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Abstract— The hybrid nature of multi-contact robotic sys-
tems, due to making and breaking contact with the envi-
ronment, creates significant challenges for high-quality con-
trol. Existing model-based methods typically rely on either
good prior knowledge of the multi-contact model or require
significant offline model tuning effort, thus resulting in low
adaptability and robustness. In this paper, we propose a real-
time adaptive multi-contact model predictive control frame-
work, which enables online adaption of the hybrid multi-contact
model and continuous improvement of the control performance
for contact-rich tasks. This framework includes an adaption
module, which continuously learns a residual of the hybrid
model to minimize the gap between the prior model and reality,
and a real-time multi-contact MPC controller. We demonstrated
the effectiveness of the framework in synthetic examples, and
applied it on hardware to solve contact-rich manipulation
tasks, where a robot uses its end-effector to roll different
unknown objects on a table to track given paths. The hardware
experiments show that with a rough prior model, the multi-
contact MPC controller adapts itself on-the-fly with an adaption
rate around 20 Hz and successfully manipulates previously
unknown objects with non-smooth surface geometries. Accom-
panying media can be found at: https://sites.google.
com/view/adaptive-contact-implicit-mpc/home

I. INTRODUCTION

For in-home or workplace robots to achieve their true
potential, assisting humans across a wide range of tasks in
a complex and cluttered environments, they must be capable
of safely and quickly reacting to that complexity. One key
challenge to achieving high-performance control for multi-
contact robotic tasks, particularly dexterous manipulation,
lies in the combinatoric complexity of simultaneously se-
quencing contact locations and selecting continuous control
actions. Significant progress has been made in this area,
with recent methods demonstrating real-time multi-contact
(MPC) [1]–[3], but these methods require an accurate multi-
contact model, with control performance ultimately limited
by model accuracy and complexity. However, acquiring such
a model is difficult in real-world settings, and so performance
on these multi-contact robotic tasks, particularly dexterous
manipulation, remains limited to laboratory settings and
controlled demonstrations.

While classical approaches exist to modeling or identify-
ing the continuous dynamics, we observe that multi-contact
control is particularly sensitive to accurate predictions of
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Fig. 1. Given an initial guess that the object is a rigid sphere, the controller
adapts its model of the governing contact dynamics to roll and push real
fruits (orange, lime) with a Franka Emika Panda arm, tracking a desired
motion.

the contact events (e.g. when a robot will make or break
contact with an object). To address this requirement for a
model, recent work (e.g. [4], [5]) has started with system
identification, using collected data to learn a model [6]–[9]
to improve the control performance for contact-rich tasks.
Despite the success, the offline model learning in those
methods requires a significant effort of data collection and
training to obtain an effective model, limiting the flexibility
of these methods when deployed in practice. To address
those limitations, in this work, we take a perspective from
the classic adaptive control paradigm [10] but specifically
address multi-contact systems: we present an adaptive multi-
contact MPC controller such that it can adjust the multi-
contact hybrid model in real time to account for variations
of unknown objects/environments and improve its control
performance for multi-contact tasks.

The presented adaptive framework continuously adjusts
the hybrid model, using real-time in-stream data; meanwhile,
the MPC controller uses the most recent model for high-
quality control on multi-contact tasks. Compared to the ex-
isting work, we emphasize the two key contributions below.

(i) We present an adaptation law for multi-contact systems
that continuously minimizes the gap between the prior model
and reality by learning a hybrid residual model from in-
stream data. It is inspired by our offline learning method [6]
but unlike the previous work it focuses on online learning and
utilizes physics-based prior models to speed up the process.
Furthermore, the hybrid model adaption module is integrated
into our fast multi-contact MPC controller [11] which allows
real-time adaptive contact-implicit control on robots with on-
the-fly performance improvement for contact-rich tasks.

