
1

Task-Driven Hybrid Model Reduction for Dexterous
Manipulation

Wanxin Jin and Michael Posa

Abstract—In contact-rich tasks, like dexterous manipulation,
the hybrid nature of making and breaking contact creates
challenges for model representation and control. For example,
choosing and sequencing contact locations for in-hand manip-
ulation, where there are thousands of potential hybrid modes,
is not generally tractable. In this paper, we are inspired by
the observation that far fewer modes are actually necessary to
accomplish many tasks. Building on our prior work learning
hybrid models, represented as linear complementarity systems,
we find a reduced-order hybrid model requiring only a limited
number of task-relevant modes. This simplified representation,
in combination with model predictive control, enables real-
time control yet is sufficient for achieving high performance.
We demonstrate the proposed method first on synthetic hybrid
systems, reducing the mode count by multiple orders of mag-
nitude while achieving task performance loss of less than 5%.
We also apply the proposed method to a three-fingered robotic
hand manipulating a previously unknown object. With no prior
knowledge, we achieve state-of-the-art closed-loop performance
within a few minutes of online learning, by collecting only a few
thousand environment samples.

Index Terms—hybrid control systems, model reduction, dex-
terous manipulation, model-based reinforcement learning, model
predictive control (MPC).

I. INTRODUCTION

Many robotic tasks, like legged locomotion or dexterous
manipulation, involve a robot frequently making and breaking
contact with the physical environment or/and objects. The rich-
contact behavior makes the robotic system multi-modular and
hybrid, characterized by a set of discrete contact modes and
continuous physical dynamics within each mode.

The hybrid nature of contact-rich robotic systems poses
great challenges in their representation and control. For data-
driven modeling, recent results have demonstrated that stan-
dard deep learning networks struggle to train on and represent
stiffness and multi-modality [1], [2], motivating the learning
frameworks explicitly designed to capture hybrid dynamics
[3], [4]. Similar challenges exist in planning and control of
contact-rich systems, where algorithms must jointly reason
over a combinatoric number of discrete contact choices and
continuous inputs of physical actuation. This process will
quickly become intractable as the number of potential hybrid
modes and planning depth grow. The above two aspects
become even more critical for real-time closed-loop control
of contact-rich robotic systems, where a compromise between

Wanxin Jin is with the School for Engineering of Matter, Transport, and
Energy at Arizona State University, Tempe, AZ 85287, and Michael Posa
is with the General Robotics, Automation, Sensing and Perception (GRASP)
Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA. Email:
wanxin.jin@asu.edu, posa@seas.upenn.edu

computational tractability and task performance has to be
made [5].

Towards a goal of real-time planning and control of contact-
rich manipulation with tens of thousands of modes, we hy-
pothesize that identifying and utilizing a full hybrid dynamics
model is almost certainly unnecessary. Instead, one might ask:

Can a far simpler model, with only a few task-relevant
hybrid modes, enable the high performance and real-time
control for contact-rich manipulation?
Here, we propose to answer the question in the affirmative by
building upon recent progress in hybrid representation learning
[4] and real-time contact-rich planning and control [6], [7].

If one observes a multi-finger robot manipulating a cube for
a reorientation task, the task-critical contact interactions might
be dominated by a few modes: for example, all fingertips stick
to the cube, or one fingertip pushing or sliding while others
stick to the cube. While other modes might occur, they do so
briefly or in a functionally similar manner to another mode.
This observation inspires us to study the problem of learning
task-driven reduced-order hybrid models. On the technical
side, we have seen the recent progress in learning hybrid
representations [3], [4]. Particularly in our prior work [4], we
have developed an efficient method to learn a piecewise affine
system, represented as a linear complementarity system (LCS)
[detailed in Section III], with tens of thousands of hybrid
modes. We also note recent progress towards fast control
and planning of contact-rich robotic systems. For example, in
[6], the authors approximate nonlinear contact-rich dynamics
using LCS and develop LCS-based model predictive control,
achieving real-time control performance for a reasonably-sized
manipulation system.

Built on the above observation and the foundational prior
work, this paper aims to answer the above question theo-
retically and algorithmically. Our goal is to find a reduced-
order hybrid model, containing only a small number of task-
relevant modes, which is sufficient for high-performance, real-
time control of contact-rich manipulation tasks. We call the
problem ‘task-driven hybrid model reduction’. The primary
contributions of this work are:

(i) We study the problem of task-driven hybrid model re-
duction by formulating it as minimizing the task performance
gap between model predictive control (MPC) with the reduced-
order hybrid model and MPC with the full hybrid dynamics.
We show that the reduced-order model learning with on-policy
MPC data provably upper bounds the task performance gap,
leading to a simple iterative method to improve the reduced-
order model and MPC controller.

(ii) We make use of our prior work of learning LCS [4],
and the recent development of real-time LCS-based control

2

on contact-rich systems, such as [6], to develop our practical
learning algorithm. The algorithm runs a real-time closed-
loop LCS model predictive controller on the complete hy-
brid dynamical system (environment), enabling improving the
reduced-order model and its closed-loop control performance.

(iii) In the first example, we demonstrate the capabilities
of the proposed method in reducing synthetic hybrid control
systems. We show that the proposed method enables reducing
the hybrid mode count by multiple orders of magnitude while
achieving a task performance loss of less than 5%. In the
second application, we use the proposed method to solve three-
finger robotic hand manipulation for unknown object reorien-
tation in simulation environment. With no prior knowledge, we
achieve state-of-the-art closed-loop performance within a few
minutes of online learning, by collecting only a few thousand
environment samples.

The following article is organized as follows. The related
work is reviewed in Section II. Section III gives preliminaries
and formulates the problem of task-driven hybrid mode reduc-
tion. Section IV presents the theoretical analysis and Section V
develops the algorithm. Section VI uses the proposed method
to solve model reduction on synthetic hybrid systems. Section
VII applies the proposed method to solve three-finger robotic
hand manipulation. Conclusions are drawn in Section VIII.

II. RELATED WORK

1) Learning Hybrid Dynamics Models: This work heavily
leverages the recent results in learning multi-modal dynamics
representations. Previous studies [1], [3] have shown that naive
neural networks fail to capture the discontinuity and stiffness
of physical systems. A prominent line of recent work focuses
on learning smoothing approximations by relaxing the hybrid
mode boundaries [8]–[12], though at the cost of some approx-
imation error. Instead of using smoothing approximation, this
paper considers learning explicit hybrid structures. We focus
on a simple yet expressive representation for hybrid systems:
continuous piecewise-affine (PWA) models. This is motivated
by the fact that many physics simulation engines [13]–[16]
locally use linear complementarity models (a compact form
of continuous PWA [17]) to handle physical contact events at
each simulation step. PWA models bring two benefits. First,
they are a well-studied subject in the control community [17]–
[19], which captures the multi-modality of a hybrid system,
by approximating dynamics using polyhedral partitions with
each assigned a mode-dependent linear model. Second, they
can be tractably incorporated into planning and control for
real-time performance due to recent progress in [6]. Although
continuous PWA models cannot capture the discontinuities
that arise from impulsive impact events, there is a large
range of manipulation tasks in which such events are not
prominent, thus we believe PWA models to be sufficient. Also,
we noted that a PWA model, via stiffness, can well capture the
discontinuity, as adopted by many physics simulation engines
[13]–[16].

Identifying PWA models is NP-hard in general [20]. Most
existing methods [21], [22] for PWA regression are clustering-
based: they alternate data classification and model regression

for each class. Those methods normally have a complexity that
scales exponentially with the number of data points or hybrid
modes. In this paper, learning PWA models is based on our
recent work [4]. Specifically, we write a PWA model com-
pactly as a linear complementarity system (LCS), via implicit
parameterization [17], and propose an implicit violation-based
loss that generalizes the physics-based method in ContactNets
[3]. The method does not need explicitly cluster data and can
handle tens of thousands of (potentially stiff) modes efficiently.
Recent results have proven a superior generalization of this
class of methods than explicit loss methods [2].

2) Fast Planning and Control on Multi-Contact Systems:
The success of the proposed method also relies on the re-
cent progress in real-time multi-contact planning and control.
Planning and control on multi-contact systems are notoriously
challenging, as the algorithms must decide when and where
to make or break contacts, whose complexity scales exponen-
tially to the number of potential contacts and planning horizon.
Traditionally, [23], [24] use the predefined sequence of mode
to achieve real-time control on legged locomotion [25] and ma-
nipulation [26]. To enable general-purpose fast multi-contact
control, [6] and [7] consider the LCS linearization of nonlinear
multi-contact robot dynamics. Specifically, in [7], the authors
smooth the stiff complementarity constraint and then apply the
interior-based method to approximate the solution sequentially.
In a different way, [6] maintains the hybrid structures and
proposes to decouple the combinatoric complexity from the
planning depth and then use the alternating direction method
of multipliers (ADMM) to solve the decoupled problem, which
can be done in parallel for further acceleration.

In this paper, we include a real-time LCS model predictive
controller as part of our learning algorithm for on-policy data
collection and closed-loop control. We use a direct method of
optimal control to formulate and solve the LCS MPC. This
was first proposed in [27]. In our implementation, we utilize
the state-of-the-art optimal control solver [28] for fast MPC.

3) Reinforcement Learning for Contact-Rich Manipulation:
Reinforcement learning (RL) has achieved impressive results
in contact-rich manipulation [29]–[31]. Some representative
work includes [31], where in-hand manipulation policies are
learned for object reorientation, and [30] for solving TriFinger
Manipulation. However, both methods use model-free RL,
requiring millions or even billions of environment samples
and many hours or even days of training. To alleviate sample
inefficiency, model-based RL has been used to robotic manip-
ulation by first learning a dynamics model to aid policy search
[29], though requiring a large amount of training data to fit an
unstructured deep neural network. Furthermore, control with
deep neural network models can be challenging. Commonly
used shooting-based methods [32] have a complexity expo-
nential to planning depth and system dimension [33].

In comparison with the work above, the emphasis of this
paper is on highly data-efficient hybrid model learning, paired
with real-time closed-loop control. Specifically, the tasks that
might require hours of data for unstructured learning methods
will be trained and completed in minutes.

3

4) Reduced-order Models for Multi-Contact Robotic Tasks:
The idea of using a reduced-order model for hybrid robotic
tasks has widely used in robot locomotion [34], [35] for
real-time generating behavior plans. However, these reduced-
order models are manually designed and may miss some key
dynamics aspects of the full-order dynamics [36]. To address
those challenges, recent results demonstrate the ability to
optimize for a reduced-order model that retains the capabilities
of the full-order robot dynamics [5]. In their paper, authors
focus on reducing the state dimension needed for planning,
while we focus here on the comparatively unexplored problem
of hybrid mode reduction. Recently, model-free RL has been
used to learn the unmodeled aspects of a reduced-order model
to improve locomotion performance [36]. Our method differs
from theirs in three aspects. First, their formulation does not
explicitly encourage the reduction of the performance gap of
the reduced-order model, while our formulation is to directly
minimize the performance gap. Second, our method is not
rooted in model-free RL, which can be data inefficient for our
setting, where true dynamics is originally unknown (thus pro-
hibiting sim-to-real transfer). Third, rather than using smooth
approximations, we directly identify a hybrid representation.

III. PRELIMINARIES AND PROBLEM FORMULATION

This section presents some preliminaries and formulates the
problem of task-driven hybrid model reduction.

A. Hybrid Models for Multi-contact Dynamics

Consider the following generic hybrid system:

xt+1 = f i(xt,ut) with (xt,ut) ∈ Pi,

Pi = {(x,u) |ψi(xt,ut) ≤ 0}, i ∈ {1, 2, . . . , I}.
(1)

Here, xt ∈ Rn and ut ∈ Rm are the system state and input at
time step t = 0, 1, 2, i ∈ {1, 2, . . . , I} is the index of the
system hybrid modes, and Pi ⊂ Rn×Rm denotes the domain
of the i-th mode, defined as a sublevel set of ψi(x,u). f i is
the dynamics model (vector field) in the i-th mode.

A subset of hybrid systems in (1) corresponds to comple-
mentarity systems, which have been widely used to describe
the multi-contact model of robot dynamics [14], [37], [38]:

M(qt)(vt+1−vt) = C(qt,vt)+But+

I∑
i=1

J i(qt)
TΛi,t, (2)

with the i-th contact impulse Λi,t satisfying the complemen-
tarity constraint

0 ≤ Λi,t ⊥ Φi,t(qt,vt+1,Λi,t) ≥ 0, i = 1, 2, . . . , I. (3)

Here, (qt,vt) is the generalized coordinate and velocity of a
robot system. ut is the actuation impulse with input projec-
tion matrix B. M(qt) is the inertia matrix, and C(qt,vt)
includes all non-contact impulses resulting from gravity and
gyroscopic forces. Λi,t is i-th contact impulse between the
robot and objects/environments, and J i(qt) is its Jacobian
matrix. The complementarity constraint (3) means either the
contact impulse Λi,t or the value of its distance-related func-
tion, Φi,t(qt,vt+1,Λi,t), is zero, but both cannot be negative,

i.e., contact interaction between robot and object/environment
cannot pull or penetrate into each other. Coulomb friction can
be similarly described (e.g. [14]).

