM ∥v∥M ,

∥v(s)∥2 ≤ cM
√
K(q(s),v(s)) , (E.36)

≤ cM
(√

K(q(0),v(0)) + cKs
)
, (E.37)

≤ c2M ∥v(0)∥2 + cMcKs . (E.38)

Now, we bound q(x̄(s)). As ∥q̇∥2 ≤ ∥Γ∥F ∥v∥2, selecting cΓ = supq ∥Γ∥F , we can apply the triangle

inequality as:

∥q(s)∥2 ≤ ∥q(0)∥2 + cΓs max
s′∈[0,s]

∥∥v(s′)
∥∥
2
. (E.39)

Finally, we bound ∥t(s)∥ ≤ s from ṫ ≤ 1. As ∥x̄(0)∥2 < c,

∥x̄(s)∥2 ≤ ∥q(s)∥2 + ∥v(s)∥2 + ∥t(s)∥ , (E.40)

< c+ (cΓsf + 1)
(
c2Mc+ cMcKsf

)
+ sf . (E.41)

As (E.41) is constant, x̄(s) remains in a bounded open set X̄ ′.

Now, we relate ˙̄x ∈ D(x̄) to another DI which can be analyzed via Proposition 2. First we show that
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D(x̄) is u.s.c. For any q and separating velocity v ∈ S(q), we can pick an open neighborhood Q×V

of [q; v] which also consists solely of separating velocities by continuity of φ and Jn. Therefore,

the set of separating-velocity states X̄S is open. Furthermore, each of DS(x̄) (Assumption 4) and

DC(x̄) (Corollary 1) are u.s.c.. D(x̄) must then be u.s.c., because it is constructed from two u.s.c.

functions on disjoint open sets, and their convex hull on the remainder of the space.

By Assumption 6, D(X̄ ′) is bounded. As X̄ ′ is open and bounded, we can construct a bounded,

non-empty, compact-convex valued u.s.c. function D̃(x̄) defined over R
n such that D̃|X̄ ′ = D|X̄ ′ .

In particular,

D̃(x̄) =





D(x̄) x̄ ∈ X̄ ′ ,

co
(
clD(X̄ ′)

)
otherwise .

(E.42)

Therefore, by Theorem 15, IVP
(
D̃, x̄, [0, sf ]

)
is non-empty, closed under uniform convergence, and

u.s.c. on X̄ . As D and D̃ are locally equivalent, IVP
(
D̃, x̄, [0, sf ]

)
= IVP (D, x̄, [0, sf ]) on X̄ and

the claim is proven.

E.4.2. Proof of Theorem 8

Suppose not. Then there exists a non-penetrating initial state x̄0 = [q0; v0; t0] ̸∈ X̄P , compact

interval [0, sf ], and corresponding solution x̄(s) = [q(s);v(s); t(s)] ∈ IVP (D, x̄0, [0, sf ]) that pene-

trates at some sP ∈ (0, sf ] (x̄(sP ) ∈ X̄P ). Thus some contact i ∈ I penetrates at sP (φi(q(sP )) < 0).

By the intermediate value theorem, we may select sA ∈ [0, sP ) such that φi(q(sP )) < φi(q(sA)) < 0

and contact i penetrates on the entire interval [sA, sP ]. But then by the definition of D(x̄), q(s)

and therefore φi must be constant on [sA, sP ], a contradiction.

E.4.3. Proof of Theorem 9

Suppose not. Then there exists a compact interval [a, b]; solution x̄(s) ∈ SOL (D, [a, b]) with x̄(s)

impacting but not penetrating, x̄([a, b]) ⊆ X̄C \ X̄P ; and set S =
{
s : ˙̄x(s) ∈ D(x̄(s)) \DC(x̄(s))

}

with positive measure. Furthermore, ṫ(s)|S > 0 and q̇(s) = Γ(q(s))v(s)ṫ(s).

We will now show that allowing ṫ(s)|S > 0 must lead to penetration and therefore a contradiction

with Theorem 8. By Lebesgue’s density theorem, we may select a point of density a < s1 < b, i.e.,
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for all δ > 0, [s1, s1+δ]∩S has non-zero measure. As x̄(s) remains in X̄C , by continuity of J(q) and

x̄(s) we may select δ > 0 and a contact i that is active φi(q(s)) = 0 with negative time derivative

Jn,iv(s) < 0 on [s1, s1 + δ] ⊆ [a, b]. Let φ̇max = maxs∈[s1,s1+δ] Jn,iv(s) < 0. Then

φi(s1 + δ) =

∫

[s1,s1+δ]
Jn,iv(s)ṫ(s)ds , (E.43)

≤ φ̇max

∫

[s1,s1+δ]∩S
ṫ(s)ds , (E.44)

< 0 , (E.45)

and thus x̄(s1 + δ) ∈ X̄P , a contradiction.

