
Proceedings of Machine Learning Research vol 168:1–13, 2022 4th Annual Conference on Learning for Dynamics and Control

Learning Linear Complementarity Systems

Wanxin Jin JINWX@SEAS.UPENN.EDU

Alp Aydinoglu ALPAYD@SEAS.UPENN.EDU

Mathew Halm MHALM@SEAS.UPENN.EDU

Michael Posa POSA@SEAS.UPENN.EDU

University of Pennsylvania, Philadelphia, PA 19104, USA

Editors: R. Firoozi, N. Mehr, E. Yel, R. Antonova, J. Bohg, M. Schwager, M. Kochenderfer

Abstract
This paper investigates the learning, or system identification, of a class of piecewise-affine dynam-
ical systems known as linear complementarity systems (LCSs). We propose a violation-based loss
which enables efficient learning of the LCS parameterization, without prior knowledge of the hy-
brid mode boundaries, using gradient-based methods. The proposed violation-based loss incorpo-
rates both dynamics prediction loss and a novel complementarity - violation loss. We show several
properties attained by this loss formulation, including its differentiability, the efficient computation
of first- and second-order derivatives, and its relationship to the traditional prediction loss, which
strictly enforces complementarity. We apply this violation-based loss formulation to learn LCSs
with tens of thousands of (potentially stiff) hybrid modes. The results demonstrate a state-of-the-art
ability to identify piecewise-affine dynamics, outperforming the clustering-based piecewise-affine
regression methods and the methods which must differentiate through non-smooth linear comple-
mentarity constraints.
Keywords: linear complementarity problems, piece-wise affine systems, system identification

1. Introduction

Many physical systems of interest are well captured by multi-modal or hybrid representations.
For example, robotics problems which treat contact with the environment (Stewart and Trinkle,
2000; Brogliato, 1999), optimal control problems (Bemporad et al., 2000), and control of networks
(Heemels et al., 2002), all exhibit switching or hybrid properties.

In this work, we are interested in system identification/model learning of multi-modal systems.
We focus on piecewise-affine (PWA) models as they can sufficiently describe the multi-modal na-
ture of dynamics due to the approximation properties of affine functions (Breiman, 1993; Lin and
Unbehauen, 1992) but are tractable enough for control tasks due to their simple (affine) structure
over polyhedral regions (Bemporad and Morari, 1999). Even though PWA models are widely used,
it is well-known that PWA regression is NP-hard in general (see (Lauer, 2015) for a detailed analy-
sis), because it requires simultaneous classification of the data points into modes and the regression
of a submodel for each mode.

In this paper, we consider PWA models in the context of linear complementarity systems (LCSs)
(Heemels et al., 2000). We focus on a subclass of LCS models (with P-matrix assumption) that are
equivalent to continuous piecewise affine models (Heemels et al., 2001; Camlibel et al., 2007).
LCS models are efficient representations of PWA models and an LCS has the ability to repre-
sent/approximate a system with large number of hybrid modes compactly, with only few com-
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plementarity variables. In some cases, an LCS with nλ complementarity variables is equivalent to a
PWA model with 2nλ modes. Many robotics problems that involve contact can be efficiently locally
approximated via LCS models, e.g., we have exploited the LCS representation to enable contact-
aware (Aydinoglu et al., 2021) and real-time control of robotic tasks (Aydinoglu and Posa, 2022).
In this work, we propose an approach that learns an LCS from state-input data of a hybrid system,
which does not contain any prespecified number of modes. The approach is able to identify LCS
models by proposing an implicit loss function.

1.1. Related Work

Many successful approaches in identifying piecewise models have been proposed over the years.
See the survey paper (Paoletti et al., 2007) for a detailed overview. Mixed integer formulations that
mainly focus on hinging hyperplanes and piecewise affine Wiener models have been proposed (Roll
et al., 2004) but as the number of integer variables scale with number of data points such approaches
are only applicable in small data regime. On the contrary, researchers have also focused on convex
formulations where first they estimate a set of submodels and then select few of them that explains
the data (Elhamifar et al., 2014), but the approach relies on restricting the parameter space and can
be overly conservative. Many alternate approaches that enable PWA system identification from data
exist such as (Ferrari-Trecate et al., 2003; Nakada et al., 2005; Bemporad et al., 2005; Hartmann
et al., 2015; Du et al., 2020).