Define x := [q,v]T, Λ := [Λ1,Λ1, ...,ΛI]
T, and Φ :=

[Φ1,Φ2, ...,ΦI]
T. One can abstractly write the multi-contact

dynamics (2)-(3) into the general form below, denoted as f(),

f() :

{
F (xt+1,xt,ut,Λt) = 0,

0 ≤ Λt ⊥ Φt(xt+1,xt,ut,Λt) ≥ 0.
(4)

Connecting (4) to (1), here the active or inactive constraints in
Φ ≥ 0 determine the domain of hybrid modes, and F and Φ
jointly and implicitly determine the dynamics model of each
hybrid mode. A significant amount of recent work focuses
on identifying/learning the above complementary-based hybrid
dynamics, such as [2]–[4], [8], [11].

The above complementary-based hybrid dynamics f() con-
tains all potential contact modes in the aggregated contact im-
pulse vector Λ and the corresponding distance vector function
Φ. Thus, we call f() the full-order hybrid dynamics.

B. Full-Order Model Predictive Control

We consider the model predictive control (MPC) with the
full-order hybrid dynamics f() in (4) for a given set of tasks:

min
u0:T−1

Jβ =

T−1∑
t=0

cβ(xt,ut) + hβ(xT)

s.t. xt+1 = f(xt,ut), given x0 ∼ pβ(x0),

(5)

where T is the MPC horizon; f() is the hybrid dynamics
model in (4); and Jβ is a cost function for given tasks. Here,
β is a general hyperparameter, indexing a set of robot tasks
of interest, subject to a known task distribution β ∼ p(β). For
example, if the tasks of interest are that a robotic hand moving
an object to different target poses, β can parameterize the set
of target poses of the object, subject to a given distribution
p(β) reflecting the frequency of appearance of target pose β;
if the tasks of interest contain different types of robot tasks,
such as inserting a peg, turning a crank, etc., β can be the
task index, and p(β) could be a uniform distribution.

For notation simplicity, we write the system input and state
trajectories compactly as u := {u0,u1,u2, . . . ,uT−1} and
x := {x0,x1, . . . ,xT−1,xT }, respectively. The system state
trajectory given input trajectory u and initial x0 is written as

F(u,x0) :=
{
x
∣∣ xt+1=f(xt,ut), given x0 and u

}
. (6)

The solution to (5) then can be compactly written as

f -MPC : uf (x0,β) := argmin
u

Jβ
(
u,F(u,x0)

)
,

x0 ∼ pβ(x0), β ∼ p(β). (7)

The full-order dynamics MPC in (7) is applied to the multi-
contact robot system f() in a closed-loop (receding) fashion.
Specifically, at rollout time step k = 1, 2, 3, ..., x0 in (7)
is set to the robot’s actual state: x0 = xf

k . After solving
uf (xf

k ,β) = {uf
0 , . . . ,u

f
T−1} from (7), only the first input

uf
0 is applied to the robot for execution and drive the robot

to the next state: xf
k+1 via xf

k+1 = f(xf
k ,u

f
0). Then, this

4

process repeats at the robot new state xf
t+1. The above MPC

leads to a closed-loop control policy: mapping from robot’s
current state xf

k to its control input uf
0 .

As indicated by the full-order dynamics f() in (4), solving
the MPC in (7) requires reasoning over the sequence of contact
impulses {Λ0,Λ1, . . . ,ΛT−1} in addition to u and x. Its
combinatoric complexity is 2TI (I = dimΛ). Despite recent
progress, particularly on modestly sized problems [6], [8],
[11], [19], a large number of potential contact interactions
(e.g., large I) will make solving (7) intractable.

In this paper, we hypothesize that identifying and utilizing
a full-order dynamics f() for MPC in (7) is almost certainly
unnecessary, because far fewer modes are actually necessary
to accomplish many tasks. Thus, we will find a reduced-order
hybrid model proxy to replace f() in (7), to enable real-time
control and sufficiently achieve high task performance.

C. Linear Complementarity Systems

To find a reduced-order hybrid representation for the full-
order hybrid dynamics f() in (4), we consider piecewise
affine (PWA) models. This is motivated by the fact that
many physics simulation engines [13]–[16] locally use linear
complementarity models (a compact formation of continuous
PWA [17]) to handle physical contacts at each simulation step.
A PWA model can sufficiently describe multi-modality but is
tractable enough for planning and control tasks due to their
simple (affine) structures. As in our previous work [4], we
compactly represent PWA models as a linear complementarity
system (LCS), defined as g(),

g() :
xt+1 = Axt +But + Cλt + d

0 ≤ λt ⊥ Dxt + Eut + Fλt + c ≥ 0.
(8)

Here, the first line of (8) is the affine dynamics and the second
line is the complementarity equation. (A,B,C,d, D,E, F, c)
are system matrix parameters with compatible dimensions.
λt ∈ Rr is the complementarity variable and solved from the
complementarity equation given (xt,ut). Depending on the
active or inactive inequalities in Dxt + Eut + Fλt + c ≥ 0
(corresponding to different partitions of the state-input space),
λt ∈ Rr is a piecewise function of (xt,ut). By composing
with affine dynamics, xt+1 is eventually a piecewise function
of (xt,ut), and each linear piece is a hybrid mode. Thus, the
maximum number of the hybrid modes the LCS in (8) can
represent is 2dimλ. For any given (xt,ut), to guarantee the
existence and uniqueness of λt solved from the complemen-
tary equation, we impose the restriction that the symmetric
part of F be positive definite, FT + F ≻ 0 [39], [40]. This
property can be accomplished by parameterizing F as

F := GGT +H −HT, (9)

with G and H matrices with the same dimension as F .
As we will seek to learn a reduced-order LCS g(), we can

explicitly restrict the number of potential modes in g() by
setting the dimension of the complementary variable, dimλ.
Compared to the full-order dynamics f() in (4), g() has

dimλ < dimΛ. (10)

Note that, we do not expect a tight connection between λ in
g() and the physical contact impulse vector Λ in f(). Instead,
λ in g() here will represent general multi-modality, and while
we will later observe that λ is empirically related to the contact
forces, it is not exactly the same.

D. Problem Formulation

We aim to find a reduced-order LCS model g() in (8) for
the given set of tasks Jβ in (5), and establish the following
reduced-order g-MPC (using the notation convention in (7)):

g-MPC : ug(x0,β) := argmin
u

Jβ
(
u,G(u,x0)

)
,

x0 ∼ pβ(x0), β ∼ p(β), (11)

such that when running the reduced-order g-MPC on the full-
order robot dynamics f(), one can achieve a task performance
as similar to the task performance of running f -MPC on f()
as possible. Here, we also compactly write the state trajectory
of g() given u and x0 as

G(u,x0) :=
{
x
∣∣ xt+1=g(xt,ut), given x0 and u

}
. (12)

Therefore, the goal of task-driven reduced-order model learn-
ing is to find the reduced-order LCS g() which minimizes the
following task performance gap:

L(g) := Eβ∼p(β) Ex∼pβ(x0)

[
Jβ

(
ug,F(ug,x0)

)
−Jβ

(
uf ,F(uf ,x0)

)]
, (13)

where the first cost Jβ
(
ug,F(ug,x0)

)
is the task performance

of running reduced-order g-MPC on the robot system f(), and
the second cost Jβ

(
ug,F(ug,x0)

)
is the task performance of

running full-order f -MPC on the robot system f(). Here, ug

is the solution to the reduced-order g-MPC in (11) and uf is
the solution to the full-order f -MPC in (7).

We make the following remarks on the above problem
statement. First, the reduced-order LCS g() shares the same
dimensions of states and inputs as the full-order dynamics f(),
but has far fewer hybrid modes by setting dimλ ≤ dimΛ.
Compared to f -MPC, the reduced-order g-MPC is more com-
putationally tractable for real-time implementation. Second,
the learning criterion (13) is to minimize the performance
gap between the reduced-order g-MPC and full-order f -MPC,
both MPC controllers running on the full-order dynamics f(),
which is the original hybrid system. Thus, a minimal perfor-
mance gap means that one can confidently use the reduced-
order LCS g() to achieve the given tasks Jβ, β ∼ p(β).

Directly minimizing the task performance gap L(g) requires
access to and optimization with the full-order dynamics model
f(), because of the coupling between Jβ() and f() in (13).
However, this is unlikely to be tractable as the full-order model
is both unknown and too complex to optimize with. In the
following section, we develop a method to approximately solve
(13) without requiring knowledge of the model f().

5

IV. THEORETICAL RESULTS

In this section, we will show that instead of directly solving
(13), one can minimize its upper bound. This will lead to
developing a method that is much easier to implement and only
requires samples (zero-order information) of f(). To start, we
pose a mild assumption about the Lipschitz continuity of task
cost function Jβ(u,x) for any β ∼ p(β).

Assumption 1. For any task sample β ∼ p(β), the task
cost function Jβ(u,x) is M -Lipschitz continuous, i.e., for any
z1 := (u1,x1), z2 := (u2,x2),

|Jr(z1)− Jr(z2)| ≤ M∥z1 − z2∥ (14)

with ∥∥ denoting the l2 norm.

The above assumption is mild, as the cost function is usually
defined manually and can easily satisfy this condition. With
Assumption 1, we have the following lemma stating the upper
bound of the task performance gap L(g) in (13):

Lemma 1. Suppose Assumption 1 holds. For any reduced-
order model g(), the following inequality holds:

L(g) ≤ M Eβ∼p(β) Ex∼pβ(x0)

(∥∥G(ug,x0)−F(ug,x0)
∥∥

+
∥∥G(uf ,x0)− F(uf ,x0)

∥∥) (15)

Proof. See Appendix. A.

Lemma 1 gives an upper bound for the task performance
gap L(g). Notably, this upper bound is the prediction error
between the reduced-order model g() and full-order dynamics
f() at their MPC solutions. Specifically, the first term on the
right side of (15) is the model prediction error on the dataset

Dg =
{
ug(x0,β) |x0 ∼ p(x0), β ∼ p(β)

}
(16)

generated by the reduced-order g-MPC. The second term on
the right side of (15) is the model prediction error on

Df =
{
uf (x0,β) |x0 ∼ p(x0), β ∼ p(β)

}
(17)

generated by the full model f -MPC. (15) says that as long as
the reduced-order model g() captures the full-order dynamics
f() at the MPC data Dg and Df , not necessarily at other
parts of data regime (task-irrelevant data), g-MPC can replace
f -MPC for the same task performance. Thus, Lemma 1
justifies the learning of a task-driven reduced-order model.

Although the f -MPC policy data Df in (17) is not directly
verifiable when f() is unknown, the next lemma will show the
g-MPC data Dg is related to Df , which thus can be verified
indirectly.

Lemma 2. Suppose ∇xJβ(u,x) is L1-Lipschitz continuous,
∇uJβ(u,x) is L2-Lipschitz continuous, and ∥∇xJβ(u,x)∥ ≤
M1 for any (u,x,β); ∥∇uG(u,x0)∥ ≤ Mg for any (u,x0).
Then, the solutions Dg in (16) generated by g-MPC is also
an ϵ-accuracy stationary solution for f -MPC, i.e.,

∥∇uJβ
(
ug,F(ug,x0)

)
∥ ≤ ϵ (18)

for any x0 ∼ p(x0), β ∼ p(β) with

ϵ = M1∥∇uF(u
g,x0)−∇uG(ug,x0)∥

+ (L2 +MgL1)∥F(ug,x0)−G(ug,x0)∥ (19)

Proof. See Appendix B.

Lemma 2 suggests the g-MPC data Dg in (16) can become
f -MPC data Df in (17), if the reduced-order model g() fits
well to the true f() in both zeroth and first orders, i.e.,

∥F(ug,x0)−G(ug,x0)∥ → 0 (20)
∥∇uF(u

g,x0)−∇uG(ug,x0)∥ → 0 (21)

Thus, one can indirectly verify (17) by additionally looking
at the first-order model precision error ∥∇uF(u

g,x0) −
∇uG(ug,x0)∥, where ∇uF(u

g,x0) can be estimated numer-
ically via mesh grid of Dg .

Jointly looking at Lemma 1 and Lemma 2, one can conclude
that if we can find a reduced-order LCS g() such that it fits f()
well in both zeroth and first-order prediction on the g-MPC
data Dg , as in (20) and (21), respectively, such g() is mini-
mizing the upper bound (15), thus eventually minimizing the
task performance gap L(g) itself. Those theoretical insights
will guide us to develop algorithms in the next section.

V. PRACTICAL ALGORITHM

The technical analysis in the previous section says that to
minimize the upper bound (15) of the task performance gap,
one might fit a reduced-order model g() to full-order dynamics
f() well in both zeroth and first-order prediction using the
g-MPC policy data Dg . We take this as inspiration, though
we note that, for efficiency, we will minimize zeroth-order
error and will not check first-order criteria. Now, we develop
the task-driven hybrid-model reduction algorithm. Throughout
the following paper, g-MPC will be implemented in a closed-
loop (receding) fashion, i.e., the only first action of the MPC
solution is applied to the robot system f().

The building blocks of the task-driven hybrid model reduc-
tion algorithm are in Fig. 1. The learning process is iterative,
and each iteration includes the following three components.
• Trust-region LCS model predictive controller: The latest

LCS g() is used in the MPC controller. Compared to (11),
we additionally introduce a trust region on the control inputs
in the reduced-order LCS MPC. This trust region may also
be adapted according to the latest Rollout Buffer with details
given in Section V-B.

• Rollout Buffer: denoted as Dbuffer=
{
(xf

k ,u
g-MPC
k ,xf

k+1)
}

,
stores the current and history rollout data from running
the trust-region g-MPC controller on the robot (full-order
dynamics). The buffer can permit a maximum buffer size.

