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Abstract— Bipedal robots demonstrate potential in navigating
challenging terrains through dynamic ground contact. However,
current frameworks often depend solely on proprioception or
use manually designed visual pipelines, which are fragile in
real-world settings and complicate real-time footstep planning
in unstructured environments. To address this problem, we
present a vision-based hierarchical control framework that
integrates a reinforcement learning high-level footstep plan-
ner, which generates footstep commands based on a local
elevation map, with a low-level Operational Space Controller
that tracks the generated trajectories. We utilize the Angular
Momentum Linear Inverted Pendulum model to construct a
low-dimensional state representation to capture an informative
encoding of the dynamics while reducing complexity. We
evaluate our method across different terrain conditions using
the underactuated bipedal robot Cassie and investigate the
capabilities and challenges of our approach through simulation
and hardware experiments.

I. INTRODUCTION

Bipedal robots hold immense potential for traversing un-
structured terrains, making them invaluable for applications
such as search and rescue and disaster response [1]. Humans
demonstrate remarkable adaptive locomotion through a com-
bination of proprioceptive feedback and visual perception.
When walking, we simultaneously evaluate our surroundings
for safe and stable footholds while planning our next step.
This seamless integration of sensory information and control
is essential for effective navigation in outdoor environments.

To replicate this behavior, vision-based locomotion con-
trollers generally follow a modular framework composed of
perception, planning, and control. The perception module
processes visual data to build a spatial map of the local
environment, which then informs a high-level planner to
determine foot placements or motion trajectories. Finally,
a low-level controller translates these plans into actuator
commands. Although this pipeline has demonstrated success
in structured settings, it often relies on handcrafted visual
features and model-based strategies that are sensitive to noise
and typically limited to simplified terrain assumptions such
as piecewise-planar surfaces [2], [3], [4], [5].

An important component in achieving tractable planning
for bipedal locomotion is the use of reduced-order models
(ROMs), which are simplified representations that capture
the key dynamics of complex robotic systems. These models
offer interpretable and computationally efficient formula-
tions, making them useful for real-time motion planning and
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Fig. 1. The system incorporates local terrain information through an
elevation map, enabling vision-based footstep planning via a reinforcement
learning (RL) policy trained in simulation. The approach is validated on
hardware. Left: Cassie training in simulation. Center: Visualization of the
real-world elevation map. Right: Hardware evaluation.

control. Although ROMs have traditionally been employed in
model-based control frameworks [6], [7], recent research has
demonstrated their usefulness within reinforcement learning
frameworks as well [8], [9], [10].

Recent developments in reinforcement learning (RL) have
significantly advanced the integration of visual perception
and locomotion control by enabling both end-to-end control
policies [11], [12] and hybrid control architectures [13], [14]
that operate directly on raw or minimally processed visual
inputs. These approaches reduce the reliance on manually
engineered features, thereby increasing flexibility and gener-
alization. However, this introduces challenges in transferring
policies from simulation to real-world hardware.

Inspired by recent works, we propose a vision-based
hierarchical control framework that integrates an RL-based
footstep planner with a low-level operational space controller
(OSC). The RL policy utilizes visual and low-dimensional
state representation inputs to generate 3D footstep place-
ments in real-time, while the low-level OSC tracks the spline
trajectories derived from these footsteps.

The main contributions of this paper are:

• A vision-based hierarchical controller that uses a single
depth camera and a reduced-order model to enable
efficient and interpretable 3D footstep planning via
reinforcement learning.

• Hardware validation of the full pipeline on both struc-
tured and unstructured terrains, with benchmarking
against a model predictive control (MPC) baseline in
simulation.

• An analysis of the ALIP model as a policy input and
hierarchical control structure, showing limitations on
complex terrain and impact on sim-to-real transfer.



II. RELATED WORK

A. Optimal Control for Bipedal Locomotion

Model-based control for bipedal locomotion is often struc-
tured as an optimal control problem, where the multi-
body dynamics are embedded as constraints in the control
formulation [15]. However, due to the high dimensionality
of full-order dynamics in bipedal robots, this formulation
becomes computationally impractical for real-time optimiza-
tion. Consequently, simplified reduced-order models, such as
the Linear Inverted Pendulum (LIP) model [16] are used for
online control along with its variations, including SLIP [17],
ALIP [7], and H-LIP [18]. Controllers that use reduced-
order dynamics with Model Predictive Control (MPC) for
footstep planning have been successfully deployed in real-
world environments [19]. However, there still remains limited
investigation into robust vision-based control strategies for
bipedal robots in uneven terrain, where previous methods
have lacked robustness against noisy visual inputs such as
poor lighting, making the pipeline unreliable [2], [3], [20].