E.4.4. Proof of Theorem 10

Let X̄ ⊆ X̄ cP be compact. By Corollary 1 there exists a dissipation rate αX̄ (s) such that the

impact differential inclusion v̇ ∈ Dq(v) for each configuration q ∈ q(X̄ ) is αX̄ (s)-dissipative. Let

K̄ = maxX̄ ∥v∥M(q).

Suppose the claim is not true. Then, for some sf > s∗(X̄ ) = K̄
αX̄(1) , there must exist a sequence of

solutions (x̄j(s))j∈N, x̄j(s) ∈ IVP
(
D, X̄ , [0, sf ]

)
, for which the elapsed times grows arbitrarily small:

tj(sf ) − tj(0) → 0. By Theorem 7, IVP
(
D, X̄ , [0, sf ]

)
is compact, and therefore by Assumption

6, the derivatives ˙̄xj(s) are uniformly bounded. Therefore (x̄j(s))j∈N is equicontinuous. Thus by

Theorem 15, a subsequence of x̄j(s) converges uniformly to some x̄∞(s) with t∞([0, sf ]) = t∞(0).

As IVP
(
D, X̄ , [0, sf ]

)
is closed (Theorem 7), x̄∞(s) must also solve the initial value problem.

We now show a contradiction arises because x̄∞(s) follows impact dynamics longer than K̄
αX̄(1) .

As t∞(s) is constant, ṫ∞(s) = 0, and thus x̄∞(s) is following only impact dynamics, x̄∞(s) ∈

IVP
(
DC , X̄ , [0, sf ]

)
. In order for ˙̄x∞(s) to be selected from DC , we must have x̄∞(s) ̸∈ X̄S a.e., and

thus v∞(s) ̸∈ S(q∞(s)) a.e. Additionally, as x̄∞(s) only follows impact dynamics, the configuration

is constant, i.e. q∞([0, sf ]) = q∞(0) = q∞. Therefore v∞(s) is a solution of v̇ ∈ Dq∞(v), and

v∞(s) ∈ clC(q∞). Therefore C(q∞) is non-empty and therefore has active contact (q∞ ∈ QA).

As, as X̄ is closed, q∞ ∈ q(X̄ ) and thus v̇ ∈ Dq∞(v) is αX̄ (s)-dissipative. Finally, by Lemma 6,
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sf <
∥v∞(0)∥M
α
X̄
(1) ≤ s∗(X̄ ), a contradiction.

E.4.5. Proof of Corollary 2

As X̄ (sf ) is non-empty and compact for all sf > 0, tf (sf ) is well-defined. Then, lim infsf→∞
tf (sf )
sf
∈

[0, 1] as the DI (7.19) enforces ṫ(s) ∈ [0, 1]. Consider a particular sf > 0, and let x̄(s) ∈

IVP
(
D, X̄ , [0, sf ]

)
. By Theorem 10, t(s) increases by t∗(X̄ ) over each interval of duration s∗(X̄ ),

bounding

tf (sf )

sf
≥ t∗(X̄ )

sf

⌊
sf

s∗(X̄ )

⌋
≥ t∗(X̄ )
s∗(X̄ ) −

t∗(X̄ )
sf

. (E.46)

Therefore, lim infsf→∞
tf (sf )
sf
≥ t∗(X̄ )

s∗(X̄ )
.

E.5. Simulation Proofs

E.5.1. Proof of Theorem 11

Consider some state [q; v] and normal impulse λn,max ≥ 0. Let z = [β; λ̄; γ] Then we have

zTWqz =
1

2
zT
(
Wq +W

T
q

)
z , (E.47)

=
∥∥∥J̄T λ̄

∥∥∥
2

M−1
+ λTnµγ , (E.48)

≥ 0 , (E.49)

where the final inequality holds because µ has positive entries and M ≻ 0. Therefore, Mq is

copositive.

Suppose further that z ∈ LCP(Wq,0), thus Wqz ≥ 0 and zTWqz = 0. Wqz ≥ 0 implies by

construction that

λn ≤ 0 , ETλD ≤ µλn ≤ 0 . (E.50)

Therefore as λn,λD ≥ 0, λn = 0 and λD = 0. Finally, as λn,max and β are non-negative,

zTwq(v,λn,max) = β
Tλn,max ≥ 0 . (E.51)
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Therefore by Proposition 3, LCP(Wq,wq(v,λn,max)) is non-empty.