Researchers also suggested recursive PWA identification algorithms (Bako et al., 2011; Breschi
et al., 2016). Most of the above methods are clustering-based where a predetermined number of
models are identified and each training data point is associated with one of the models. Then, linear
separation techniques are used to compute the polyhedral partitions. This iterative nature can lead to
overly conservative, suboptimal solutions. Approaches that simultaneously cluster, PWL-separate
and fit (Bemporad, 2021) rely heavily on initial assignment of data points to clusters. Unlike our
approach, none of the methods above have been tested on identifying PWA functions with thousands
of partitions, and most of them have been only tested on functions with less than 30 pieces.

For more expressive models such as deep neural networks, researchers have explored the posi-
tive effect of imposing structured knowledge to capture the multi-modality (de Avila Belbute-Peres
et al., 2018; Li et al., 2019; Battaglia et al., 2016). Particularly in robotics, special emphasis has
been on multi-body systems with frictional contact (Geilinger et al., 2020) and it has been shown
that imposing structure leads to accurate, sample efficient strategies (Pfrommer et al., 2020). Similar
work has demonstrated the difficulty inherent in learning non-smooth dynamical systems without
exploiting particular structures (Parmar et al., 2021). Researchers have also explored learning mod-
els as functionals of signed-distance fields (Driess et al., 2021). These methods lead to rich, accurate
but complex models that are not amenable to techniques of model-based control. On the contrary,
here our focus is on simple models such as PWA models that enable model-based control while
sufficiently capturing the hybrid dynamics.

Notation: Regular and bold lowercase letters represent scalar and vectors, respectively. Upper-
case letters represent matrices. For vector v ∈ Rn, v[i] is the i-th entry, i = 1, 2, ..., n. diag(v) is to
diagonalize a vector v into a matrix. vec (A) denotes the vectorlization of a matrix A into a column
vector; ⊗ is the Kronecker product. In denotes the identity matrix with size of n×n. A � 0 means
symmetric A is positive definite.
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2. Problem Statement

Consider the following discrete-time linear complementarity system (LCS), where the state evolu-
tion is governed by a linear dynamics in (1a) and a linear complementarity problem (LCP) in (1b):

xt+1 = Axt +But + Cλt + d, (1a)

0 ≤ λt ⊥ Dxt + Eut + Fλt + c ≥ 0. (1b)

Here, xt ∈ Rnx and ut ∈ Rnu are the system state and input at time step t, respectively; and
λt ∈ Rr is the complementarity variable at time step t. A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rnx×nλ ,
d ∈ Rnx , D ∈ Rnλ×nx , E ∈ Rnλ×nu , F ∈ Rnλ×nλ , and c ∈ Rnλ are system matrix/vector
parameters. At (xt,ut), λt is solved from the LCP in (1b), written as

λt ∈ LCP(F, qt) with qt := Dxt + Eut + c. (2)

It is well-known that LCP(F, qt) has a unique solution λt for every qt if and only if F is P -matrix
(Cottle et al., 2009). We will discuss this in the next section.

In this paper, we consider to learn a LCS from a dataset D = {(x∗t ,u∗t ,x∗t+1)}Nt=1. Specifically,
we aim to find the system parameter

θ = {A,B,C,d, D,E, F, c} (3)

by minimizing a loss L(θ,D). Thus, the problem of interest in this paper is to solve

min
θ∈Θ

L(θ,D) +R(θ). (4)

Here, R(θ) can be any regularization term imposed on θ which will be discussed later.

3. LCP and Prediction-based Formulation

This section will discuss the solution to LCP in (2), and then describe a prediction-based loss for-
mulation L(θ,D) for (4). To start, we make the following assumption on F in (2).

Assumption 1 F ∈ Rnλ×nλ satisfies F + FT � 0.