(ii) We validate the proposed approach with two different
hardware experiments, accomplishing challenging robot arm
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manipulation tasks. Our method adapts itself on-the-fly with
an adaption rate around 20 Hz and can consistently be em-
ployed to manipulate objects with uneven or irregular surface
geometries. The findings also indicate that our approach can
succeed in tasks that purely model-based methods fail.

II. RELATED WORK

1) Learning Multi-Contact Dynamics Models: The hy-
brid nature of multi-contact dynamics poses challenges for
gradient-based learning. One line of work, termed differen-
tiable simulation, focuses on smoothing hybrid mode bound-
aries, although this can lead to approximation errors [12]–
[14]. Recently, however, results have shown that conventional
neural networks are limited in capturing the multi-modality
and high-stiffness of multi-contact systems [7], [15], [16]. To
address this, researchers [6], [7], [16] explicitly exploit the
hybrid structure (complementarity formulation) of contact
dynamics to develop learning algorithms, achieving state-of-
the-art performance. In our adaptive contact-implicit MPC
framework, the adaption module focuses on learning a hybrid
residual model on top of prior dynamics, which is based
on our previous work [6]. The benefit of [6] is that it
simultaneously performs the mode partitioning and linear
regression by proposing a novel training loss. The quadratic
formulation in the loss enables fast updates using in-stream
data, which can run up to 20 Hz.

2) Fast Multi-Contact Model Predictive Control: To han-
dle the combinatoric complexity of choosing hybrid contact
modes, previous work [17], [18] use pre-defined sequence of
modes to achieve real-time multi-contact control on legged
locomotion [19] and manipulation [20]. To achieve contact-
implicit control, the work [3] proposed to relax contact mode
boundaries with smoothing approximation. Concurrently, our
work [11] introduced an approach that preserves the hybrid
structures while decoupling the combinatorial complexity
from planning depth. However, rather than operating with an
accessible ground-truth multi-contact model, we incorporate
a hybrid model adaptation module into the MPC controller.
This module operates continuously, updating the hybrid
model with data collected from real-world interactions. Con-
sequently, the MPC controller can consistently improve its
performance for multi-contact tasks.

3) Task-Oriented Multi-Contact Model Learning: A rel-
evant body of recent research is task-driven multi-contact
model learning, which aims to find a model that can be
used to (derive a policy and) accomplish given tasks. This
line of work shares the same idea as deep model-based
reinforcement learning [21], although the latter typically
suffers from huge data demand. The most recent work
focuses on learning a task-driven computationally affordable
models, which have been shown requiring a small amount
of data to successfully solve deleterious manipulation [4]
and bipedal locomotion [5]. It is important to note that the
above existing methods predominantly rely on offline model
learning. This means that the model undergoes episodic
updates after accumulating a buffer of historical policy data.
In contrast, the approach presented in this paper emphasizes

continuous and online updates to the hybrid residual model.
This innovative method facilitates real-time improvements
in the multi-contact hybrid model, consequently improving
performance during the deployment of the MPC policy.
Additionally, this adaptation framework holds the potential
to reduce data consumption when compared to offline model
learning methodologies.

4) Adaptive MPC: The most relevant theme of this work
is adaptive control, which focuses on control of uncertain
systems through real-time model adaptation and learning
[22] and has long been an ongoing research direction [23].
Researchers have developed robust (adaptive) MPC methods
[24]–[27], which are successfully applied to electric vehicles
[28], climate control [29], quadrotors [30]. Similarly, there
are multiple recent methods that perform adaptive MPC
under unknown noise distributions [31] or incorporate com-
ponents from adaptive control into learning-based MPC [32].
Also, the recent work [33] presents an adaptive MPC variant
that automatically estimates control and model parameters
by leveraging ideas from Bayesian optimization performing
manipulation tasks. Unlike our approach, which focuses on
real-time adaptive MPC for systems that make and break
contact, the authors focus on reaching tasks, avoiding any
contact interaction.