• Learning reduce-order LCS: This is to train reduced-order
LCS g() using the data of the latest Rollout Buffer Dbuffer.
Details of the training process is given in Section V-A.

A. Learning Reduced-Order LCS

We use the method of our recent work [41] to learn the LCS
g() from Rollout Buffer data Dbuffer =

{
(xf

k ,u
g-MPC
k ,xf

k+1)
}

.
This method enables efficient learning of a PWA model with

6

min
6

ℒ789

Rollout Buffer

!(= !!"

s.t.

#) ∈ ['# − @), '# + @)] (trust region)
ℒ789 =

",$+,--./

min3'4(, 6'4(
1
2 /!!" + 0#!7,#$% + 12! + 3 − !!&'" 8

+
1

A

Trust-region LCS --MPC controller
min0!:#$% ,

)*(

+,'
-- !) , #) + ℎ- !+

!)&' = /!) + 0#) + 12) + 3
4 ≤ 2) ⊥ 7!) + 8#) + 92) + : ≥ 4

Trust-region
(*(, +)2!9F! +

1
2G 7!!

" + 8#!
7,#$% + 92! + : − F!

8

with the violation-based loss: LCS model

!)45*()67123

&HIJJKL = 'MN ,)M*OPQR, 'MSTN

!)45* = /(!)* , ()67123)
Full-order hybrid dynamics

!)* , ()67123, !)45*

Rollout with
LCS-MPC controller

$+,--./

Learning reduced-order LCS

*(= mean ((567123, (867123, … , ()
67123, …)

Trust-region calculation:

+ = std ((567123, (867123, … , ()
67123, …)

Fig. 1: Components of task-driven hybrid model reduction algorithm. There are three main components: learning reduced-order LCS, Trust-
region LCS model predictive controller, and Rollout Buffer, each of which is detailed in the text.

up to thousands of hybrid modes and effectively handles the
stiff dynamics that arises from contact. For self-containment,
the method is described below.

By learning a LCS in (8), we mean to learn all its matrix
parameters, denoted as

θ := {A,B,C,d, D,E, F, c}. (22)

In [41], we presented a new learning method, which learns θ
by minimizing the following violation-based loss

Lvio(θ,Dbuffer) =
∑
k

Lvio

(
θ, (xf

k ,u
g-MPC
k ,xf

k+1)
)

(23)

with

Lvio

(
θ, (xf

k ,u
g-MPC
k ,xf

k+1)
)
:=

min
λk≥0, ϕk≥0

1

2
∥Axf

k +Bug-MPC
k + Cλk + d− xf

k+1∥
2+

1

ϵ

(
λTkϕk +

1

2γ
∥Dxf

k + Eug-MPC
k + Fλk + c− ϕk∥2

)
.

In the above loss Lvio

(
θ, (xf

k ,u
g-MPC
k ,xf

k+1)
)

, the first
and second terms are the violation of the affine dynam-
ics and complementarity equations by a buffer data point
(xf

k ,u
g-MPC
k ,xf

k+1), respectively. ϵ > 0, which empirically
takes its value from the range (10−3, 1), is a hyperparameter
that balances the violation of these two terms. Here, ϕ ∈ Rr is
an introduced slack variable for the complementarity equation,
and γ > 0 can be any value as long as satisfying γ ≤
σmin(F

T + F) (i.e., the smallest singular value of the matrix
(FT + F)). Such a choice of γ ensures the strong convexity
of the quadratic objective Lvio

(
θ, (xf

k ,u
g-MPC
k ,xf

k+1)
)

in the
variable (λk,ϕk).

As theoretically shown in [41], the above LCS learning loss
Lvio(θ,Dbuffer) has the following properties. First, it can be
proved that the inner optimization over (λk,ϕk) is a convex

quadratic program, thus can be efficiently solved in batch using
state-of-the-art solvers, e.g., OSQP [42]. Second, the gradient
of the violation-based loss Lvio(θ,Dbuffer) with respect to
all matrices in θ can be analytically obtained using the
Envelope Theorem [43] (without differentiating through the
solution to the inner optimization). Third, by adding both the
affine dynamics violation and complementarity violation with
a balance weight ϵ, Lvio(θ,Dbuffer) attains a better conditioned
loss landscape, enabling simultaneous identification of stiff
and multi-modal dynamics.

B. Trust-Region LCS Model Predictive Controller

With the reduced-order LCS g(), one can establish the
following trust-region reduced-order LCS-based MPC:

min
u0:T−1

T−1∑
t=0

cβ(xt,ut) + hβ(xT) β ∼ p(β)

subject to ut ∈ [ū−∆, ū+∆],

xt+1 = Axt +But + Cλt + d,

0 ≤ λt ⊥ Dxt + Eut + Fλt + c ≥ 0,

x0 = xf
k .

(24)

Compared to the early g-MPC in (11), the difference here
is that we have enforced a trust region constraint ū − ∆ ≤
ut ≤ ū+∆ on the control input ut, t = 0, 1, . . . , T −1. This
is due to the following reasons. As shown in Fig. 1, since g()
is trained on the current buffer data Dbuffer, we expect g() is
likely valid only on the region covered by Dbuffer, which we
refer to as the trust region. Thus, we constrain g-MPC in (24)
to this trust region, prohibiting the controller from attempting
to exploit model error and generating undesired controls.

The center ū and size ∆ of the trust region may be updated
along with the rollout buffer Dbuffer during each iteration. In
our algorithm, at i-th iteration, we simply set the trust region

7

center ūi as the mean of all control input data in the current
Rollout Buffer Dbuffer,i, i.e.,

ūi = mean
(
{ug-MPC

1 , ...,ug-MPC
k , ...}

)
,

ug-MPC
k ∈ Dbuffer,i (25)

and the trust region size ∆i is set according to the standard
deviation of all input data in Dbuffer,i:

∆i = ηi std
(
{ug-MPC

1 , ...,ug-MPC
k , ...}

)
,

ug-MPC
k ∈ Dbuffer,i (26)

Here, ηi > 0 a hyperparameter of the trust region at the i-th
iteration, and mean() and std() are applied dimension-wise. It
is also possible that ūi and ∆i are set using other rules, e.g.,
following the classic trust-region optimization [44].

To solve the LCS MPC in (24), we adopt the direct method
of trajectory optimization [27]. Specifically, the optimization
simultaneously searches over the trajectories x0:T , u0:T−1,
λ0:T−1 by treating the LCS and trust region as the separate
constraints imposed at each time step. We solve such nonlinear
optimization using CasADi [28] interface packed with IPOPT
solver [45]. In our later applications, as the reduced-order LCS
in (24) has a relatively small number of hybrid modes, e.g.,
dimλ ≤ 5 and a small MPC horizon T = 5, we can solve
(24) with a real-time MPC performance (e.g., MPC running
frequency can reach 50Hz).

We summarize the algorithm of task-driven hybrid model
reduction in Algorithm 1. Here, subscript i denotes the learn-
ing iteration. At initialization, the Rollout Buffer Dbuffer,0 can
be filled with data collected from running random policies on
the robot f().

Algorithm 1: Task-driven hybrid model reduction
Initialization: Initial reduced-order LCS model gθ0

;
Initial Buffer Dbuffer,0 (by random policy);
Trust region parameter schedule {ηi}

for i = 0, 1, 2, · · · do

/* Reduced-order model update */
Train reduced-order LCS gθi

with the data from current
Rollout Buffer Dbuffer,i: gθi+1

← gθi
[Section V-A]

/* Set the trust region */
Set the trust region from the current Rollout Buffer
Dbuffer,i: [ūi −∆i, ūi +∆i] [see (25) and (26)] ;

/* MPC rollout and update Buffer */
With the current LCS gθi+1

and current trust region
[ūi −∆i, ūi +∆i], run the trust-region LCS MPC
policy in (24) on the robot, collect new rollout data
{(xf

k ,u
g-MPC
k ,xf

k+1)} and add it to Rollout Buffer:
Dbuffer,i+1 ← Dbuffer,i ∪ {(xf

k ,u
g-MPC
k ,xf

k+1)};
end

VI. MODEL REDUCTION FOR HYBRID CONTROL SYSTEMS

In this section, we will use the proposed method to solve
model reduction of synthetic hybrid systems of varying di-
mension. Examples are written in Python, available at https:
//github.com/wanxinjin/Task-Driven-Hybrid-Reduction.

A. Problem Setting

Consider the MPC of a general PWA system [19]

min
u0:T−1
x0:T

J =

T−1∑
t=0

c(xt,ut) + h(xT)

s.t. f() :

xt+1 = Ajxt +Bjut + cj , (xt,ut) ∈ Pj ,

Pj = {(x,u) |Djx+ Eju+ hj ≤ 0},
j ∈ {1, 2, . . . , I},

x0 given.
(27)

Here, Pj , j ∈ {1, 2, . . . , I}, is the j-th partition of the state-
input space, with dynamics xt+1 = Ajxt + Bjut + cj . The
total number of hybrid modes of the above PWA system is I .
Solving (27) is generally treated as a mixed-integer program
with IT possible mode sequences. This exponential scaling
quickly becomes computationally intractable as I and T grow.

In the following, we aim to find a reduced-order LCS model
g() which maintains a small budget of hybrid modes, such that
running g-MPC can achieve similar performance as running
the full-order f -MPC in (27). Here, the reduced-order LCS
g() in (8) has the same dimensions of x and u as f(), but we
set dimλ such that its maximum number of hybrid modes of
g() is far less than f()’s, i.e., 2dimλ ≪ I .

B. Experiment Settings

We consider the task of stabilizing the hybrid system to a
stationary state (zeros), and thus set the cost function J in (27)
as a quadratic cost function:

J =

T−1∑
t=0

(
xTtQxt + u

T
tRut

)
+ xTTQTxT , (28)

with all weight matrices being identities. We run both f -MPC
and g-MPC policies on full-order dynamics f() in a closed-
loop (receding) fashion, though noting that f -MPC cannot be
solved in real-time for our more complex examples. The initial
state x0 of the full-order dynamics f() is subject to a uniform
distribution x0 ∼ U [−4, 4].

In Algorithm 1, the hyperparameters are listed in Table I.
An ablation study about how the hyperparameters influence
the performances will be given later in Section VI-D. For the
hyperparameter setting in learning LCS, please refer to our
previous paper [41].

TABLE I: Algorithm hyperparameters for model reduction of
synthetic hybrid control systems.

Parameter1 Symbol Value

MPC horizon T 5
Rollout horizon H 15 ∼ 20
of new rollouts added to buffer per iter. Rnew 5
Maximum buffer size Rbuffer 50 rollouts
Trust region hyperparameter ηi 20, ∀i
Initial guess θ in (22) for g() θ0 U [−0.5, 0.5]2

1 Other settings not listed here will be stated in text.
2 U [−0.5, 0.5] means uniform distribution in range [−0.5, 0.5].

8

4 2 0 2 4
x1

4

2

0

2

4
x 2

(a) Phase portrait for f -MPC

4 2 0 2 4
x1

4

2

0

2

4

x 2

f-MPC
g-MPC

(b) f -MPC vs. g-MPC at Iter. 0

4 2 0 2 4
x1

4

2

0

2

4

x 2

(c) Phase for g-MPC at Iter. 24

4 2 0 2 4
x1

4

2

0

2

4

x 2

f-MPC
g-MPC

(d) f -MPC vs. g-MPC at Iter. 24

Fig. 2: Phase portraits of the MPC-controlled full-order dynamics xt+1 = f
(
xt,MPC(xt)

)
, where the controller ut = MPC(xt) can be

either full-order f -MPC or reduced-order g-MPC. (a) is the phase portrait for the f -MPC controller, where different colors indicate different
hybrid modes (42 modes here) in f(); (b) is the phase comparison between using f -MPC and g-MPC controllers at learning iteration 0; (c)
is the phase portrait for g-MPC controller at learning iteration 24, where different colors indicates different hybrid modes (4 modes here) in
g(); and (f) is the phase comparison between the f -MPC controller and g-MPC controller at learning iteration 24.

C. Results and Analysis

1) Illustration of Learning Progress: We randomly generate
full-order dynamics f() in (27). Specifically, all matrices
(Aj , Bj , cj , Dj , Ej ,hj), i = 1, 2, . . . , I , are sampled from
uniform distributions, with dimension x ∈ R2 and u ∈ R, and
mode count I ≈ 120 for random sampling of x0 ∼ U [−4, 4]
and u ∼ U [−10, 10]. In the reduced-order LCS g() in (8), we
take dimλ = 2, meaning that the maximum number of modes
in g() is 4, far fewer than I of the full-order dynamics.

We plot the learning progress (iteration) for the task-driven
reduced-order model g() in Fig. 2. Here, we show the phase
portraits of the MPC-controlled full-order dynamics:

xt+1 = f
(
xt,ut

)
= f

(
xt,MPC(xt)

)
(29)

where the MPC controller ut = MPC(xt) can be either the
full-order f -MPC (27) or the learned reduced-order g-MPC.
Specifically, Fig. 2a shows the phase portrait of f -MPC con-
troller, where different colors show different hybrid modes in
f(). Fig. 2b shows the phase portrait comparisons between f -
MPC controller (blue) and g-MPC controller (orange) before
learning. Fig. 2c shows the phase portrait for g-MPC controller
after learning, where different modes in g-MPC are shown in
different colors. Fig. 2d compares the phase plot between f -
MPC (blue) and g-MPC (orange) controllers after learning.