The set of F satisfying Assumption 1 contains all positive matrices of feasible dimension and any
asymmetric matrices with definite-positive symmetric part. In robotics applications, Assumption 1
has been widely used in soft contact dynamics such as (Aydinoglu et al., 2021). While restrictive
to model standard directional dynamics (Stewart and Trinkle, 2000), this assumption has been sim-
ilarly used in quite a few works (Anitescu and Hart, 2004; Castro et al., 2021) for solving frictional
contact. Any F satisfying Assumption 1 can be shown to be a P -matrix (Tsatsomeros, 2002), thus
leading to the existence and uniqueness of λt. In fact, under Assumption 1, λt = LCP(F, qt) can
be solved by the following convex optimization due to the fact λTFλ = 1

2λ
T(F + FT)λ,

λt = arg min
λ

1

2
λT(F + FT)λ+ λTqt s.t. Fλ+ qt ≥ 0, λ ≥ 0, (5)
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With the above assumption, one natural loss in (4) can be

Lpred(θ,D)=
N∑
t=1

1

2
‖xθt+1 − x∗t+1‖2 with

xθt+1 = Ax∗t +Bu∗t + Cλ∗t + d,

λ∗t = LCP(F,Dx∗t + Eu∗t + c).
(6)

Here, xθt+1 is the predicted next state, implicitly depending on θ. We call (6) prediction-based loss,
as it evaluates the difference between the predicted xθt+1 and observed x∗t+1. One can minimize (6)
via any gradient-based method by differentiating through LCP (de Avila Belbute-Peres et al., 2018).
This requires differentiblity of a LCP, given below.

Lemma 1 With Assumption 1, λ∗t = LCP(F,Dx∗t + Eu∗t + c) is differentiable with respect to
(F,D,E, c), if the following strict complementarity holds at λ∗t : λ

∗
t [i] > 0 or (Fλ∗t + Dx∗t +

Eu∗t + c)[i] > 0, ∀i = 1, 2, ..., nλ.

A sketch of a proof of Lemma 1 is given in Appendix. The above (6) will serve as a benchmark
in the following method development.

4. Proposed Method for Learning LCS

This section will develop a new method for learning LCS. As we will show this section and the
experiments in next section, the proposed method attains several advantages over the prediction-
based loss (6) both in theoretical property and implementation.

4.1. Violation-based Loss

To start, we give the following lemma stating an equivalence of a LCP.

Lemma 2 Given any qt ∈ Rnλ and F satisfying Assumption 1, solving λt = LCP(F, qt) is the
equivalent to solving the following strongly-convex quadratic program:

(λt,φt) = arg min
λ≥0, φ≥0

λTφ+
1

2γ
‖Fλ+ qt − φ‖2, (7)

with any constant 0 < γ < σmin(FT+F ) ( σmin(·) denotes the smallest singular value).

Proof Define f(λ,φ) := λTφ + 1
γ ‖Fλ + qt − φ‖2. By non-negativity, it is obvious that λt =

LCP(F, qt) and φt = Fλt + qt is a global solution to f(λ,φ). Further, we need to show that
f(λ,φ) is strongly convex, because by strong convexity (7) has a unique global solution, which is
(λt,φt). To do so, we compute the Hessian of f(λ,φ),

∇2f =

[
1
γF

TF Inλ − 1
γF

T

Inλ − 1
γF

1
γ Inλ

]
. (8)

Due to Schur complement, ∇2f � 0 iff 1
γ Inλ � 0 and 1

γF
TF − (Inλ − 1

γF
T)( 1γ Inλ)−1(Inλ −

1
γF ) � 0. Since γ > 0, and we only need to show 1

γF
TF − (Inλ − 1

γF
T)( 1γ Inλ)−1(Inλ − 1

γF ) =

FT + F − γInλ � 0. This is true because γ<σmin(FT+F ). This completes the proof.
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In (7), we have introduced a proxy variable φ ≥ 0 to represent LCP constraint Fλ + qt ≥ 0.
Compared to other equivalences of LCP, such as (5), we emphasize the following benefits of (7) with
the introduced proxy variableφ. First, (7) now only has box constraints which are independent from
θ; this will facilitate the learning process because one does not need to explicitly track the active and
inactive constraints and differentiate through constraints (which usually leads to numerical difficulty
as shown in (Jin et al., 2021)). Second, compared to (5), (7) turns hard constraint Fλ + qt ≥ 0
into a soft penalty; this may smooth the landscape of the proposed loss, facilitating the optimization
over θ. With Lemma 2, we are now in a position to propose the following loss for learning LCS,