B. Reinforcement Learning for Bipedal Locomotion

In response to the limitations of traditional control meth-
ods, recent research has actively explored deep reinforcement
learning (DRL) as an alternative. Leveraging advancements
in computation and physics simulations, DRL has enabled
robust walking controllers capable of navigating diverse
terrains in simulation and real-world environments [21], [22]
and learning unified frameworks that can perform various
dynamic gaits such as walking, running, and jumping while
maintaining robustness against perturbations [23]. Recent
work has also shown that hierarchical control architectures
that combine model-based methods with DRL can enhance
generalizability, interpretability, and sample efficiency by
decomposing the locomotion problem into separate layers of
objectives [9], [13], [14], [24]. Learning approaches demon-
strate better performance in visual-locomotion integration
compared to optimal control methods for both quadrupeds
and bipeds, primarily due to their capacity to establish direct
mappings between visual inputs and motor commands or
footstep planning [11], [12], [11], [25].

C. Sim-To-Real Transfer

Despite the promising capabilities of DRL in developing
locomotion controllers, several challenges emerge when de-
ploying these controllers on physical robots. The primary
limitation is due to modeling errors between the simulated
environment and the real-world environment, making direct
transfer of policies from simulation to hardware difficult.
Domain randomization [26] has emerged as a prevalent
approach to bridge this reality gap. Instead of carefully
tuning model parameters to match real-world conditions,
domain randomization involves extensively randomizing the
simulated environment. By exposing the policy to a range
of model distributions, the policy learns the distribution shift
between the real-world and simulated environment [22], [27].

III. BACKGROUND

A. Angular Momentum Linear Inverted Pendulum model

The classical Linear Inverted Pendulum (LIP) model [16]
simplifies legged robots to a point mass at the center of
mass (CoM) supported by a massless leg. The Angular
Momentum Linear Inverted Pendulum (ALIP) model [7] is
a reparameterization of the traditional LIP model, where
the linear velocity of the CoM is replaced by the angular
momentum about the contact point as the velocity variable.
In the idealized case, the ALIP and LIP are mathematically
equivalent. However, for real robotic systems with distributed
mass and articulated limbs, the ALIP model is less sensitive
to model error introduced by the movement of these limbs.
In this work, we use a mass-normalized ALIP model, where
the angular momentum is divided by the robot’s mass to give
the state components similar magnitudes:
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where xCoM and yCoM represent the horizontal positions of
the CoM in the x and y directions, and lx and ly are the mass-
normalized horizontal components of the angular momentum
about the contact point in the x and y directions, and H
denotes the height of the CoM.

B. Reinforcement Learning

In a standard reinforcement learning (RL) task, an agent
engages in a sequential decision-making process, interacting
with an environment by observing the current state, selecting
actions based on a policy, and receiving rewards that guide
future decisions. The problem is modeled using a Markov
Decision Process (MDP) defined by a tuple of (S,A,P,R,γ),
where S represents a set of states s, A denotes a set of actions
a. P(s′|s,a) describes the probability of transitioning from the
current state s to the next state s′ when an action a is taken.
R(s,a) gives an immediate scalar reward for each transition
made from a state and action pair. The goal of RL is to learn
an optimal policy π∗

θ
that maximizes the expected value of

the cumulative rewards and is formalized as:

max
θ
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IV. LEARNING AND CONTROL ARCHITECTURE

A. Perception Module

We use an Intel RealSense D455 to provide point-cloud
updates to a robot-centric elevation mapping framework [28].
The D455 is mounted to the pelvis and pointed downward
in front of the robot. We pre-process the point clouds to
mask out the robot’s legs before inputting the point clouds
to the elevation map. The map is updated at 30 Hz based
on the most recent point-cloud measurements. The robot
state is estimated by a contact-aided invariant EKF [29],
which uses simulated sensor measurements (encoder and
IMU values) during training, and real sensor measurements



Fig. 2. Overview of the system diagram. The perception module (green) generates elevation maps at 30Hz from a RealSense D455. The high-level
footstep policy (blue) outputs footstep actions at 40Hz. These actions are sent to the low-level controller (purple) for joint control.