E.5.2. Proof of Theorem 12

Consider a state [q; v], normal impulse increment λn,max ≥ 0, and solution to the impact LCP z =
[
β; λ̄; γ

]
∈ LCP(Wq,wq(v,λn,max)). Let v′ = v +M−1J̄

T
λ̄. Then from the complementarity

condition we have

0 = zT (Wqz +wq(v,λn,max)) , (E.52)

=
(
λ̄
T
J̄
)
v′ + λTnµγ + βTλn,max , (E.53)

=
(
v′ − v

)T
Mv′ + λTnµγ + βTλn,max , (E.54)

=
∥∥v′
∥∥2
M
− vTMv′ + λTnµγ + βTλn,max , (E.55)

As λTnµγ + βTλn,max ≥ 0, ∥v′∥2M ≤ vTMv′. Cauchy-Schwartz then gives ∥v′∥2M ≤ ∥v∥M ∥v′∥M ,

and thus K(q,v′)−K(q,v) ≤ 0.

E.5.3. Proof of Lemma 7

Let [q; v] be an impacting state (v ∈ C(q)), and let λn,max > 0 be a normal impulse. Consider an

impact LCP solution

[β; λn; λD; γ] ∈ LCP(Wq,wq(v,λn,max)) .

such that

λn < λn,max . (E.56)

Therefore for each contact i, the complementary equation (7.24) yields βi = 0 as λn,maxi−λn,i > 0.

Then from complementarity equation (7.25), Jn,iv
′ ≥ 0.

E.5.4. Proof of Lemma 8

Consider a configuration q ∈ QA \ QP and λ̄ = [λn; λD] obeying (2.31). By construction, J̄
T
λ̄ ∈

LFC(q). Let

F = LFC (q) ∩ J̄T {[λn; λD] : ∥λn∥1 = 1} . (E.57)
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As LFC (q) is a convex cone, r satisfies the claim if F ·M−1r > 1. As LFC ⊆ FC, by Assumption

2, 0 ̸∈ F . F is compact, non-empty, and convex polyhedron. Therefore, by ?, Theorem 11.4 there

exists r̃ such that

ε = min
F∈F

F · r̃ > max
F∈−F

F · r̃ = −ε . (E.58)

Setting r(q) = M(q)r̃
ε

satisfies the claim.

E.5.5. Proof of Theorem 13

Let q0 ∈ QA \ QP be a pre-impact configuration; let v0 ∈ C(q0) be a pre-impact velocity; and let

h > 0 be a step size. As each λn,max is selected from the uniform distribution over the h-width box,

we have that

cp = Eλn,max∼h·p

[
min
i
λn,maxi

]
=

h

m+ 1
. (E.59)

We assume WLOG that p is supported on the interior of the unit box (0, 1)m, as the probability of

being on the boundary is 0. Let σ = σmin (M =M(q0)), and therefore
√
σ ∥v∥2 ≤ ∥v∥M . Now,

select r for q0 as defined in Lemma 8. We will now show that the existence of r in conjunction with

dissipation (Theorem 12), allows us to create a useful sufficient condition for impact termination.

Consider any execution of Algorithm 1 with initial state [q0; v0], and let λkn,max, λ̄
k
= [λkn; λ

k
D] and

vk be the maximum normal impulse; selected impulse; and velocity computed on lines 3–5 on the

kth iteration of the loop. If the loop has not terminated after K steps, then for all loop iterations
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k ∈ {1, . . . ,K}, vk ∈ C(q0). By Theorem 12 and Lemmas 7–8, we have that

∥v0∥M ≥ ∥vK∥M , (E.60)

≥ √σ ∥vK∥2 , (E.61)

≥ √σ r

∥r∥2
· vK (E.62)

≥
√
σ

∥r∥2

(
r · v0 +

K∑

k=1

∥∥∥λkn
∥∥∥
1

)
, (E.63)

≥ −√σ ∥v0∥2 +
√
σ

∥r∥2

K∑

k=1

∥∥∥λkn
∥∥∥
1
, (E.64)

≥ −∥v0∥M +

K∑

k=1

√
σ

∥r∥2
min
i
λkn,maxi . (E.65)

For this inequality to hold, and thus for vK to remain in C(q0), it must be true that the summation

in (E.65) is no greater than 2 ∥v0∥M . Therefore, termination of the impact within K steps (i.e.

Z(h, q0,v0) ≤ K) is implied by ZK > cZ ∥v0∥M , where

cZ =
2 ∥r∥2√

σ
, (E.66)

ZK =
K∑

k=1

min
i
λkn,maxi . (E.67)

Given that the λn,max ∼ h · p are selected i.i.d. we have that E [ZK ] = Kcp. Thus we would expect

an impact to terminate proportional to

K∗ =

⌈
cZ

cp

⌉
⌈∥v0∥M⌉ . (E.68)

We now bound the termination time Z using Hoeffding’s inequality, applied below in (E.72); for
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k ∈ Z
+ and K = 2K∗ + k,

P (Z ≥ K) ≤ P (ZK ≤ cZ ∥v0∥M ) , (E.69)

≤ P (ZK ≤ K∗cp) , (E.70)

= P (ZK −Kcp ≤ − (K∗ + k) cp) , (E.71)

≤ exp

(
− 2

K
(K∗ + k)2

c2p

h2

)
, (E.72)

≤ exp

(
− (K∗ + k)

c2p

h2

)
, (E.73)

≤ exp

(
− k

(m+ 1)2

)
. (E.74)

Thus the claim is satisfied.