Lε(θ,D) =
∑N

t=1
lε(θ,x

∗
t ,u

∗
t ,x
∗
t+1) with (9a)

lε(θ,x
∗
t ,u

∗
t ,x
∗
t+1) = min

λt≥0, φt≥0

1

2
‖Ax∗t +Bu∗t + Cλt + d− x∗t+1‖2+

1

ε

(
λTt φt +

1

2γ
‖Dx∗t + Eu∗t + Fλt + c− φ‖2

)
,

(9b)

with ε > 0. In Lε(θ,D), the loss lε(θ,x∗t ,u
∗
t ,x
∗
t+1) on each data point (x∗t ,u

∗
t ,x
∗
t+1) includes two

parts: the violation of dynamics (1a) and the violation of the LCP, as stated in Lemma 2. We have
introduced ε > 0 to control the weight of penalties on the two violations. (9) is to minimize data’s
violation to both dynamics (1a) and complementarity constraints (1b), thus we name it violation-
based loss. In what follows, we will show that the violation-based loss attains some good properties
both for analysis and algorithmic implementation, in comparison with prediction-based loss (6).

4.2. Properties of Violation-based Loss

The first lemma shows that the violation-based loss (9) is a strongly-convex quadratic program w.r.t.
(λ,φ) and allows much easier computation of the gradient w.r.t. θ.

Lemma 3 Given F satisfying Assumption 1 and any constant 0 < γ < σmin(FT + F ),

(a) (9b) is strongly-convex quadratic program with respect to (λt,φt) for any ε > 0.

(b) Let (λε,θt ,φε,θt ) be the solution to (9b). Lε(θ,D) is differentiable with respect to θ if the strict
complementarity holds for both λt≥0 andφt≥0 at (λε,θt ,φε,θt ), t = 1, 2, ..., N . The gradient
is given by

∇ALε =

N∑
t=1

edyn
t x∗t

T, ∇BLε =

N∑
t=1

edyn
t u∗t

T, ∇CLε =

N∑
t=1

edyn
t λ∗,θt

T
, ∇dLε =

N∑
t=1

edyn
t ,

∇DLε =

N∑
t=1

elcp
t x
∗
t
T, ∇ELε =

N∑
t=1

elcp
t u
∗
t
T, ∇FLε =

N∑
t=1

elcp
t λ

ε,θ
t

T
, ∇cLε =

N∑
t=1

elcp
t ,

(10)

with edyn
t :=Ax∗t+Bu

∗
t+Cλ

ε,θ
t +d−x∗t+1 and elcp

t := 1
εγ (Dx∗t+Eu

∗
t+Fλ

ε,θ
t +c−φε,θt ).

Proof Claim (a) in Lemma 3 can be easily proved by verifying that the Hessian of the objective
function in (9b) is positive definite.

In Claim (b), the differentiability of Lε(θ,D) depends on the differentiability of (λε,θt ,φε,θt )

with respect to θ, t = 1, 2, ..., N . In fact, (λε,θt ,φε,θt ) is differentiable with respect to θ if the strict
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complementarity condition holds for constrained optimization in (9b). This is a direct result from
the well-known sensitivity analysis theory (see Theorem 2.1 in (Fiacco, 1976)). The gradient of
Lε(θ,D) can be obtained directly applying the envelope theorem (Afriat, 1971). For example, the
gradient of lε(θ,x∗t ,u

∗
t ,x
∗
t+1) with respect to matrix A is

∇vec (A)lε =

(
dlε

d vec (A)

)T

=
(

(e
dyn
t )T

(
x∗t

T ⊗ Inx
))T

= (x∗t ⊗ Inx) e
dyn
t = vec(e

dyn
t x∗t

T).