Although the full-order dynamics f() has around I = 120
modes for random data x ∼ U [−4, 4] and u ∼ U [−10, 10],
Fig. 2a shows 42 hybrid modes in f() with f -MPC controller.
One can notice that some modes correspond to a small portion
of the state space, e.g., orange and green (near origin), and
thus, most of f ’s task-relevant motion (flows) will not enter
into or quickly pass those modes. This makes those modes
less important for the task of minimizing (28). On the other
hand, some other modes account for a large portion of the
state space, such as cyan and gray. Most of f ’s motion will
enter into or stay in those modes, making them dominant for
the minimizing the task cost (28). In Fig. 2c, after learning,
the reduced-order model g() has only 4 hybrid modes (re-
call dimλ = 2), which successfully capture the important
modes in Fig. 2a. Comparing the phase portrait of the full-
order f -MPC controller and that of the reduced-order g-MPC
controller in Fig. 2d, we see a similar control performance.

Thus, one can conclude that the proposed method learns a
task-driven reduced-order model for the hybrid system.

2) High Dimensional Examples: In this session, we quanti-
tatively analyze task-driven hybrid model reduction. For easy
comparison, we represent the full-order dynamics f() in (27)
also in LCS representation. All matrices in f() are drawn from
uniform distribution. We use Λ to denote the complementarity
variable of f(). In the reduced-order LCS g(), we vary dimλ
to show the effect of varying degrees of mode reduction.

In Table II, we consider different full-order f (), listed in the
second column, and different hybrid mode reduction, listed in
the third column. From the fourth to ninth columns, we use
the following metrics to report the learning performance.
• Random Policy, number of modes in f : This is the total

number of the hybrid modes that are active in the full-order
dynamics f(), when one runs a random policy with input
urand ∼ U [−10, 10] and initial condition x0 ∼ U [−4, 4].
This metric indicates all possible modes experienced by the
full-order system in a uniformly sampled state-input space.

• Random Policy, ME(g)(%): This is the relative prediction
error of the learned reduced-order LCS model g() evaluated
on the above random policy data, defined as

∥g(x,urand)− f(x,urand)∥2

∥f(x,urand)∥2 + 10−6
× 100%. (30)

• g-MPC Policy, number of modes in f : This is the total
number of the hybrid modes that are active in the full-order
dynamics f() when one runs the learned reduced-order g-
MPC controller on it with initial condition x0 ∼ U [−4, 4]
This metric indicates all possible modes experienced by the
full-order system in the task-relevant state-input space.

• g-MPC Policy, ME(g)(%): This is the relative prediction
error of the learned reduced-order LCS g() evaluated at the
above g-MPC policy data, defined as

∥g(x,ug-MPC)− f(x,ug-MPC)∥2

∥f(x,ug-MPC)∥2 + 10−6
× 100%. (31)

As the proposed algorithm chooses to minimize the model
error, which is related to the performance gap as in Lemma
1. Thus it is meaningful to include this metric to show the
model error of the learned g() on the task-relevant data.

9

TABLE II: Task-driven model reduction for hybrid control systems

Case System
dimension

Mode reduction
dimΛ → dimλ

Random Policy g-MPC Policy L(g) (%)
of modes in f ME(g) (%) # of modes in f ME(g) (%) # of modes in g

1 dimx = 6
dimu = 2

dimΛ = 8
→ dimλ = 3

187.3
± 14.0

33.0%
± 13.9%

18.4
± 2.8

0.5%
± 0.2%

6.2
± 1.2

0.1%
± 0.1%

2 dimx = 10
dimu = 3

dimΛ = 12
→ dimλ = 3

1090.0
± 133.2

29.8%
± 13.0%

29.9
± 2.5

1.0%
±0.1%

6.7
± 1.0

0.5%
±0.2%

3 dimx = 20
dimu = 3

dimΛ = 15
→ dimλ = 1

2686.2
± 197.3

16.8%
± 5.7%

50.0
± 4.7

2.1%
±0.3%

2.0
± 0.0

1.1%
±0.5%

4 dimx = 20
dimu = 3

dimΛ = 15
→ dimλ = 2

2869.2
± 165.0

17.5%
± 6.5%

52.3
± 4.5

1.9%
±0.2%

3.7
± 0.4

1.1%
±0.4%

5 dimx = 20
dimu = 3

dimΛ = 15
→ dimλ = 3

2855.7
± 193.2

16.6%
± 4.6%

50.1
± 3.9

1.9%
± 0.3%

7.1
± 0.7

1.0%
± 0.4%

6 dimx = 20
dimu = 3

dimΛ = 15
→ dimλ = 5

2839.9
± 172.9

16.3%
± 4.6%

54.3
± 4.8

1.8%
± 0.2%

16.2
± 3.3

0.9%
± 0.2%

7 dimx = 30
dimu = 3

dimΛ = 15
→ dimλ = 3

3232.6
± 219.1

11.6%
± 4.7%

70.7
± 7.3

2.3%
± 0.6%

7.5
± 0.6

2.0%
± 0.7%

* Results for each case are based on 10 trials, and each trial uses a different randomly-generated full-order dynamics f(). The results are reported
using mean and standard derivation over all ten trials. See detailed explanations about those quantities in text.

• g-MPC Policy, number of modes in g: This is the total
number of hybrid modes that are active inside the g-MPC
controller, which is run on the full-order dynamics f() with
initial system condition x0 ∼ U [−4, 4].

• Relative task performance gap L(g)(%): This is the
relative task performance gap L(g)(%) is between g-MPC
controller and f -MPC controller:

L(g) = J(g-MPC)− J(f -MPC)
J(f -MPC)

× 100%, (32)

where J(g-MPC) is the cost of a rollout by running g-MPC
controller on the full-order dynamics f(), namely,

J(g-MPC) = Eβ∼p(β) Epβ(x0)

H∑
t=0

cβ(x
f
t ,u

g-MPC
t), (33)

with {xf
0:H ,ug-MPC

0:H } being a rollout of running g-MPC con-
troller on f(). The similar definition applies to J(f -MPC).
Recall the original learning loss (13). L(g)(%) can directly
indicate the performance of the learned reduced-order model
g() for the given task distribution p(β).
The results in Table II clearly show a reliable performance

of the proposed method. For example, in Case 5, the full-
order f() has x ∈ R20 and u ∈ R3 has Λ ∈ R15. With
a random policy run on f(), the number of active hybrid
modes in f() is around 2.8k. The proposed algorithm learns a
task-driven reduced-order LCS g() only with around 7 modes
(dimλ = 3). The resulting reduced-order g-MPC controller
running on the full-order f() only has around 1% performance
loss relative to running the full-order f -MPC controller. The
relative prediction error of the learned reduced-order LCS
g() is less than 2% on the on-policy (g-MPC) data, while
is 16.6 % on the random policy data. Also, when run with
g-MPC controller, full-order f() has around 50 active modes.
Table II also shows that the proposed algorithm can handle
high-dimensional system, such as x ∈ R30. Additionally,

0
2
4
6
8

10
12
14

f-MPC, 8 active modes

0

1

2

g-MPC, 4 active modes

0 1 2 3 4 5 6 7 8
rollout time t

5

0

5

x

0 1 2 3 4 5 6 7 8
rollout time t

5

0

5

x

Fig. 3: An example rollout of f() with full-order f -MPC controller
or reduced-order g-MPC controller, corresponding to Case 7 in Table
II. Specifically, the left column is a single rollout of running f -
MPC controller on f(), and the right running g-MPC controller on
f(), both under the same initial condition. The upper row shows
the activation of Λ or λ over time (black brick means nonzero and
blank means zero). The bottom row shows the state trajectory xt+1 =
f
(
xt,MPC(xt)

)
over time, with each color representing a different

hybrid mode. Note that since each panel only shows a single instance
of rollout (from a fixed x0), there are not many active hybrid modes
of f involved in a single trajectory.

corresponding to Case 7 in Table II, a single instance of f()’s
rollout with the full-order f -MPC controller and with the
reduced-order g-MPC controller are compared in Fig. 3. Based
on the results in Table II, we have the following conclusions.

(i) Jointly looking at the number of modes in f with random
policy (fourth column), the number of modes inside g-MPC
policy (eighth column), and the relative performance gap (last
column), one can clearly see that the proposed algorithm can
find a reduced-order model with multiple orders of magnitude
fewer hybrid modes than the full-order f(), and it can result in
a similar MPC control performance as using full-order MPC
policy, with a performance loss less than 2%− 3%.

10

2 3 5 7 9
MPC horizon T

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%
On

-p
ol

icy
 M

E,
 L

(g
)(%

)
On-policy ME
L(g)(%)

(a)

2 3 5 7 10
Number of new rollouts Rnew

0.0%

0.2%

0.4%

0.6%

On
-p

ol
icy

 M
E,

 L
(g

)(%
)

On-policy ME
L(g)(%)

(b)

20 30 50 70 100
Buffer size Rbuffer

0.0%

0.2%

0.4%

0.6%

0.8%

On
-p

ol
icy

 M
E,

 L
(g

)(%
)

On-policy ME
L(g)(%)

(c)

1 5 10 20 50
Trust-region parameter i

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

On
-p

ol
icy

 M
E,

 L
(g

)(%
)

On-Policy ME
L(g)(%)

(d)

Fig. 4: Ablation study about the effect of hyperparameter values on the algorithm performance. We here use the performance metrics
On-policy ME in (31) and relative task performance gap L(g)(%) in (32) to report the algorithm performance. The experimenting system’s
dimensions and other settings follow Case 1 in Table II. Each result is reported based on ten trials, and each trial uses a different randomly-
generated full-order LCS f(), as stated in the previous session. The error bars represent the standard deviation across all trials.

(ii) Comparison between the mode counts in f with random
policy (fourth column) and that with g-MPC policy (sixth
column) can confirm the motivating hypothesis of this paper:
a much fewer hybrid modes are actually necessary to achieve
the task (here, the task is to minimize the given cost function
in (28)), and the vast majority of the hybrid modes in f will
remain untouched throughout the control process.

(iii) Notably, comparing the relative model error of the
learned reduced-order LCS g() on random policy data (fifth
column) and only on the g-MPC policy data (seventh column),
one can conclude that the learned reduced-order LCS g() at-
tains higher validity on the task-relevant data. This sufficiently
shows the success of our task-driven hybrid model reduction.

All the above results and analysis clearly confirm that the
effectiveness and efficiency of the proposed task-driven hybrid
model reduction method. Also, attention needs to be paid to
Cases 3-6. Here, under the same other conditions, we used an
increasingly complex reduced-order LCS g from dimλ = 1
to dimλ = 5. The results show that increasing the hybrid
mode budget in g() can lead to a performance improvement,
although small, in the model accuracy (seventh column) and
the relative task performance gap (last column).

D. Effect of Hyperparameter Settings

We conduct the ablation study to investigate the effect of hy-
perparameter settings in Table I on the algorithm performance.
We still use the On-Policy ME(g)(%) in (31) and the relative
task performance gap L(g)(%) in (32) to report the results.
The dimensions of the full-order and reduced-order models
and other settings follows Case 1 in Table II. The results are
in Fig. 4. The results show that the learning performance is
quite robust against a large range of hyperparameter values
in Table I. Fig. 4c suggests that using a larger buffer size
would slightly lower the final task performance gap, although
not much improving the accuracy of the reduced-order model.
Fig. 4d indicates that the choice of the trust region parameter
ηi does not significantly influence the learning performance.
Overall, Fig. 4 suggests that setting algorithm hyperparameters
is not difficult in practice.

VII. THREE-FINGER DEXTEROUS MANIPULATION

In this section, we will apply the proposed method to solve
the three-fingered robotic hand manipulation [46]. The Python

codes to reproduce all the following results are available at
https://github.com/wanxinjin/Task-Driven-Hybrid-Reduction.

A. Three-Finger Robotic Hand Manipulation

As illustrated in Fig. 5, the three-finger robotic hand manip-
ulation system includes three 3-DoF robotic fingers and a cube
with a table. The goal is to find a control policy for the three
fingers to moves the cube to given target poses. The entire
simulation environment is based on MuJoCo physics engine
[13]. This paper considers two specific tasks.

Fig. 5: Three-finger dexterous manipulation tasks. Left: the three
robotic fingers need to turn a cube to a random target orientation,
given by a reference in the left corner. Right: the three fingers need to
move the cube to a target pose with random position and orientation,
given by the shaded reference. The simulation environment uses
MuJoCo physics engine [13].

Cube Turning Task: As shown in the left panel of Fig.
5, the cube has one degree of freedom (DoF) relative to the
table: it can only rotate around a fixed vertical axis on the
table. There is friction between the cube and table and also
damping in the joint of cube rotation. Three fingers need to
turn the cube to any random target orientation αgoal, sampled
from a uniform distribution:

β = αgoal ∼ U [−1.5, 1.5] (radius) (34)

For visualization, the target is shown in the bottom left corner.
Cube Moving Task: As shown in the right panel of Fig. 5,

the cube has 6 DoFs relative to the table: it is a free object on
the table. The three fingers need to move the cube to align it to
any random target pose β = (pgoal, αgoal) on the table, where
pgoal ∈ R2 (center of mass) is the cube’s target xy-position
and αgoal is the cube’s target orientation angle on the table,
both sampled from uniform distribution

pgoal ∼ U [−pmax, pmax], pmax = [0.06, 0.06]T(m),

αgoal ∼ U [−0.5, 0.5] (rad).
(35)

11

The challenge of the above three-finger manipulation tasks
lies in that the system contains a large number of potential
contact interactions that need to reason about. For example,
(i) the contact interaction between each finger and the cube
has three modes: separate, stick, and slip; (ii) each fingertip
needs to reason which of cube faces to contact with; (iii) the
contact interaction between the table and cube also contains
at least three modes. Thus, the full-order dynamics, although
unknown, contains an estimated thousands of hybrid modes.
Further, it will become even more challenging if one aims
to perform real-time closed-loop control on the three-finger
manipulation system to achieve the given tasks.