III. BACKGROUND

A. Multi-Contact Dynamics

A common model for the multi-contact dynamics of a rigid
manipulator is

M(q)v̇ + C(q, v) = Bu+ J(q)Tλ, (1)
0 ≤ λ ⊥ ψ(q, v, u, λ) ≥ 0. (2)

where q and v are vectors of the generalized positions and
velocities, respectively, and λ represents the contact forces.
The complementarity constraint (2) defines the hybrid rella-
tionship between the contact forces and the generalized po-
sitions, velocities, and inputs (see [34]–[36] for full details).
We note that one might equivalently explicitly represent (1)
as ẋ = f(x, λ, u) with x =

[
qT , vT

]T
.

B. Linear Complementarity Problem

While contact dynamics are represented via nonlinear
complementarity constraints (2) (ψ nonlinear in λ), local
models frequently use linear complementarity problems
(LCPs) as a means to depict contact forces [35]–[37].

Definition 1: Given a vector q ∈ Rm, and a matrix
F ∈ Rm×m, the LCP(q, F ) describes the following program:

find λ ∈ Rm

subject to y = Fλ+ q,

0 ≤ λ ⊥ y ≥ 0.

C. Linear Complementarity Systems

Linear complementarity systems (LCS) embed LCPs into
dynamical systems, which we employ as localized models
for multi-contact systems [11], [38], [39].



Definition 2: An LCS describes the trajectories (xk)k∈N0

and (λk)k∈N0 for an input sequence (uk)k∈N0 such that

xk+1 = Axk +Buk +Dλk + d,

0 ≤ λk ⊥ Exk + Fλk +Huk + c ≥ 0,
(3)

for a given x0 where xk ∈ Rnx , λk ∈ Rnλ , uk ∈ Rnu .
Given xk and uk, we can determine the associated comple-

mentary variable λk by solving the linear complementarity
problem LCP(Exk + Huk + c, F ) (Definition 1). Moving
forward, we describe the set of matrices in the LCS model (3)
as θ = {A,B,D, d,E, F,H, c}. If the elements depend on
a given nominal (denoted using ∗) state-input pair (x∗, u∗),
we represent them as A∗ = A(x∗, u∗) and the set of such
matrices is denoted as θ∗. With a slight abuse of notation,
we denote the state-contact force pair an LCS generates as
(xk+1, λk) = L(xk, uk, θ∗).

IV. PROBLEM FORMULATION

In this work, we are interested in solving the following
MPC problem at real-time rates:

min
xk,λk,uk

N−1∑
k=0

(xTkQkxk + uTkRkuk) + xTNQNxN

s.t. xk+1 = A∗xk +B∗uk +D∗λk + d∗ + rdyn,

0 ≤ λk ⊥ E∗xk + F ∗λk +H∗uk + c∗ + rcomp ≥ 0,
(4)

where N is the planning horizon, Qk, QN are positive
semidefinite matrices, Rk are positive definite matrices, rdyn
and rcomp represents the residuals for the dynamics and
complementarity terms respectively (these could be time or
state dependent). If one has perfect knowledge of the system
matrices, θ∗, then rdyn = rcomp = 0. In our previous work,
we presented a framework for the setting where we relied on
high model accuracy, e.g. rdyn ≈ rcomp ≈ 0. While (4) is
non-convex, we leverage a recent algorithm called Consensus
Complementarity Control (C3) to achieve real-time, albeit
subptimal, solutions (see [11] for details on C3).

In this work, we focus on the setting where we have access
to an imperfect physics-based model, e.g. θ∗ is inaccurate,
and where the error is significant enough to prevent task
completion. Our aim is to collect data online and adaptively
learn a residual (rdyn, rcomp) while simultaneously solving the
MPC problem, both at real-time rates. Our goal is that, over
time, our adaptive model accurately captures the behavior of
the true dynamics, and that u0 well-approximates the solution
of (4) with true dynamics. We highlight that we want to
achieve both goals at real-time rates.