Writing the above into the matrix form leads to ∇ALε =
∑N

t=1 e
dyn
t (x∗t )

T. Similar derivations also
apply to∇BLε, ∇BLε,∇CLε,∇DLε,∇ELε, and∇FLε. This completes the proof.

In addition to the strongly-convex quadratic problem with bound constraints in (9b), Lemma
3 state that Lε(θ,D) allows for much simpler differentiation, as stated in claim (b). Note that
differentiation of Lε(θ,D) in (10) does not involve any matrix inverse. This is in stark contrast with
the prediction-based loss (6), whose differentiation (de Avila Belbute-Peres et al., 2018) is based
on the implicit function theorem (Rudin et al., 1976) and requires the inverse of Jacobian matrix of
KKT equations (which is computationally expensive).

Another implication of Lemma 3 is that the Lipschitz constant of Lε(θ,D) with respect to
the LCP matrices (D,E, F, c) can be controlled by the choice of ε. Specifically, the second line
of (10) shows that one can always choose a large ε to produce a small Lipschitz constant of the
loss landscape with respect to (D,E, F, c). This property can facilitate the learning process by
controlling the smoothness of the loss landscape, and also helpful in the generalization of learned
results as analyzed in a concurrent work (Bianchini et al., 2022). However, we also need to note
that the large choice of ε could lead to the bias learning results, as shown in the later examples.

We further have the following result, which states the second-order derivative of Lε(θ,D).

Lemma 4 Given F satisfying Assumption 1 and any constant 0 < γ < σmin(FT + F ), suppose
that the differentiability in Lemma 3 holds. Then,

∇2
θ Lε =

N∑
t=1

(
∂2Lε
∂θ∂θ

− ∂2Lε
∂θ∂zεt

(
diag

(
∂Lε
∂zεt

)
+ diag(zεt )

∂2Lε
∂zεt∂z

ε
t

)−1
diag(zt)

∂2Lε
∂zεt∂θ

)
, (11)

with zεt = (λε,θt ,φε,θt ) being the solution to (9b).

Proof To prove Lemma 4, we need first to show
(

diag
(
∂Lε
∂zεt

)
+ diag(zεt )

∂2Lε
∂zεt∂z

ε
t

)
is invertible.

We only provide the sketch of the proof due to page limits. First, the KKT conditions at zεt =
(λε,θt ,φε,θt ) can be written as the following LCP

0 ≤
(
∂Lε
∂zεt

)′
⊥ zεt ≥ 0. (12)

The strict complementarity (differentiblity of Lε) stated in claim (b) of Lemma 3 is equivalent to
say the above LCP in (12) is strictly complementarity. By claim (a) in Lemma 3, we have known
∂2Lε
∂zεt∂z

ε
t
� 0, which is a P-matrix. Following the same proof in Appendix 6, one can show that(

diag
(
∂Lε
∂zεt

)
+ diag(zεt )

∂2Lε
∂zεt∂z

ε
t

)
is invertible.
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Now we prove Lemma 4. By applying envelop theorem (Afriat, 1971) to lε(θ,x∗t ,u
∗
t ,x
∗
t+1) in

(9b), one can write∇θLε =
(
∂Lε
∂θ

)T
. When taking the second-order derivative, one has

∇2
θLε =

N∑
t=1

(
∂2Lε
∂θ∂θ

+
∂2Lε
∂θ∂zεt

dzεt
dθ

)
. (13)

Here, by differentiating through the LCP in (12), one can obtain

∂zεt
∂θ

= −
(

diag
(
∂Lε
∂zεt

)
+ diag(zεt )

∂2Lε
∂zεt∂z

ε
t

)−1
diag(zεt )

∂2Lε
∂zεt∂θ

. (14)

Plugging the above to (13) leads to (11).