In this following, we will focus on solving the above three-
finger manipulation tasks without any prior knowledge about
the three-finger manipulation system, e.g., geometry, physical
properties, etc. We will apply the proposed method to learn a
task-driven reduced-order LCS for real-time closed-loop MPC
on the three-finger manipulation to accomplish the above tasks.
Note that different from our application to synthetic hybrid
systems in previous section, we here do not have a true hybrid
model f() (and f -MPC) for ground truth comparison.

B. Experiment Settings

Before proceeding, we here clarify the state and input spaces
in the reduced-order LCS model g() in (8) and define the cost
functions for the above two manipulation tasks.

1) Reduced-Order LCS Model: We select the state space
of the three-finger manipulation system as

x =
[
pcube, αcube, pfingertip

]T ∈ R9, (36)

where pfingertip ∈ R6 is the xy positions of the three fingertips,
pcube ∈ R2 is the xy position (of center of mass) of the object,
and αcube is the planar orientation angle of the cube. The input
space of the three-finger manipulation system is

u = ∆pfingertip ∈ R6, (37)

which includes the incremental position of each fingertip. We
use operational space control (OSC) [47] in the lower level to
map from u to the joint torque of each finger, also the OSC
controller regularizes the z (vertical) position of each fingertip
to be constant. The OSC control frequency is 10 Hz. In the
reduced-order LCS model g() in (8), we set

dimλ = 5 (38)

for both manipulation tasks. This means that the reduced-order
model can maximally represent 25 = 32 hybrid modes, which
are far fewer than the estimated thousands of modes in the full-
order dynamics of the three-finger manipulation system. The
selection of dimλ will be discussed later in Section VII-E.

2) Cost Functions: For given manipulation tasks, we can
simply define a continuous cost function as the sum of three
terms: (i) the distance of the object to the goal, (ii) control
effort, and (iii) the distance of the actuated fingers to the object
(which is part of the state variable) to encourage the contact.
Thus, we define the following quadratic cost function Jβ

Jβ =
∑T−1

t=0
cβ(xt,ut) + hβ(xT), β ∼ p(β) (39)

where p(β) is (34) for the Cube Turning task and (35) for the
Cube Moving task, and

cβ =wc
1∥pfingertip − pcube∥2 + wc

2∥pcube − pgoal∥2

+ wc
3(αcube − αgoal)2 + 0.01∥u∥2,

hβ =wh
1∥pfingertip − pcube∥2 + wh

2∥pcube − pgoal∥2

+ wh
3 (αcube − αgoal)2.

(40)

Here, the cost term ∥pfingertip − pcube∥2 penalizes the distance
between the fingertips and center of the cube, i.e. encouraging
contact between fingertips and cube; ∥pcube − pgoal∥2 and
(αcube−αgoal)2 are the squared distance to the target position or
orientation, respectively; and 0.01∥u∥2 penalizes the control
cost. wc = [wc

1, w
c
2, w

c
3]
T and wh = [wh

1 , w
h
2 , w

h
3]

T are the
cost weights, whose values will be given later. An extended
discussion of different choices of the cost weights will be given
in later Section VII-E.

The other hyperparameters of Algorithm 1 are listed in the
following table, which largely follows the ones in Table I
for the previous synthetic system examples (recall that the
discussion of the hyperparameter settings is in Section VI-D).

TABLE III: Hyperparameters for three-finger manipulation

Parameter1 Symbol Value

MPC horizon T 5
Rollout horizon H 20
of new rollouts added to buffer per iter. Rnew 5
Maximum buffer size Rbuffer 200 rollouts
Trust region parameter ηi 1.0 ∀i
Initial guess θ in (22) for g() θ0 U [−0.5, 0.5]

1 Other settings not listed here will be stated in text.

C. Cube Turning Task

This session presents the results and analysis for solving
the Cube Turning manipulation task. In this task, we set cost
function weights in (40) as

wc =
[
10.0 0.0 2.0

]T
,

wh =
[
2.0 0.0 10.0

]T
.

(41)

The above weight values are not deliberately picked. In fact,
the performance is not sensitive to the choice of wc and wh.
As will be discussed in Section VII-E, the similar learning and
task performance permits a wide selection of weight values.

1) Results: The key learning curves are shown in Fig. 6,
where each curve is the average of five random-seed trials
and the shaded area indicates the standard deviation. In all
panels, x-axis shows the total number of on-policy (g-MPC
controller) rollouts of the environment, which is proportional
to the learning iteration (i.e., each iteration collects 5 new
on-policy rollouts). Specifically, Fig. 6a shows the relative
prediction error of the reduced-order LCS g() evaluated on the
on-policy rollout data, defined in (31), where f(x,ug-MPC)
is a direct observation of the next state of the environment.
Fig. 6b shows the total cost of a rollout from running g-MPC
controller on the environment, defined in (33). Fig. 6c shows

12

0 50 100 150 200
of on-policy rollouts on env.

0%

20%

40%

60%

80%

100%
On

-p
ol

icy
 M

E

(a)

0 50 100 150 200
of on-policy rollouts on env.

0

10

20

30

40

50

To
ta

l c
os

t o
f a

 ro
llo

ut

(b)

0 50 100 150 200
of on-policy rollouts on env.

0

5

10

15

20

25

Or
ie

nt
. c

os
t o

f a
 ro

llo
ut

(c)

50 100 150 200
of on-policy rollouts on env.

0.010

0.005

0.000

0.005

0.010

Tr
us

t-r
eg

io
n

bo
un

ds

u +
u

(d)

Fig. 6: Learning curves of the three-finger manipulation system for the Cube Turning task. Each curve is the average of five random seeds,
and its shaded area shows the standard deviation. All results here are shown on an on-policy rollout basis, and each on-policy rollout is a
result of running the reduced-order g-MPC controller on the three-finger system (environment), i.e., the (unknown) full-order f(). Detailed
explanations are given in text.

the orientation cost of a rollout from running g-MPC controller
in the environment, defined as

Eβ∼p(β) Ex∼pβ(x0)

∑H

t=0
(αcube,t − αgoal)2. (42)

Fig. 6b and Fig. 6c show the very similar pattern because
the orientation cost term (αcube − αgoal)2 dominates in (40)
relative to other cost terms in scale. Fig. 6d shows the trust
region upper bound ū +∆ and lower bound ū −∆ for the
first component in the control input vector.

Some quantitative results that are not have shown in Fig. 6
are given in Table IV. In the second row of Table IV, the cube’s
terminal orientation error |αcube,H − αgoal| is calculated at the
end (at time step H) of a rollout. In the last row of Table IV,
we report the robustness of the g-MPC controller against exter-
nal disturbance torques added to the cube during g-MPC pol-
icy rollout. Here, we apply a 3D external disturbance torque,
sampled from τ disturb ∼ U [−τmag

disturb, τ
mag
disturb], during each time

interval (0.1s) of rollout steps. We increase the disturbance
magnitude τmag

disturb until the resulting g-MPC rollout has an
average cube terminal orientation error |αcube,H −αgoal| ≥ 0.3
(rad). We report the result by calculating the maximum angular
acceleration of disturbance: τmag

disturb
Icube

, with Icube the cube inertia.

TABLE IV: Performance of learned g-MPC for Cube Turning

Results Value

Total number of hybrid modes in g-MPC (around) 14
Cube terminal orientation error |αcube,H − αgoal| 0.06 ± 0.02 (rad)

Terminal error (relative)
(αcube,H−αgoal)2

(αgoal)2
3.4% ± 2.3%

Total training time of the algorithm1 4.1± 0.1 mins
Total # of environment samples in training 4k

Running frequency of reduced-order g-MPC1 >50 Hz

% of stick-slip-separate modes in rollouts (approx.) > 70%2

Maximum
τ

mag
disturb
Icube

until |αcube,H − αgoal| ≥ 0.3 5000 rad/s2

1 The experiments are tested on MacBook Pro with M1 Pro chip.
2 This is approximately calculated by observing the environment rollouts

with the learned reduced-order g-MPC.

Fig. 6 and Table IV show the efficiency of the proposed
method to successfully solve the three-finger dexterous ma-
nipulation for the Cube Turning task. Particularly, we have
the following conclusions.

(i) The proposed algorithm learns a reduced-order model
to solve the three-finger manipulation of Cube Turning task
without any prior knowledge within just 5 minutes of wall-
clock time, including real-time closed-loop control on the
manipulation system. It only collects around 4k (200 rollouts
× 20 steps/rollout) data points from the environment.

(ii) The learned task-driven reduced-order LCS g() leads
to a closed-loop MPC controller on the three-finger manipu-
lation system, achieving a high accuracy: the cube terminal
orientation error |αcube,H −αgoal| < 0.08 (rad) and the relative
orientation error (αcube,H−αgoal)2

(αgoal)2
< 5%.

(iii) The learned LCS g() results in a g-MPC, which enables
real-time closed-loop control on the three-finger manipulation
system to achieve the task. The running frequency of g-MPC
is more than 50Hz.

(iv) The learned reduced-order LCS g() maximally contains
32 modes, and around 14 of them are active. Those 14 hybrid
modes enables rich contact interactions, including separate,
stick, and slip between the fingertips and the cube, and
stick, CCW rotational slip, and CW rotational
slip between the cube and the table, happening at different
time steps. More than 70% of rollouts contains the sequence
of stick-slip-separate modes. More detailed explana-
tions will be given in the next session.

(v) The reduced-order g-MPC controller shows high robust-
ness against large external torque disturbances. The robustness
is a natural benefit of the closed-loop implementation of g-
MPC controller. Such a high robust performance could also
partially due to the high stiffness gain in our lower-level OSC.

2) Analysis of Reduced-Order Hybrid Modes: In this ses-
sion, we will detail how the learned task-driven reduced-order
LCS g() enables the three-finger system to reason about the
contact decision in the Cube Tuning task. In each row of
Fig. 7, given a random target orientation, we show the rollout
trajectories (left) and key-time-step snapshots (right) of the
three-finger manipulation environment by running the learned
g-MPC. The rollout horizon H = 20.

Specifically, in Fig. 7a and 7b, the target orientation is
αgoal = −1.29 (rad), shown by a reference at the lower left
corner. The upper panel in Fig. 7a shows the mode activation
of each dimension of λ in g-MPC. Here, the black bricks mean
λ > 0, and blank means λ = 0. For exposition simplicity, we
use sign(λ) to denote the mode activation. For example, at

13

0 2 4 6 8 10 12 14 16 18 200

1

2

3

4

LC
S

m
od

e

0 2 4 6 8 10 12 14 16 18 20
Rollout time t

1.0

0.5

0.0

Cu
be

 a
ng

le
 [r

ad
]

actual
target

(a)

Time step 7 Time step 9 Time step 10 Time step 13 Time step 18

(b)

0 2 4 6 8 10 12 14 16 18 200

1

2

3

4

LC
S

m
od

e

0 2 4 6 8 10 12 14 16 18 20
Rollout time t

0.00

0.05

0.10

0.15

Cu
be

 a
ng

le
 [r

ad
]

actual
target

(c)

Time step 0 Time step 3 Time step 4 Time step 5 Time step 6

(d)

Fig. 7: Two rollouts of running the learned reduced-order g-MPC controller on the three-finger system. (a) and (b): the target orientation
is αgoal = −1.29 (rad). (c) and (d): αgoal = −0.148. The upper panel of (a) or (c) shows the mode activation sign(λ) in g() over rollout
time. Here, black bricks show λ > 0 and blank λ = 0. The bottom panel of (a) or (c) shows the trajectory of cube angle αcube,t, where
different mode activation are indicated by different colors. (b) or (d) shows the key-time-step snapshots of the simulator, corresponding to (a)
or (c), respectively. Here, the upper panels show the environment snapshots, and lower panels show the zoom-in details. Analysis are given
in text and Tables V and VI. Note that in (b) and (d) we have attached a green-red body coordinate frame to the cube only for visualization
purposes (i.e., the coordinate frame does not affect the physical contact interaction).

TABLE V: Empirical correspondence between LCS mode activation in Fig. 7a and physical contact interaction in Fig.7b.