V. PHYSICS-BASED LCS
This section describes the process of converting Anitescu’s

approach for simulating contact dynamics [36] into an
LCS approximation around a given nominal state-input pair
(x∗, u∗) → θ∗. We choose Anitescu’s formulation over other
approaches, such as the Stewart-Trinkle formulation [40],
because it is a convex contact model (i.e. F ∗ as in Section III-
C is positive semi-definite for any (x∗, u∗)) and our proposed
learning algorithm (discussed in Section VI) relies on this

Algorithm 1
Require: rcomp,B, ϵ, γ, ξ

1: Compute θ∗ for each data point and construct BA

2: Compute the gradient ∇rcompLϵ(BA, rcomp)
3: Update the residual rcomp via Adam [41]
4: return rcomp (updated residual parameter)

assumption. Next, we describe our physics based model
which is a discrete-time approximation of (1), (2):

qk+1 = qk +∆tvk+1,

vk+1 = vk +M−1

(
∆tBuk −∆tC(qk, vk) + Jc(qk)

Tλk

)
,

(5)
with the complementarity constraints:

0 ≤ λk ⊥ ET
t

∆t

(
ϕ+Jn(qk)(qk+1−qk)

)
+µJt(qk)vk+1 ≥ 0.

(6)
Here ϕ represents the distance between rigid body pairs, Jn,
Jt are contact Jacobians for normal and tangential directions,
the contact Jacobian is defined as Jc = ET

t Jn+µJt, µ repre-
sents the coefficient of friction and Et = blkdiag(e, . . . , e)
with e = [1, . . . , 1] ∈ R1×ne (where ne represents the
number of edges of the polyhedral approximation of the
friction cone).

Given state (x∗)T = [(q∗)T , (v∗)T ] and input u∗, we can
approximate (5) as:

qk+1 = qk +∆tvk+1,

vk+1 = vk +∆tJf
[
qTk vTk uTk

]T
+Dλk + dv,

(7)

where Jf = Jf (q
∗, v∗, u∗) is the Jacobian of f(q, v, u) =

M−1(q)Bu−M−1(q)C(q, v) evaluated at (q∗, v∗, u∗), dv =

f(q∗, v∗, u∗) − Jf
[
(q∗)T (v∗)T (u∗)T

]T
is a constant

vector and D = M−1(q∗)Jc(q
∗)T . Similarly the equation

(6) can be approximated as:

0 ≤ λk ⊥ 1

∆t
ET

t

(
ϕ(q∗) + Jn(q

∗)qk − Jn(q
∗)q∗

)
(8)

+ Jc(q
∗)vk+1 + ϵcλk ≥ 0.

We note that because simulation considers single-step pre-
dictions, and MPC requires multi-step predictions, (7)-(8)
differs slightly from the LCS presented in previous work
[36]. These equations can be written in the LCS format
(3) and represented as L(θ∗). We have also introduced a
regularizing term ϵcλk in (8) to ensure that F ∗ is positive
definite as Anitescu’s formulation produces a positive semi-
definite F ∗.

VI. ADAPTIVE MPC WITH RESIDUAL LEARNING

In this section, we describe our adaptive MPC framework
shown in Figure 2. First, we describe the residual learning
module (shown in red) in detail. Then we give details about
the interaction of the residual learning module with C3.

Standard residual learning [42] focuses on models:

xk+1 = f(xk, uk) + rdyn(xk, uk), (9)



where the prior model and the learned residual are combined
in an additive manner. If the prior f is an LCS (as in Section
V), (9) is equivalent to:

xk+1 = A∗xk +B∗uk +D∗λk + d∗ + rdyn(xk, uk),

0 ≤ λk ⊥ E∗xk + F ∗λk +H∗uk + c∗ ≥ 0,
(10)