Lemma 4 states that first, Hessian of the violation-based loss with respect to the system parame-
ter θ can also be analytically obtained. Such Hessian is important both for algorithmic implementa-
tion and theoretical analysis. Arithmetically, the above Hessian can be used to develop second-order
methods for optimizing (4). Analytically, the Hessian can be used to analyze the convexity of the
problem. Specifically, if (9b) is convex jointly with respect to (λt,φt) and θ, one can show that
Lε(θ,D) will be convex (also see Section 3.2.5 in (Boyd et al., 2004)). This holds for all other
system matrices/vectors except matrices C and F , which imposes challenges for learning process.

Finally, we give the following result showing the violation-based loss Lε(θ,D) in (9) can be
controlled to approximate the prediction-based loss Lpred(θ,D) (6) in terms of both the loss itself
and its differentiability.

Lemma 5 Given F satisfying Assumption 1 and any constant 0 < γ < σmin(FT +F ), there exists
∆ > 0 such that for any ε ∈ (0,∆],

(a) Lε(θ,D) is differentiable (Lemma 3) if Lpred(θ,D) is differentiable (Lemma 1).

(b) Lε(θ,D)→ Lpred(θ,D) as ε→ 0.

Proof We here only provide the sketch for the proof of the above lemma due to page limits. In the
proof of claim (a), first, we can show that the strict complementarity in Lemma (1) is equivalently
to say the strict complementarity for (7) in Lemma 2, i.e., the following LCP

0 ≤
(
∂f

∂zt

)′
⊥ zt ≥ 0 with zt := (λt,φt) and f(λ,φ) := λTφ+

1

γ
‖Fλ+ qt − φ‖2 (15)

is strict complementarity. Further, one can show that (12) will converge to (15) as ε → 0. Since
the strict complementarity preserves as ε falls in a small neighborhood around 0 (this is similar to
the proof of Theorem 2.1 in (Fiacco, 1976)), one can say Lε(θ,D) is differentiable with any small
ε > 0 in the neighborhood around 0. The proof of claim (b) can directly follow the standard proof
in penalty-based optimization (Fiacco and McCormick, 1990).

The above lemma has shown that the proposed violation-based Lε(θ,D) and prediction-based
loss Lpred(θ,D) are essentially related to each other in term of function itself and its differentiability
with respect to θ. Specifically, the differentiability of prediction-based loss Lpred(θ,D) in Lemma
1, i.e., strict complementarity for the LCP, always implies the differentiability of the violation-based
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loss Lε(θ,D) for any choice of small ε > 0. Second, by controlling ε → 0, the violation-based
formulation approximates to prediction-based one.

In light of all properties stated above, we now summarize the advantage of the proposed violation-
based loss Lε(θ,D) over the prediction-based loss Lpred(θ,D). First, Lε(θ,D) allows for more
efficient computation of gradient, while differentiation of Lpred(θ,D) always requires the matrix
inverse. Second, Lε(θ,D) permits analytical Hessian information, which is important both for the
algorithmic implementation and theoretical analysis, such Hessian matrix is difficult to obtain for
Lpred(θ,D). Finally, the violation-based loss Lε(θ,D) is flexible to approximate Lpred(θ,D) in
terms of both the function itself and its differentiability with respect to θ, by controlling ε.

5. Examples

In implementation, one way to enforce Assumption 1 is using re-parameterization tricks: by re-
parameterizing F = GGT +H −HT with any G ∈ Rnλ×nλ and H ∈ Rnλ×nλ , one can easily see
F+FT � 0. Also note that F andC in (1) are permutation- and scaling- invariant with respect toD:
if (x∗t ,u

∗
t ,x
∗
t+1) satisfies (1) with hidden λ∗t , it also satisfies the following LCS with λ̃∗t = PSλt.

x∗t+1 = Ax∗t +Bu∗t + CS−1PTλ̃∗t + d

0 ≤ λ̃∗t ⊥ PSDxt + PSEut + PSFS−1PTλ̃∗t + c ≥ 0
(16)

for any permutation matrix P ∈ Rnλ×nλ and any diagonal matrix S ∈ Rnλ×nλ with positive entries.
To mitigate this ambiguity, we add a regularizing cost R(θ) = ω‖C‖2F , where ‖·‖F is the matrix
Frobenius norm and ω is the weighting parameter. We set ω = 10−5 in our following experiments.