Time t Mode activation in g() Interaction between fingertips and cube1 Interaction between cube and table1

t = 0, 1, .., 8 sign(λ) = [0, 0, 0, 1, 0]T
(R, G, B separate) or

(G, B separate and R touching)
Cube stick to table or
CW rotational slip

t = 9 sign(λ) = [0, 1, 1, 1, 0]T G separate and R, B touching CW rotational slip

t = 10 sign(λ) = [0, 0, 1, 1, 0]T R right slip and G separate and B stick CW rotational slip

t = 11, ...14 sign(λ) = [1, 1, 1, 1, 0]T R, G, B touching CW rotational slip

t = 15, ..., 20 sign(λ) = [1, 0, 1, 1, 0]T G touching and R, B separate CW rotational slip

1 ‘R’:‘red finger’, ‘B’:‘red finger’, ‘G’:‘green finger’, ‘CW’:‘clockwise’, ‘CCW’:‘counter-clockwise’.

time step t = 9 is sign(λ9) = [0, 1, 1, 1, 0]T. The bottom
panel in Fig. 7a shows the cube’s orientation angle trajectory,
where the segments of different colors show different mode
activation. The upper row in Fig. 7b shows the snapshots of
the simulator at some key time steps of the same rollout, and
the lower row gives the zoom-in details. Physically, the red
fingertip begins touching the cube at time step 7, pushes the
cube to rotate clockwise during steps 7-14 (during this period
it also slips on the surface of the cube), and then separates
from the cube at time step 15. The blue fingertip begins
touching the cube at time step 9, then pushes the cube to

rotation closewise, and finally separates from the cube at step
15. The green fingertip begins touching the cube at time step
11, and continue pushing the cube until the end of the rollout.
By connecting Fig. 7a and 7b, we can observe the empirical
correspondence between g()’s mode activation in Fig. 7a and
physical interaction in Fig.7b, listed in Table V.

In Fig. 7c and 7d, the target orientation is αgoal = 0.148
(rad). Similar to the above description, Table VI gives the
empirical correspondence between the mode activation in Fig.
7c and physical contact interaction in Fig. 7d. Table VI shows
a more interesting connection between the mode activation in

14

TABLE VI: Empirical correspondence between LCS mode activation in Fig. 7c and physical contact interaction in Fig.7d.

Time t Mode activation in g() Interaction between fingertips and cube1 Interaction between cube and table1

t = 0, 1, 2 sign(λ) = [0, 0, 0, 0, 0]T R, G, B separate
Cube stick to table or
CCW rotation slip

t = 3, 13, 18 sign(λ) = [1, 0, 0, 0, 0]T
(R separate and G, B touching)

or R, G, B touching
CCW rotational slip (large)

t = 4, 6, 8, 9, 11, 15, 16 sign(λ) = [1, 1, 0, 0, 0]T R, G, B touching CCW rotational slip (small)

t = 5, 7, 10, 12, 14, 17, 19 sign(λ) = [0, 1, 0, 0, 0]T R, G, B touching CW rotational slip

0 50 100 150
of on-policy rollouts on env.

0%

20%

40%

60%

80%

100%

On
-p

ol
icy

 M
E

(%
)

(a)

0 50 100 150
of on-policy rollouts on env.

5

10

15

20

25
To

ta
l c

os
t o

f a
 ro

llo
ut

(b)

0 50 100 150
of on-policy rollouts on env.

0.02

0.04

0.06

0.08

Po
sit

io
n

co
st

 o
f a

 ro
llo

ut

(c)

0 50 100 150
of on-policy rollouts on env.

0

2

4

6

Or
ie

nt
. c

os
t o

f a
 ro

llo
ut

(d)

Fig. 8: Learning curves of the three-finger manipulation system for the Cube Moving task. Each curve is the average of five random seeds,
and its shaded area shows the standard deviation. All results here are shown on an on-policy rollout basis, and each on-policy rollout is a
result of running the reduced-order g-MPC controller on the three-finger system (environment), i.e., the (unknown) full-order f(). Detailed
explanations are given in text.

g() and the physical contact. From the bottom panel of Fig.
7c, we see the three fingers turns the cube to the target at time
step 5, and from that on, it slightly shakes the cube around
the target. This makes the contact interaction between the
cube and table also change alternatively, i.e., between the CW
rotational slip and CCW rotational slip. This
alternative physical interactions have been captured in the up-
per panel of Fig. 7c, where the mode activation from time step
5 also changes alternatively. This clearly shows the connec-
tions between mode in the reduced-order LCS g() and physical
contacts. For example, the mode sign(λt) = [0, 1, 0, 0, 0]T is
for the cube CW rotational slip (blue segments), while
sign(λt) = [1, 1, 0, 0, 0]T and sign(λt) = [1, 0, 0, 0, 0]T are
for CCW rotational slip (green and purple segments).

From Tables V and VI, we have the following comments.

(i) The learned LCS g() can approximately capture the
hybrid nature of the physical system. Since we limit the max-
imum mode count in g() to 32, some physical contact interac-
tions share the same mode activation of sign(λ). For exam-
ple, in Table V, the mode sign(λ) = [0, 0, 0, 1, 0]T captures
two interactions between the cube and fingertips: (R, G, B
separate) and (G, B separate and R touching).

(ii) Note that Tables V and VI come from empirical obser-
vation. For contact interactions that are very similar in human
eyes, there could exist unnoticeable physical differences, lead-
ing to different modes in g(). For example, in Table VI, CCW
rotational slip (large) corresponds to sign(λ) =
[1, 0, 0, 0, 0]T, while CCW rotational slip (small)
to sign(λ) = [1, 1, 0, 0, 0]T. There is no tight connection
from the mode of g() to physical phenomena.

D. Cube Moving Task

This session presents the results and analysis of using the
proposed method to solve the Cube Moving task. In this task,
we set weights in (40) as

wc =
[
12.0 200.0 0.2

]T
,

wh =
[
6.0 200.0 1.0

]T
.

(43)

The above weight values are not deliberately picked. In fact,
the performance is not sensitive to the choice of wc and wh.
As will be discussed in Section VII-E, the similar learning and
task performance permits a wide selection of weight values.

TABLE VII: Performance of learned g-MPC for Cube Moving

Results Value (mean+std)

Total number of hybrid modes in g-MPC 15

Terminal position error ∥pcube,H−pgoal∥ 0.0076 ± 0.0010 (m)

Terminal position error (rel.)
∥pcube,H−pgoal∥2

∥pgoal∥2 3.8% ± 1.3%

Terminal orientation error |αcube,H − αgoal| 0.065 ± 0.021 (rad)

Total training time 4.6 ± 0.4 (mins)

Total # of environment samples in training ≤4k

Running frequency of g-MPC controller > 30 Hz

Max.
wmag

disturb
mcube

until ∥pcube,H − pgoal∥ ≥ 0.01 0.9 m/s2

1) Results: Similar to the previous session, we present the
learning curves of the three-finger manipulation system in Fig.
8, and list the key results in Table VII. Each result is the
average of five random seeds. Specifically, Fig. 8a shows the
relative model error of the learned LCS g() evaluated on the
g-MPC policy data, defined in (31). Fig. 8b shows the total

15

0 2 4 6 8 10 12 14 16 18 20
Rollout time t

0

1

2

3

4
LC

S
m

od
e

0 2 4 6 8 10 12 14 16 18 20
Rollout time t

0.03

0.02

0.01

0.00

Cu
be

 p
os

iti
on

actual
target

0 2 4 6 8 10 12 14 16 18 20
Rollout time t

0.05

0.10

0.15

0.20

Cu
be

 a
ng

le

actual
target

0 2 4 6 8 10 12 14 16 18 20
Rollout time t

0.05

0.00

0.05

0.10

Fin
ge

rti
p

xy
 p

os
iti

on

(a)

Time step 4 Time step 6 Time step 8 Time step 11 Time step 13 Time step 14 Time step 15

(b)

Fig. 9: One rollout by running the learned reduced-order g-MPC on the three-finger manipulation system for the Cube Moving task. (a)
shows the mode activation in g() (first panel), the trajectory of the cube xy position (second panel), the trajectory of the cube angle (third
panel), and the trajectories of all three fingertip xy positions (fourth panel), over the duration of the rollout. Here, in the model activation
panel, black brick indicate λi > 0 and blank λi = 0. In the trajectory panels, the segments are colored differently, corresponding to different
mode activation. (b) shows the snapshots of the environment at key time steps of the g-MPC rollout. Here, the upper row of (b) shows the
whole environment, and the lower row show the zoom-in details. Explanations and analysis are given in Section VII-D2 and Table VIII.

cost of a rollout with the g-MPC controller, defined in (33).
Fig. 8c shows the position cost of a rollout with the g-MPC
controller, defined as

Eβ∼p(β) Ex∼pβ(x0)

∑H

t=0
∥pcube,t − pgoal∥2. (44)

Fig. 8d shows the orientation cost (42) of a rollout with the g-
MPC controller. Table VII lists some key quantitative results.
Here, the cube’s terminal position error ∥pcube,H−pgoal∥ and
terminal orientation error |αcube,H−αgoal| are calculated at the
end (time step H) of a rollout. In the last row of Table VII, we
test the robustness of the closed-loop g-MPC controller against
the external disturbance forces added to the cube during its
motion. Here, we apply an external disturbance wrench (3D
torque and 3D forces), sampled from U [−wmag

disturb,wmag
disturb],

during each time interval (0.1s) of the rollout steps. We
increase the disturbance magnitude wmag

disturb until the resulting
g-MPC rollout has an average cube terminal position error
∥pcube,H − pgoal∥ ≥ 0.01 (m). We report the result using
wmag

disturb/mcube, with mcube the cube mass. Based on the results
in Fig. 8 and Table VII, we have the following conclusions.

(i) Without any prior knowledge, the proposed method
learns a reduced-order LCS and successfully solves the Cube
Moving manipulation task within 5 minutes of wall-clock
time. The reduced-order model g() leads to a real-time g-
MPC controller with running frequency > 30 Hz. The method
requires collecting less than 4k data points (175 rollouts × 20
steps/rollout) from the environment.

(ii) The learned reduced-order LCS g() only permits 32
modes (among them 15 are used for the task), which is much
fewer than the estimated number of hybrid modes in full-order
dynamics, which could be thousands.

(iii) The reduced-order g-MPC controller shows robustness
against large external wrench disturbances. This is an advan-
tage of using the closed-loop g-MPC controller.

2) Analysis of Reduced-Order Hybrid Modes: Fig. 9 shows
one rollout of running the learned g-MPC on the three-
finger manipulation system (the environment). Fig. 9a plots the
trajectory of mode activation in g() (first panel), the trajectory
of the cube position (second panel), the trajectory of the
cube orientation angle (third panel), and the trajectories of xy
position of three fingertips (fourth panel), over the duration
of rollout. All trajectories are colored differently for different
mode activation in g(). Fig. 9b shows the snapshots of the
environment at some key time steps of the rollout. As done
in the previous task, Table VIII lists the empirical connection
between mode activation in g-MPC in Fig. 9a and physical
contact interaction in Fig. 9b.

Results in Fig. 9 and Table VIII show rich contact in-
teractions in the Cube Moving task. Different hybrid mode
of g() can approximately capture different contact interac-
tions during rollout. Those interactions include separate,
stick, and slip between fingertips and cube, stick,
CCW rotational slip, and CW rotational slip
between cube and table, and B contacting G between

16

TABLE VIII: Approximate correspondence between LCS mode activation in Fig. 9a and contact interaction in Fig.9b.

Duration t Mode activation in g() Interaction between fingertips and cube Interaction between cube and table

t = 0, 1, 2 sign(λ) = [1, 0, 1, 0, 0]T R, G, B separate stick to table

t = 3, 4 sign(λ) = [1, 1, 1, 0, 0]T R, B separate and G separate translational slip

t = 5, 6, 7
sign(λ) = [1, 1, 1, 0, 1]T

or [0, 1, 1, 0, 0]T
R, G stick & B separate translational & rotational slip

t = 8, 9 sign(λ) = [0, 1, 0, 0, 1]T R, G, B stick translational & rotational slip

t = 10, 11 sign(λ) = [0, 1, 0, 0, 0]T R, G stick and B right slip translational & rotational slip

t = 12, 13 sign(λ) = [0, 1, 0, 0, 1]T R stick and B contacting G translational & rotational slip

t = 14, 16, 18 sign(λ) = [0, 1, 0, 0, 0]T R, B, G stick and B contacting G CCW rotational slip

t = 15, 17, 19 sign(λ) = [0, 0, 1, 0, 1]T R, B, G stick and B contacting G CW rotational slip

Strategy 1 Strategy 3 Strategy 4Strategy 2 Strategy 5

R slip on the back face
G stick on the right face
B slip on the front face

R separate from back face
G stick on the right face
B stick on the left face

R stick on back face
G slip on the front face
B slip on the left face

R stick on back face
G slip on the right face
B slip on the left face

R stick on back face
G stick on the right face
B slip on the front face

Fig. 10: Different contact strategies generated by the same learned reduced-order LCS g() in its g-MPC policy rollout given different
targets. The first row shows the mode activation of g over the rollout; the second row shows the snapshot of the environment at the end
of the rollout; and the third row shows the zoom-in details of contact interactions. The bottom title in each column describes the main
interactions for that strategy. Analysis is given in Section VII-D3.

fingertips, happening at different time steps. Notably, in Fig.
9a, for t ≥ 14, the three fingers start slightly shaking the cube,
as shown by the cube position and angle trajectories, and active
mode in g() also changes alternatively, as shown in the mode
activation panel. Those observations indicate the modes of the
learned reduced-order LCS are able to approximately capture
the rich contact interactions in the manipulation system.

3) Generation of Different Manipulation Strategies: No-
tably, for different target poses (sampled from (35)), we ob-
serve that the learned g-MPC produces different manipulation
strategies to move the cube. We show this in Fig. 10.