and one can use state-of-the-art residual learning frameworks
[43], [44] to learn rdyn. This form of adaptation is well
studied, and not the focus of this paper. Furthermore, because
(10) does not adapt the hybrid structure encoded in the com-
plementarity constraints, it is doomed to be data inefficient
and will struggle to capture the effects of contact [15], [16].
Unlike in prior methods, our focus is on learning both the
hybrid boundary and the contact dynamics:

xk+1 = A∗xk +B∗uk +D∗λk + d∗,

0 ≤ λk ⊥ E∗xk + F ∗λk +H∗uk + c∗

+ rcomp(xk, uk, λk) ≥ 0,

(11)

where rcomp represents the model error in contact equation,
e.g. (8) and this effect implicitly appears in the dynamics
equation. More generally, one might try to simultaneously
identify residuals for both the continuous and discrete com-
ponents, e.g. rdyn and rcomp. While disambiguation of the
two can be done within this framework [45], it is difficult
in this minimal data regime. Furthermore, we believe that
accurate identification of contact events is key to achieving
dynamic contact-rich tasks, and thus focusing on the contact
residual is critical. This residual, denoted as rcomp, possesses
the ability to capture inaccuracies such as those in normal
distance, tangential friction directions and coefficients of
friction. Hence, we consider:

xk+1 = A∗xk +B∗uk +D∗λk + d∗,

0 ≤ λk ⊥ E∗xk + F ∗λk +H∗uk + c∗ + rcomp ≥ 0,
(12)

where we learn the vector rcomp adaptively at real-time rates
to compensate the error. We note that, as in traditional resid-
ual learning, our learned residual term rcomp might be time-
varying, and thus also capture state-dependent variations
in the complementarity constraints. Equation (12) consists
of physics-based model parameters θ∗, derived (Section
V) from our prior knowledge of the system and also the
residual vector rcomp that is learned by collecting data during
the experiment. We denote (12) as L(xk, uk, θ∗, rcomp) that
combines the prior model with the learned residual.

Once an experiment starts, we collect data of the form
B = {xk+1, xk, uk}nct+nb

k=nct
into our buffer where nct

represents the current time-step and nb is the number
of data points stored. For each (xk, uk), we also cal-
culate the corresponding LCS matrices θ∗k (consists of
A∗

k, B
∗
k , . . .)

1 via the method described in Section V and
define the buffer appended with those matrices as BA =
{xk+1, xk, uk, θ

∗
k}

nct+nb

k=nct
. Next, we introduce a variant of

the implicit loss function that was defined in [6]:

Lϵ(BA, rcomp) =

nct+nb∑
k=nct

lϵ(xk+1, xk, uk, θ
∗
k, rcomp),

1As in Section III-C, A∗
k = A(x∗, u∗) where (x∗, u∗) = (xk, uk).

Fig. 2. Key elements of the adaptive MPC framework. Given proprioception
and visual data, our method learns a residual multi-contact model at 20 Hz,
which we use for real-time control.

where the function lϵ(xk+1, xk, uk, θ
∗
k, rcomp) is defined as

lϵ(·) = min
λk≥0,ηk≥0

1

2
(D∗

kλk + z)TQd(D
∗
kλk + z)

+
1

ϵ

(
λTk ηk +

1

2γ

∣∣∣∣q + F ∗
kλk + rcomp − ηk

∣∣∣∣2),
where z = A∗

kxk + B∗
kuk + d∗k − xk+1 and q = E∗

kxk +
H∗

kuk + c∗k. Here, γ is a constant such that 0 < γ <
σmin

(
(F ∗

k )
T + F ∗

k

)
for all k where σmin(·) denotes the

smallest singular value. It is important to note that based
on our specific formulation using Anitescu’s method, all
F ∗
k are positive definite and we can always find a γ that

satisfies the given equality. Similarly, ϵ is a constant such that
ϵ > 0. Under these conditions, we can calculate the gradient
of the loss function with respect to the residual parameter
rcomp, i.e. ∇rcompLϵ(·) following our previous work [6]. This
approach requires solving a single quadratic program per
data point in the batch (hence is relatively fast). After
gradient calculations, residual parameters are updated with
a simple gradient step (via learning rate ξ > 0). Following
this discussion, Algorithm 1 summarizes how the proposed
learning method works.