We randomly define a ground-truth LCS with θ∗, where all parameters are selected from a
uniform distribution in range [−1, 1]. To generate training data D = {(x∗t ,u∗t ,x∗t+1)}

Ntrain
t=1 , we

sample x∗t and u∗t from uniform distributions over [−10, 10] and [−5, 5], respectively, and then
solve x∗t+1 based on θ∗. We also add zero-mean Gaussian noise with standard deviation σ=10−2

to D. We generate similar, but noiseless, testing data T = {(x̄t, ūt, x̄t+1)}Ntest
t=1 . To evaluate the

learned LCS on T , we define the following mean relative prediction error,

etest =

∑Ntest
t=1 ‖xθt+1 − x̄t+1‖2∑Ntest

t=1 ‖x̄t+1‖2
, (17)

with xθt the state predicted by the learned LCS at (x̄t, ūt). The size of T is Ntest=1000.
The following simulations evaluate different aspects of the proposed violation-based learning

formulation (9), in comparison with the prediction-based learning formulation (6) and a state-of-the-
art clustering-based PWA regression method (Bemporad, 2021). Each training case includes a total
of 30 trials (otherwise stated), and each trial uses a random ground-truth LCS to generate D and T
and randomly initializes θ. The training uses the Adam algorithm (Kingma and Ba, 2014) with mini-
batch size 100 and learning rate 10−3 (other Adam parameters: β1 = 0.9, β2 = 0.9, ε = 10−6). Be-
cause the data is generated from random ground-truth LCS systems, and some systems may be easier
to identify than others, we expect fairly high variance of the results. The implementation code of
the following examples can be found at https://github.com/DAIRLab/Learning-LCS.
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5.1. Results and Analysis

Comparisons between the proposed violation-based formulation (9) and the prediction-based one
(6) are shown in Fig. 1(a)-1(d). Fig. 1(e) shows for the violation-based formulation, how different ε
in (9b) impacts the final training LCP violation loss

(
λTt φt + 1

2γ ‖Dx
∗
t + Eu∗t + Fλt + c− φ‖2

)
and dynamics loss ‖Ax∗t +Bu∗t +Cλt + d− x∗t+1‖2. Fig. 1(f ) compares the proposed violation-
based method with PARC (Bemporad, 2021), a state-of-the-art PWA regression method based on
clustering. In summary of all evaluations, one can conclude that the proposed violation-based learn-
ing outperforms the prediction-based method, when handling high numbers of hybrid modes, e.g.,
16k modes at nλ = 20 in Fig. 1(a); dealing with high-dimension systems, e.g., nx = 128 in Fig.
1(b); and identifying high-stiffness systems in Fig. 1(c). Although Fig. 1(e) suggests a smaller ε
leads to smaller LCP violation in training, Fig. 1(d) shows that the prediction performance of the
learned model is largely not influenced by any further smaller ε. Thus, it could be not difficult to
find a reasonable small ε in the violation-based method for both benign training loss landscape and
good prediction performance. Fig. 1(f ) shows that both the clustering-based regression (Bemporad,
2021) and the proposed violation-based method achieve comparable prediction accuracy, but the
proposed method demonstrates significant efficiency for handling large number of hybrid modes.
Details for each evaluations are given below.

(a) Varying nλ (b) Varying nx (c) Varying σmin(F + FT)

(d) Varying ε (e) Training violation losses in
(9b) given different ε

(f ) Timeout (≥2h) for PARC at
2021 modes

Figure 1: Evaluations of the violation-based learning (9). Error bars indicate the standard errors.