Different columns in Fig. 10 shows different manipulation
strategies given different targets. Note that all those strategies
are generated from the same learned reduced-order LCS g() in
its g-MPC policy rollout, given different targets. The first row
in Fig. 10 shows the mode activation in g() during the rollout
with g-MPC controller; the second row shows the snapshot of

the environment at the end of rollout; and the third row shows
the zoom-in details of the contact interaction. The bottom title
in each column describes the main physical interactions for
the rollout. From Fig. 10, we have the following comments.

(i) Fig. 10 clearly shows the learned reduced-order LCS
g() enables generating different strategies for different targets.
Particularly, g() enables the three fingertips to choose different
faces (right, left, front, and back) of the cube with dif-
ferent contact interactions (separate, stick, and slip).
For example, the blue fingertip chooses the front face in
Strategies 1 and 5 while the left face in the others. The red
fingertip is slip in Strategy 1, separate in Strategy 2, and
stick in others.

(ii) Jointly looking at the mode activation of g() in the first
row of Fig. 10, we observe that the mode activation at the
beginning of all rollouts, e.g., t ≤ 4, are quite similar since the
cube during this period is still, and all fingertips are separate

17

from the cube. After t > 4, different modes in g-MPC begin
to activate, leading to different manipulation strategies.

(iii) Recall that all strategies shown in Fig. 10 are generated
by the same learned reduced-order LCS g(). The results
clearly show the effectiveness of the learned reduced-order g-
MPC to capture and make use of its task-relevant hybrid modes
to produce different strategies for the manipulation task.

4) Occasional Reorientation Failure: We report some fail-
ure cases in the above cube moving manipulation task. Fig.
11 shows one example of reorientation failure. Here, some
snapshots at key time steps of the g-MPC rollout are shown.
At time step 10 (middle column), the three fingertips had
successfully moved and turned the cube to the target pose.
However, at the subsequent time steps, the green fingertip
continues to slide along the cube surface, leading to the
misalignment of the cube orientation (third column).

Time step 0 Time step 11 Time step 19

Fig. 11: An example of reorientation failure in a rollout.

We observed that reorientation failure are target dependent,
meaning that reorientation failures happen more frequently
at some targets than at others. Also, changing the random
seed for target distribution (35) also changes the failure target
locations. This makes us believe that the reorientation failure
could be caused by insufficient target sampling at such regions.
In fact, the whole training process sampled from fewer than
200 target poses from (35). Some regions of the target space
could be less sampled than other regions, leading to the learned
g() not well representing those regions. We expect that those
failures could be reduced by decreasing the target space. In
fact, in our previous Cube Turning task, since the target space
is one-dimensional, we have not experienced the reorientation
failures in that task.

E. Discussion

We conclude this section with some additional performance
evaluations of the proposed method, and note some limitations
(and future work) of the proposed method.

1) LCS with Different Hybrid Modes: In the above three-
finger manipulation tasks, we have used LCS models g() in
(8) with a fixed dimλ = 5, which allows the representation
of 32 modes. Results in Table IV and Table VII show that
the learned reduced-order LCS has not used up all of those
modes. Therefore, a natural question is whether it is possible
to learn a LCS with fewer hybrid modes. To show this, we
learn a reduced-order LCS g() with different dimλ for the
Cube Turning task, under the same other settings as in Section

VII-C. We show the results in Fig. 12. Here, for each dimλ
case, we run the experiments with five random seeds, and the
mean and variance are computed across different runs.

1 2 3 4 5 6 7
dim

10

20

30

To
ta

l c
os

t o
f r

ol
lo

ut

(a)

1 2 3 4 5 6 7
dim

0.0

0.2

0.4

Fin
al

 o
rie

nt
. e

rro
r (

ra
d)

(b)

1 2 3 4 5 6 7
dim

0%

2%

4%

6%

8%

On
-p

ol
icy

 M
E

(%
)

(c)

1 2 3 4 5 6 7
dim

40

50

60

70

g-
M

PC
 fr

eq
ue

nc
y

(H
z)

(d)

Fig. 12: Testing performance of the learned LCS g() with different
dimλ for the Cube Turning task. The metrics in (a)-(c) follow the
same definitions as the ones in Section VII-C, and (d) is running
frequency of g-MPC. For each dimλ case, the mean and variance
are calculated across five runs with different random seeds. The other
settings follow the ones in Section VII-C.

Fig. 12 shows that a LCS of fewer modes, e.g., dimλ ≤ 3,
leads to degraded performance. The previous Table IV has
showed that successful manipulation needs around 14 hybrid
modes in g(). Thus, the successful manipulation on average
requires at least dimλ ≥ 4. Fig. 12 confirms this by showing
improved performances if dimλ ≥ 4. Fig. 12 also shows that
further increasing of dimλ, say dimλ = 6, will not help
the performance too much. Also, increasing dimλ will slow
the speed of the closed-loop g-MPC controller in Fig. 12d. In
practice, the choice of dimλ depends on tasks and systems,
and one typically needs to find a dimλ (via trial and error)
by balancing its performance and computational complexity.

2) Choice of Cost Weights: In this session, we investigate
how the choice of cost weights wc = [wc

1, w
c
2, w

c
3]
T and wh =

[wh
1 , w

h
2 , w

h
3]

T in (40) affects the algorithm performance. We
apply the proposed method to learn a reduced LCS of dimλ =
5 for the Cube Turning task, with the same other conditions as
in Section VII-C, except varying the values of (wc

1, w
c
3) and

(wh
1 , w

h
3) (note wc

2 = wh
2 = 0 in the Cube Turning task). The

results are shown in Fig. 13.
Compared to the previous performance (see Fig. 6 and

Table IV) in Section VII.C, Fig. 13a and Fig. 13b show that
a similarly good performance permits a wide selection of
running cost weights wc, e.g., wc

3 = 0.5 and wc
1 ∈ (10, 100).

Typically, to achieve a good algorithm performance, Fig. 13a
and Fig. 13b suggest that the selection of running cost weights
wc should make the corresponding cost terms, here, wc

1 for the
distance between fingertip and cube and wc

3 for the orientation
cost, roughly have a similar scale. The results in Fig. 13c and
Fig. 13d also say that the allowable choice of final cost weights

18

1 10 100
wc

1

0.1

1

10

w
c 3

| obj, H
goal| (rad)

0.1 0.3 0.5 0.7 0.9 1.1 1.3

(a)

1 10 100
wc

1

0.1

1

10

w
c 3

On-policy ME (%)
0.02 0.04 0.06 0.08

(b)

1 10 100
wh

1

0.1

1

10

w
h 3

| obj, H
goal| (rad)

0.1 0.3 0.5 0.7 0.9 1.1 1.3

(c)

1 10 100
wh

1

0.1

1

10

w
h 3

On-policy ME (%)
0.02 0.04 0.06 0.08

(d)

Fig. 13: Performance of the proposed method with different choices
of cost weights wc and wh in (40) for the Cube Turning task. (a)
and (b) report the performance using different wc while fixing wh =
[2, 0, 10]T, and (c) and (d) using different wh while fixing wc =
[10, 0, 2]T. The metric in (a) and (c) is the cube’s terminal orientation
error |αcube,H −αgoal|, as used in Table IV, and the metric in (b) and
(d) uses the on-policy model error, defined in (31).

wh is more flexible, and different whs have limited influence
on the algorithm performance. Thus, we can conclude that the
proposed algorithm is not sensitive to the choice ofwc andwh

in (40). In practical implementation, it is always not difficult
to find the cost weights to produce good performance, and one
empirical principle to select cost weights is to make each cost
term have a similar scale.

3) Choice of Task Distribution: We briefly discuss the
choice of task parameter β, which we have used to define
a distribution of tasks p(β). In the examples above, we have
considered uniformly distributed targets (e.g., p(β) in (34) and
(35)). We note, however, that this choice is somewhat arbitrary,
and for completeness we demonstrate similar performance
across other distributions. The experiment settings follow
Section VII-C, except using different targets distribution p(β).

Fig. 14, shows results from two other target distributions
for the Cube Turning task: δ-distribution corresponding to a
single fixed target, p(β = 0.6) = 1, shown in the blue lines,
and a Gaussian distributed target, p(β) = N (0.6, 0.2), shown
in the red lines. The learning curves in Fig.14a and Fig. 14b
indicate that for each task distribution, a reduced-order LCS
model is successfully learned. Also, we notice that compared
to the single target task, multiple targets bring more variance.
In conclusion, given a different task distribution, the proposed
method always finds a reduced order model to minimize the
task performance gap in expectation over the task distribution,
as in (13). In practice, we expect p(β) to be chosen either

0 100 200
of on-policy rollouts on env.

10

20

30

40

To
ta

l c
os

t o
f a

 ro
llo

ut fixed target
Gaussian target

(a)

0 100 200
of on-policy rollouts on env.

0%

20%

40%

60%

80%

100%

On
-p

ol
icy

 M
E

(b)

Fig. 14: Performance of the proposed method under different target
distribution in the Cube Turning task. We use two target distributions:
δ-distribution for a single fixed target, i.e., p(β = 0.6) = 1, in the
blue lines, and a Gaussian distributed target, p(β) = N (0.6, 0.2), in
the red lines. The metric follows the ones used in Fig. 6.

by the practitioner, to best represent the tasks the robot must
accomplish, or to be independently identified (e.g., via the
output from some higher-level planner).

4) Limitation of PWA Models: In the paper, we use PWA
models (8) as the reduced-order hybrid representation. As
these PWA models are inherently based on linearization, they
do not naturally apply to all manipulation tasks, for example
large rotations (e.g. full 360-degree rotation of the cube). Such
large rotations involve significant non-linearity that local PWA
models cannot capture well, unless one adds more ‘pieces’ in
PWA to approximate it [48]. However, using more ‘pieces’
to approximate smooth non-linearity is not the interest of this
paper; instead, we focus on using pieces to capture the hybrid
structure (i.e., mode boundaries) of a non-linear hybrid system.
But this limitation motivates a future direction to extend LCS
representation for non-linear complementarity models.

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposes the method of task-driven hybrid model
reduction for multi-contact dexterous manipulation. Building
upon our prior work of learning linear complementarity sys-
tems, we propose learning a reduced-order hybrid model with
a limited number of task-relevant hybrid modes, such that it
enables real-time closed-loop MPC control and is sufficient
to achieve high performance on hybrid systems like multi-
finger dexterous manipulation. We have shown that learning a
reduced-order hybrid model attains a provably upper-bounded
closed-loop performance. We have demonstrated the proposed
method in reducing the mode count of synthetic hybrid control
systems by multiple orders of magnitude while achieving task
performance loss of less than 5%. We apply the proposed
method to solve three-finger robotic hand manipulation for ob-
ject reorientation. Without any prior knowledge, the proposed
method achieves state-of-the-art closed-loop performance in
less than five minutes of data collection and model learning.
The future work includes building the hardware and testing
it on the hardware robotic manipulation system, as well as
extension into nonlinear reduced-order hybrid models.

ACKNOWLEDGEMENTS

Toyota Research Institute funded and supported this work.

19

APPENDIX A
PROOF OF LEMMA 1

Proof.

Jβ
(
ug,F(ug,x0)

)
− Jβ

(
uf ,F(uf ,x0)

)
= Jβ

(
ug,F(ug,x0)

)
− Jβ

(
ug,G(ug,x0)

)︸ ︷︷ ︸
Term I

+ Jβ
(
ug,G(ug,x0)

)
− Jβ

(
uf ,G(uf ,x0)

)︸ ︷︷ ︸
Term II

+ Jβ
(
uf ,G(uf ,x0)

)
− Jβ

(
uf ,F(uf ,x0)

)︸ ︷︷ ︸
Term III

,

(45)

Here, Term I and Term III can follow the Lipschitz continuity:

Term I ≤ M∥G(ug,x0)− F(ug,x0)∥
Term III ≤ M∥G(uf ,x0)− F(uf ,x0)∥.

(46)

Term II trivially satisfies

Jβ
(
ug,G(ug,x0)

)
− Jβ

(
uf ,G(uf ,x0)

)
≤ 0 (47)

because ug is the minimum by the definition of g-MPC (11).
Putting (46) and (47) together, one has

Jβ
(
ug,F(ug,x0)

)
−Jβ

(
uf ,F(uf ,x0)

)
≤

M
(
∥G(ug,x0)−F(ug,x0)∥+∥G(uf ,x0)−F(uf ,x0)∥

)
.

The above still holds with expectation of both sides over p(x0)
and p(β), yielding (15). This completes the proof.

Remark. Ep(β) Epβ(x0)

∥∥∥G(uf ,x0)−F(uf ,x0)
∥∥∥ in (15) is

called the domain adaption in reinforcement learning [49].
Specifically, if g() is trained only with g-MPC data Dg , the
domain adaption term captures the model error when the g()
is evaluated with f -MPC data Df . This domain adaption term
is inevitable if want a learned proxy model g() trained on its
generated data to capture the true dynamics f().