Both our residual learning module and C3 run at real-time
rates (Figure 2). The MPC algorithm uses the latest residual
value rcomp, as well as the current state x∗ and computes
the optimal input u0 = C3(x∗,L(x∗, u∗, θ∗, rcomp)). Then,
the desired next state-contact force pair is computed as
(xd, λd) = L(x∗, u0, θ∗, rcomp). An impedance controller is
used to track the desired values [46], [47].

VII. EXAMPLES

A. Synthetic Example: Cart-pole with Soft Walls

We consider a classical cart-pole underactuated system
which has been augmented with two soft walls (Figure 3).
The pole can contact these walls, requiring contact-aware
control to stabilize the system (for further details, see [38]):

xk+1 = Axk +Buk +Dλk + d,

0 ≤ λk ⊥ Exk + Fλk + c ≥ 0,

where we have perfect knowledge of the parameters except
for c. We write c = ĉ+∆ϕ, where ĉ is our initial guess of



Fig. 3. A “contact event” refers to a situation where actual physical contact is occurring, while “contact prediction” pertains to instances where the model
anticipates contact, potentially inaccurately. Our method can produce meaningful gradients, even when there is no actual contact event (yellow region).
The only scenario in which a zero gradient is produced is when the model and data both agree that there is no contact (white region).

the parameter. For the purposes of illustration, we begin with
an initial error of ∆ϕ = [−.15, .15]. Notice that the model
error that is related to each contact (λk) has a different sign.
This initial model error induces both false positives and false
negatives in the model’s predictions of contact. In Figure 3,
it can be seen that our method successfully returns useful
gradient information in all of those scenarios. We highlight
that our approach is capable of adapting even when there
is no actual contact event (Figure 3). We also show that
our framework successfully stabilizes the system as well as
learning the true residual values (Figure 4).

B. Hardware Experiment: Adaptive Trajectory Tracking

Here, we show that our real-time adaptive MPC framework
can reliably be used for multi-contact manipulation tasks
that require high-speed reasoning about contact events. Our
goal is to roll a rigid ball along a circular trajectory using
a Franka Emika Panda Arm (Figure 1). We use PointGrey
cameras to perform vision-based estimation for the ball using
Hough transform [48] and utilize an impedance controller
[46], [47] to track high-level commands that our adaptive
MPC produces (Figure 2). Experiments are conducted on two
desktop computers, one for the adaptive MPC computation
and the other for vision tracking and impedance control. For
adaptive MPC, we simplify the arm as a point contact. For
full details please check Section VII of manuscript [11].

Fig. 4. Stabilization of the cart-pole system and convergence of residual.

In previous work, careful manual identification of model
parameters was required to achieve success [11]. For this
experiment, the actual radius of the ball is 5 mm smaller
than our parameter estimation. The state estimation for the
ball is noisy (vision-based, 80 Hz), and we do not have an
accurate estimation of many model parameters, such as the
coefficient of friction. As a result, MPC with this incorrect
model attempts to push the ball but fails to make contact.
Due to the stiff, hybrid nature of contact dynamics, MPC
is particularly sensitive to modeling errors that affect the
contact/no-contact transition.

Without adaptation, model-based control with C3 fails,
but our adaptive MPC framework successfully identifies the
contact residual and accomplishes the task. The residual
learning module (Algorithm 1, 20 Hz), in combination
with the C3 module (80 Hz), identifies the discrepancy
at real-time rates. In the supplementary video, it can be
observed that at the beginning the end-effector misses the
ball due to inaccurate radius estimation. The C3 module
then keeps trying to initiate contact. As motivated earlier,
the discrepancy between actual motion and predicted motion
creates a non-zero gradient and therefore the residual values
that correspond to end-effector ball contact pair gradually
increase (shown in Figure 6).