E.5.6. Proof of Lemma 11

Suppose not. Then there exists a configuration q ∈ QA \ QP , velocity v, and ε > 0, such that for

all N ∈ N, there exists a vN , JnvN ≥ − 1
N

, ∥vN∥M ≤ ∥v∥M , and yet v′N = fq(vN , ε1) ∈ C(q).

Due to energy dissipation (Theorem 12) and the boundedness of vN , the sequence v′N is bounded

as well. Without loss of generality we can therefore assume that vN → v∞ and v′N → v′∞. As

JnvN ≥ − 1
N

, it must be that Jnv∞ ≥ 0. Therefore, v′∞ = fq(v∞, ε1m) = v∞ via Lemma 10. As

vN and v′N converge to each other, there exists an N∗, with LCP-selected force λ̄N∗ = [λn; λD]

such that
∥∥(v′N∗ − vN∗

)∥∥
2
=
∥∥∥M−1J̄

T
λ̄N∗

∥∥∥
2
<

ε

∥r(q)∥2
, (E.75)

where r(q) comes from Lemma 8. However, by Lemma 7, as v′N∗ ∈ C(q), at least one contact must

fully activate, and thus ∥λn∥1 ≥ ε. But then again by Lemma 8,
∥∥∥M−1J̄

T
λ̄N∗

∥∥∥
2
≥ ε

∥r(q)∥2
, a

contradiction.

E.5.7. Proof of Theorem 14

First we show that generating an ε-net of V∞(x0, h) \ C(q0) can be reduced to generating an ε′-net

of VN (x0, h) for a suitable (ε′, N). We then show that VN (x0, h) is the image of a box under a
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Lipschitz function, and apply Proposition 5.

Select an initial x0 = [q0; v0] ∈ (QA \QP )×R
nv ; step size h > 0; and constants ε, δ > 0. Define ψ

as on line 2 of Alg. 2. Select

ε′ = min


ε
3
,
δ
(
ε
3ψ ,v0

)

2σmax(Jn)


 , (E.76)

where δ
(
ε
3ψ ,v0

)
comes from Lemma 11. Via Lemma 12, select N such that VN (x0, h) is an ε′-net

of V∞(x0, h). Consider a run of Approximate(h,x0, ϵ, N,M) for some M > 0. Suppose that the

M samples generated on line 4 of Alg. 2 constitute a ε′ net of VN (x0, h). Consider a post-impact

velocity v1 ∈ V∞(x0, h) \ C(q0). Then there exists a v2 ∈ VN (x0, h) with ∥v1 − v2∥2 < ε′. Pick

the closest v3 to v2 selected on line 4 of Alg. 2. From (E.76), we know that ∥v3 − v2∥2 ≤ ε
3 , and

Jnv3 ≥ −δ
(
ε
3ψ ,v0

)
. v3 is used to generate v4 = fq0(v3,

ε
3ψ1m) on line 5, and Jnv4 ≥ 0 via Lemma

11.

v4 is thus in the post-impact set V∞(x0, h) \ C(q0) and is output by Approximate(h,x0, ϵ, N,M).

Suppose that λ̄ = [λn; λD] was the LCP-selected force in the calculation of v4; we then have that

∥v4 − v3∥2 ≤ ε
3 by construction of ψ on line 2 of Algorithm 2. Thus, ∥v4 − v1∥2 is smaller than

∥v2 − v1∥2 + ∥v3 − v2∥2 + ∥v4 − v3∥2 ≤ ε . (E.77)

Therefore, the claim is true if the samples from VN (x0, h) generated on line 4 of Algorithm 2 are a

ε′ net of VN (x0, h) with probability 1− δ; we now calculate a M that guarantees this property.

Consider the sequence of functions

f1(λ1
n) = fq0(v0,λ

1
n) , (E.78)

fk(λ1
n, . . . ,λ

k
n) = fq0(f

k−1(λ1
n, . . . ,λ

k−1
n ),λn) . (E.79)

Examining (7.35), we see that

VN (x0, h) = f
N ([0, h]Nm) . (E.80)
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Furthermore, if fq0 has Lipschitz constant L, then fN is Lipschitz with constant LN by Proposition

1. Under Assumption 7, Sim(h,x0, N) yields a uniform sample of [0, h]Nm mapped under fN .

Therefore, the claim holds, with M given by Proposition 5:

M ≥ ln(δΩ)

ln(1− Ω)
, Ω =

⌈
hLN
√
Nm

ε′

⌉−Nm
. (E.81)
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