APPENDIX B
PROOF OF LEMMA 2

Proof. Given any x0 ∼ p(x0) and β ∼ p(β), as ug(x0,β) is
a solution to (11), it satisfies the first-order condition

∇uJβ

(
ug,G(ug,x0)

)
=

(
∂Jβ

∂ug
+

∂Jβ

∂G(ug)

∂G

∂ug

)T

= 0, (48)

where ∂Jβ

∂ug denotes the partial gradient of Jβ
(
u,G(u,x0)

)
with respect to u evaluated at ug(x0,β), and similar notations
applies to ∂Jβ

∂G(ug) and ∂G
∂ug and below. Using (48), one has∥∥∥∇uJβ

(
ug,F(ug,x0)

)∥∥∥
=
∥∥∥∇uJβ

(
ug,F(ug,x0)

)
−∇uJβ

(
ug,G(ug,x0)

)∥∥∥
=

∥∥∥∥∥∂Jβ

(
u,F

)
∂ug

+
∂Jβ

∂F(ug)

∂F

∂ug
−
∂Jβ

(
u,G

)
∂ug

− ∂Jβ

∂G(ug)

∂G

∂ug

∥∥∥∥∥
≤

∥∥∥∥∥∂Jβ

(
u,F

)
∂ug

−
∂Jβ

(
u,G

)
∂ug

∥∥∥∥∥+
∥∥∥∥ ∂Jβ

∂F(ug)

∂F

∂ug
− ∂Jβ

∂G(ug)

∂G

∂ug

∥∥∥∥ ,
(49)

where last inequality is due to Cauchy–Schwarz inequality,
and for clarity, we drop the dependence on x0 momentarily.
The first term in (49) has∥∥∥∥∥∂Jβ

(
u,F

)
∂ug

−
∂Jβ

(
u,G

)
∂ug

∥∥∥∥∥ ≤ L2

∥∥∥F(ug)−G(ug)
∥∥∥. (50)

because of the L2-Lipschitz continuity of ∇uJβ(u,x) as-
sumed in Lemma 2. The second term of (49) has∥∥∥∥ ∂Jβ

∂F(ug)

∂F

∂ug
− ∂Jβ

∂G(ug)

∂G

∂ug

∥∥∥∥
=

∥∥∥∥ ∂Jβ

∂F(ug)

∂F

∂ug
− ∂Jβ

∂F(ug)

∂G

∂ug
+

∂Jβ

∂F(ug)

∂G

∂ug
− ∂Jβ

∂G(ug)

∂G

∂ug

∥∥∥∥
≤
∥∥∥∥ ∂Jβ

∂F(ug)

∂F

∂ug
− ∂Jβ

∂F(ug)

∂G

∂ug

∥∥∥∥+∥∥∥∥ ∂Jβ

∂F(ug)

∂G

∂ug
− ∂Jβ

∂G(ug)

∂G

∂ug

∥∥∥∥
≤M1

∥∥∥∥ ∂F

∂ug
− ∂G

∂ug

∥∥∥∥+MgL1

∥∥∥F(ug)−G(ug)
∥∥∥,

(51)
where the last inequality is due to the bound ∥∇xJβ(u,x)∥ ≤
M1, L1-Lipschitz continuity of ∇xJβ(u,x), and the bound
∥∇uG(u)∥ ≤ Mg given in Lemma 2.

Combining (49)-(51) and replacing
∥∥ ∂F
∂ug − ∂G

∂ug

∥∥ compactly
with

∥∥∇uF(u)−∇uG(u)
∥∥ we have (18) and (19) in Lemma

2. This completes the proof.

REFERENCES

[1] M. Parmar, M. Halm, and M. Posa, “Fundamental challenges in deep
learning for stiff contact dynamics,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IEEE, 2021, pp. 5181–5188.

[2] B. Bianchini, M. Halm, N. Matni, and M. Posa, “Generalization bounded
implicit learning of nearly discontinuous functions,” in Learning for
Dynamics and Control Conference. PMLR, 2022, pp. 1112–1124.

[3] S. Pfrommer, M. Halm, and M. Posa, “Contactnets: Learning discon-
tinuous contact dynamics with smooth, implicit representations,” in
Conference on Robot Learning, 2020.

[4] W. Jin, T. D. Murphey, D. Kulić, N. Ezer, and S. Mou, “Learning from
sparse demonstrations,” IEEE Transactions on Robotics, 2022.

[5] Y.-M. Chen and M. Posa, “Optimal reduced-order modeling of bipedal
locomotion,” in IEEE International Conference on Robotics and Au-
tomation. IEEE, 2020, pp. 8753–8760.

[6] A. Aydinoglu and M. Posa, “Real-time multi-contact model predictive
control via admm,” in IEEE International Conference on Robotics and
Automation, 2022, pp. 3414–3421.

[7] S. L. Cleac’h, T. Howell, M. Schwager, and Z. Manchester,
“Fast contact-implicit model-predictive control,” arXiv preprint
arXiv:2107.05616, 2021.

[8] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z.
Kolter, “End-to-end differentiable physics for learning and control,”
Advances in neural information processing systems, vol. 31, 2018.

[9] M. Geilinger, D. Hahn, J. Zehnder, M. Bächer, B. Thomaszewski, and
S. Coros, “Add: Analytically differentiable dynamics for multi-body
systems with frictional contact,” ACM Transactions on Graphics, vol. 39,
no. 6, pp. 1–15, 2020.

[10] E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S. Sukhatme,
“Neuralsim: Augmenting differentiable simulators with neural net-
works,” in IEEE International Conference on Robotics and Automation.
IEEE, 2021, pp. 9474–9481.

[11] T. A. Howell, S. L. Cleac’h, J. Z. Kolter, M. Schwager, and Z. Manch-
ester, “Dojo: A differentiable simulator for robotics,” arXiv preprint
arXiv:2203.00806, 2022.

[12] H. J. Suh, M. Simchowitz, K. Zhang, and R. Tedrake, “Do differentiable
simulators give better policy gradients?” in International Conference on
Machine Learning. PMLR, 2022, pp. 20 668–20 696.

[13] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2012, pp. 5026–5033.

[14] D. Stewart and J. C. Trinkle, “An implicit time-stepping scheme for
rigid body dynamics with coulomb friction,” in IEEE International
Conference on Robotics and Automation, vol. 1, 2000, pp. 162–169.

20

[15] E. Coumans et al., “Bullet physics library,” Open source: bulletphysics.
org, vol. 15, no. 49, p. 5, 2013.

[16] R. Tedrake and the Drake Development Team, “Drake: Model-based
design and verification for robotics,” 2019. [Online]. Available:
https://drake.mit.edu

[17] W. P. Heemels, B. De Schutter, and A. Bemporad, “Equivalence of
hybrid dynamical models,” Automatica, vol. 37, no. 7, pp. 1085–1091,
2001.

[18] A. Bemporad, F. Borrelli, and M. Morari, “Piecewise linear optimal
controllers for hybrid systems,” in American Control Conference, vol. 2.
IEEE, 2000, pp. 1190–1194.

[19] T. Marcucci and R. Tedrake, “Mixed-integer formulations for optimal
control of piecewise-affine systems,” in ACM International Conference
on Hybrid Systems: Computation and Control, 2019, pp. 230–239.

[20] F. Lauer, “On the complexity of piecewise affine system identification,”
Automatica, vol. 62, pp. 148–153, 2015.

[21] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari, “A clustering
technique for the identification of piecewise affine systems,” Automatica,
vol. 39, no. 2, pp. 205–217, 2003.

[22] A. Bemporad, “A piecewise linear regression and classification algorithm
with application to learning and model predictive control of hybrid
systems,” IEEE Transactions on Automatic Control, 2022.

[23] J.-P. Sleiman, F. Farshidian, M. V. Minniti, and M. Hutter, “A unified
mpc framework for whole-body dynamic locomotion and manipulation,”
IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4688–4695,
2021.

[24] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud,
M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar, and N. Mansard,
“Crocoddyl: An efficient and versatile framework for multi-contact
optimal control,” in IEEE International Conference on Robotics and
Automation. IEEE, 2020, pp. 2536–2542.

[25] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait
and trajectory optimization for legged systems through phase-based
end-effector parameterization,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1560–1567, 2018.

[26] F. R. Hogan and A. Rodriguez, “Reactive planar non-prehensile manip-
ulation with hybrid model predictive control,” The International Journal
of Robotics Research, vol. 39, no. 7, pp. 755–773, 2020.

[27] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.

[28] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“Casadi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, no. 1, pp.
1–36, 2019.

[29] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep dynamics
models for learning dexterous manipulation,” in Conference on Robot
Learning. PMLR, 2020, pp. 1101–1112.

[30] A. Allshire, M. Mittal, V. Lodaya, V. Makoviychuk, D. Makoviichuk,
F. Widmaier, M. Wüthrich, S. Bauer, A. Handa, and A. Garg, “Transfer-
ring dexterous manipulation from gpu simulation to a remote real-world
trifinger,” arXiv preprint arXiv:2108.09779, 2021.

[31] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew,
J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray et al., “Learning
dexterous in-hand manipulationnagabandi2020deep,” The International
Journal of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[32] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial
on the cross-entropy method,” Annals of operations research, vol. 134,
no. 1, pp. 19–67, 2005.

[33] T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang,
G. Zhang, P. Abbeel, and J. Ba, “Benchmarking model-based reinforce-
ment learning,” arXiv preprint arXiv:1907.02057, 2019.

[34] S. Kajita and K. Tani, “Study of dynamic biped locomotion on rugged
terrain-derivation and application of the linear inverted pendulum mode,”
in IEEE International Conference on Robotics and Automation. IEEE
Computer Society, 1991, pp. 1405–1406.

[35] D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a
humanoid robot,” Autonomous robots, vol. 35, no. 2, pp. 161–176, 2013.

[36] A. Pandala, R. T. Fawcett, U. Rosolia, A. D. Ames, and K. A. Hamed,
“Robust predictive control for quadrupedal locomotion: Learning to
close the gap between reduced-and full-order models,” IEEE Robotics
and Automation Letters, vol. 7, no. 3, pp. 6622–6629, 2022.

[37] D. E. Stewart, “Rigid-body dynamics with friction and impact,” SIAM
review, vol. 42, no. 1, pp. 3–39, 2000.

[38] E. Todorov, “A convex, smooth and invertible contact model for trajec-
tory optimization,” in IEEE International Conference on Robotics and
Automation, 2011, pp. 1071–1076.

[39] M. J. Tsatsomeros, “Generating and detecting matrices with positive
principal minors,” Asian Information-Science-Life: An International
Journal, vol. 1, no. 2, pp. 115–132, 2002.

[40] R. W. Cottle, J.-S. Pang, and R. E. Stone, The linear complementarity
problem. SIAM, 2009.

[41] W. Jin, A. Aydinoglu, M. Halm, and M. Posa, “Learning linear com-
plementarity systems,” Annual Learning for Dynamics and Control
Conference, 2022.

[42] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
an operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020. [Online].
Available: https://doi.org/10.1007/s12532-020-00179-2

[43] S. Afriat, “Theory of maxima and the method of lagrange,” SIAM
Journal on Applied Mathematics, vol. 20, no. 3, pp. 343–357, 1971.

[44] Y.-x. Yuan, “A review of trust region algorithms for optimization,” in
International Council for Industrial and Applied Mathematics, vol. 99,
no. 1, 2000, pp. 271–282.

[45] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[46] M. Wüthrich, F. Widmaier, F. Grimminger, J. Akpo, S. Joshi, V. Agrawal,
B. Hammoud, M. Khadiv, M. Bogdanovic, V. Berenz et al., “Trifin-
ger: An open-source robot for learning dexterity,” arXiv preprint
arXiv:2008.03596, 2020.

[47] P. M. Wensing and D. E. Orin, “Generation of dynamic humanoid
behaviors through task-space control with conic optimization,” in IEEE
International Conference on Robotics and Automation, 2013, pp. 3103–
3109.

[48] H. Dai, G. Izatt, and R. Tedrake, “Global inverse kinematics via mixed-
integer convex optimization,” The International Journal of Robotics
Research, vol. 38, no. 12-13, pp. 1420–1441, 2019.

[49] A. Rajeswaran, I. Mordatch, and V. Kumar, “A game theoretic frame-
work for model based reinforcement learning,” in International confer-
ence on machine learning, 2020, pp. 7953–7963.

Wanxin Jin is an Assistant Professor in the School
for Engineering of Matter, Transport, and Energy at
Arizona State University in Tempe, AZ, USA. He
earned his Ph.D. degree from Purdue University in
West Lafayette, IN, USA, in 2021. Between 2021
and 2023, Dr. Jin held the position of Postdoctoral
Researcher at the GRASP Lab, University of Penn-
sylvania, Philadelphia, PA, USA. At Arizona State
University, Dr. Jin leads the Intelligent Robotics
and Interactive Systems Lab, focusing on developing
fundamental methods at the convergence of control,

machine learning, and optimization, with the goal to enable robots to safely
and efficiently interact with humans and physical objects.

Michael Posa received the B.S. and M.S. degrees
in mechanical engineering from Stanford University,
Stanford, CA, USA, in 2007 and 2008, respec-
tively. He received the Ph.D. degree in electrical
engineering and computer science from the Mas-
sachusetts Institute of Technology, Cambridge, MA,
USA, in 2017. He is currently an Assistant Professor
of Mechanical Engineering and Applied Mechanics
with the University of Pennsylvania, Philadelphia,
PA, USA, where he is a Member of the Gen-
eral Robotics, Automation, Sensing and Perception

(GRASP) Lab. He holds secondary appointments in electrical and systems
engineering and in computer and information science. He leads the Dynamic
Autonomy and Intelligent Robotics Lab, University of Pennsylvania, which
focuses on developing computationally tractable algorithms to enable robots
to operate both dynamically and safely as they maneuver through and interact
with their environments, with applications including legged locomotion and
manipulation. Dr. Posa was a recipient of multiple awards, including the NSF
CAREER Award, RSS Early Career Spotlight Award, and best paper awards.
He is an Associate Editor for IEEE Transactions on Robotics.