In the end, with the learned residual compensating for the
inaccurate model, our approach is able to make contact with
the ball, push the ball towards the correct direction to initiate
rolling, and roll the ball for 4 successive circles, successfully
accomplishing the task. Figure 6 shows the loss, Lϵ, as well
as the residual, rcomp, for this experiment. The residual for
the end-effector and ball contact shows convergence as the
rolling proceeds and the loss curve shows a decreasing trend,
proving the effectiveness of our method. We note that in this
experiment, the LCP violation rate is ϵ = 10−7, the terms in
Qd related to balls translational velocity are set to 105 (others
are set to zero), learning rate is ξ = 10−3, stiffness parameter
is γ = 10−2 and we have a batch data size of nb = 10. We
demonstrate the trajectories of the ball with respect to the
desired path in Figure 5. Moreover, with extensive tests, we
found that for this experiment, our method with the above-



Fig. 5. Rolling a rigid ball and fruits (left: ball, middle: orange, right: lime) starting with an inaccurate model.

mentioned parameter setting can adapt and compensate well
within around 10 pushing trials for model errors up to 8 mm.
For larger errors, we either need a more aggressive learning
rate or more data (pushing trials) to adapt.

C. Hardware Experiment: Objects of Non-smooth Surface

We repeat the previous hardware experiment (Section VII-
B) with slightly deformable objects that have non-smooth
surface geometries (Figure 1). Still, our goal is to roll the
fruit along the circular path. We do not have accurate initial
estimates of the geometry as our estimate of a fruit’s geome-
try is simply a sphere. For each experiment experiments, we
assign an approximate radius for the given fruit and set the
sphere radius in our prior model accordingly.

Due to the bulges and dents on the fruit’s surface, the
fruit can roll back even after a push in the correct direction.
We consider successful initiation of rolling to be when the

Fig. 6. Hardware Experiment: Residual evolution of end-effector and ball
contact pair, and loss curve of the learning process. The full experiment
lasts for 315 s. We highlight the adaptation process until loss and residual
converge.

fruit has moved for at least one quarter circle. MPC without
adaptation struggles with the roll back motion, gets stuck in
the beginning, and is only able to move the fruit back and
forth within a small region near the starting point. In contrast,
our method quickly adapts and starts making stronger pushes
to roll the fruit (as shown in the supplementary video). In
90% of the 20 experiments, our method successfully initiated
rolling and started tracking the circular path, while MPC
without adaptation was never successful (0%).

In addition, fruits tend to produce unpredictable motions
at times due to their non-smooth surface geometries, but our
method can adapt and accomplish the task. Our approach
has managed to track at least one circle for 70% of the trials
with orange and 50% of trials with lime (20 experiments
for each case). In Figure 5, we also report the long-term
tracking (4 successive circles) performance of our method
with multiple different fruits. The videos of experiments are
in the supplementary material.

VIII. CONCLUSION

We presented an adaptive model predictive control frame-
work for multi-contact systems. The approach uses online
residual updates and adaptively compensates model errors
and uncertainties at real-time rates. The effectiveness of the
method has been shown on multiple hardware experiments,
including high-dimensional manipulation problems that in-
clude objects with non-smooth surface geometries (fruits).

We have further shown examples where pure model-based
control fails but our adaptive strategy leads to success. We
have also demonstrated that our learning module is capable
of learning the contact model accurately even without actual
contact interactions. Also, our parameter estimation can
converge to the true parameter values at real-time rates.

We are interested in exploring a wider range of residual
models in the future. For example, we might extend our
results to include state-dependent terms, or simultaneously
learn the non-contact and contact residuals. Integrating our
framework with tactile sensors is also an interesting future
direction which could speed up our learning process as well
as increase the performance of the low-level controller. [38]
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