In Fig. 1(a), we vary the number of complementarity constraints, i.e., the dimension of com-
plementarity variable, nλ, with fixed nx=10 and nu=4. D has the size of Ntrain = 50k, and
σmin(F+FT) = 1. Note that the maximum achievable number of hybrid modes in D depends on
both nλ and nx, and is 2nλ if nx = nλ. In our case, at nλ = 20, D contains around 16k modes. In
our violation-based loss formulation (9), we fix γ = 10−2 and ε = 10−4.
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In Fig. 1(b), we vary system state dimension nx with fixed nλ = 10 and nu = 4. Here, each
learning case includes 15 trials, and other settings follow the ones in Fig. 1(a). Fig. 1(c) varies
the system stiffness indicated by σmin(F+FT), i.e., smaller σmin(F+FT) means a stiffer dynamics
(Aydinoglu et al., 2021). Here, nx=8, nu=2, nλ=10, and others follow the ones in Fig. 1(a).

Fig. 1(e) shows how varying εwill impact the final training loss of the dynamics prediction term
and LPC violation term in (9b). Here, nx=4, nλ=4, nu=2, Ntrain=5k, and other settings follow the
ones in Fig. 1(a). In the same settings, Fig. 1(d) shows the prediction performance of the learned
model, in comparison with the model learned by prediction-based method.

In Fig. 1(f ), both the violation-based method and PARC (Bemporad, 2021) are given the same
datasets with different number of hybrid modes (generated ground-truth LCS with different nλ,
fixed nx=4, nλ=4, nu=2, other settings follow the ones in Fig. 1(a)). The upper panel compares
the prediction error of the learned models using both methods, and bottom panel shows the training
time (until convergence) for both methods.

6. Conclusion

We have proposed a violation-based loss formulation which enables to learn a LCS using gradient-
based methods. The violation-based loss is a sum of dynamics prediction loss and a novel comple-
mentarity violation loss. We have shown several some properties of new formulation. The numerical
results demonstrate a state-of-the-art ability to identify piecewise-affine dynamics, outperforming
the state-of-the-art clustering-based regression and the methods which must differentiate through
non-smooth linear complementarity problems.

Appendix: Proof of Lemma 1

We first prove if λ∗t = LCP(F,Dx∗t + Eu∗t + c) is the strictly complementarity, then matrix
St := diag(Dx∗t + Eu∗t + Fλ∗t + c) + diag(λ∗t )F is invertible. We prove this by contradiction.
Suppose St is singular, and there exists a non-zero v ∈ Rnλ s.t. STt v = 0. Since F satisfying As-
sumption 1 is the P-matrix, so is FT. Consider the two cases. If diag(λ∗t )v = 0, thus diag(Dx∗t +
Eu∗t + Fλ∗t + c)v = 0. There must exist i ∈ {1, ..., nλ} such that λ∗t [i] = 0 and v[i] 6= 0. By
the strict complementarity, (Dx∗t +Eu∗t + Fλ∗t + c)[i] · v[i] 6= 0, which contradicts diag(Dx∗t +
Eu∗t + Fλ∗t + c)v = 0. If diag(λ∗t )v 6= 0, we have FT diag(λ∗t )v = −diag(Dx∗t + Eu∗t +
Fλ∗t +c)v. Then, for all i ∈ {1, 2, ..., nλ}, (diag(λ∗t )v) [i] ·

(
FT diag(λ∗t )v

)
[i] = (diag(λ∗t )v) [i] ·

(−diag(Dx∗t + Eu∗t + Fλ∗t + c)v) [i] = 0. In fact, since FT is a P-matrix, the above result con-
tradicts with the reverse-sign property of P-matrix (see Theorem 3.3.4 in (Cottle et al., 2009)).
Combine the above two cases, we conclude that St is non-singular.

Next, we prove Lemma 1. Define g(λt, D,E, F, c) = diag(λt) (Dx∗t + Eu∗t + Fλt + c) =
0. It is obvious that λ∗t = LCP(F,Dx∗t + Eu∗t + c) satisfies the above equation. Next, we take
the Jacobian Matrix of g(λt, D,E, F, c) with respect to λt evaluated at λ∗, leading to ∂g

∂λt
|λ∗
t

=
diag(Dx∗t +Eu∗t +Fλ∗t + c) + diag(λ∗t )F = St. Since St is invertible due to the previous proof,
by applying the implicit function theorem (Rudin et al., 1976), one can reach the differentiability in
Lemma 1. This completes the proof. �
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