Fig. 3. The elevation map is cropped to a 64×64 grid and concatenated with
XY footstep location grids. The central position of these grids corresponds to
the desired footstep placement, which is calculated using an ALIP trajectory
based on the velocity command and a constant stance width of 20 cm.

when deployed on hardware. This state estimate is also used
to compute the ALIP state observation. The map is cropped
into a 64×64 grid with a resolution of 0.025 meters per
cell, which provides sufficient terrain detail and aligns with
the range of the camera. Unknown heights are filled via
nearest-value interpolation, and a median filter smooths out
the values. The elevation map is tiled with a grid of potential
footstep locations, centered with the desired footstep position
(udx, udy) computed from a periodic ALIP trajectory to
provide structured spatial information (Fig. 3).

B. Reinforcement Learning for Footstep Planning

The RL footstep planner uses the elevation map, ALIP
states, and user-provided velocity commands to determine
the footstep location local to the stance frame. The RL
footstep planner is trained in simulation and then transferred
to the physical robot. The policy is first pre-trained with
ALIP trajectories from a blind Linear Quadratic Regulator
(LQR) controller before being fine-tuned with model-free
RL. The training process randomizes the terrain, velocity
command, and model parameters using a curriculum learning
approach to facilitate stable training and sim-to-real transfer.

C. Task-Space Objectives for Whole-Body QP

To realize the output of the learned footstep planner on the
robot, we use an inverse-dynamics operational-space control

TABLE I
FEEDBACK GAINS FOR THE OSC CONTROLLER

OSC Objective W Kp Kd

Toe joint angle 1 1500 10
Hip yaw angle 2 100 4
Pelvis [x, y] [2, 4] [200, 200] [10, 10]
Pelvis heading [yaw] 0.02 0 10
CoM [z] 10 80 5
Foot [x, y, z] [4, 4, 2] [400, 400, 400] [20, 20, 25]

QP [30]. The gains can be seen in Table I, where the weight
and gain matrices are diagonal and are represented as vectors.
The swing foot trajectory is represented as a single-segment
polynomial spline that ends at the target footstep location.
This spline is replanned for every new footstep target with a
quadratic program (QP) that ensures continuity of the desired
position, velocity, and acceleration, as well as minimizing
swing foot acceleration and distance of the spline’s midpoint
from a target midpoint, which ensures ground clearance [31].
The center of mass height is controlled to a virtual plane that
defines the ALIP model for the current and upcoming stance
foot. The swing foot angle is also controlled to be parallel
to this plane. To fully control Cassie’s remaining degrees
of freedom, we control the pelvis pitch and roll to zero, the
swing leg yaw angle to zero, and the pelvis yaw rate to match
a turning rate commanded by an operator. The commanded
pelvis yaw rate is zero during training.

V. LEARNING A VISION-BASED FOOTSTEP PLANNER

A. Policy Design

The policy πθ takes as inputs the desired velocity vdes pro-
vided by the operator, the mass-normalized ALIP state sALIP,
and an encoded elevation map Melevation and outputs the foot
placement coordinates in the local stance frame [px, py, pz].
The use of task space actions improves sample efficiency and
enables broader exploration to discover solutions compared
to joint space actions, as shown in [32].

The policy architecture consists of two main components
(Fig. 2): a residual network and a Long Short-Term Memory
(LSTM) network. The residual network processes the en-
coded elevation map Melevation to produce a latent represen-
tation, which is combined with the current observation vector



TABLE II
REWARD AND PENALTY TERMS

Terms Name Value

Reward

Forward Velocity (rvx ) 0.5× e−2∥vx,des−vx∥

Lateral Velocity (rvy ) 0.25× e−2∥vy,des−vy∥

Height (rz) 0.3125× e−4∥az,GT −az∥

Pelvis Stability (rφ ) 0.1875× e−2∥ωz∥

Action Smoothness (rat ) 0.125× e−3∥at−at−1∥

Action Regulation (rreg) 0.125× e−2∥ax,y,des−ax,y∥

Penalty
Tracking Penalty (ptrack) e3.5(err−0.05)−1
Torque Penalty (pτ ) −0.000007×∑i τ2

i
Edge Penalty (pedge) 1.5×1{step on edge}
Collision Penalty (pcollision) 1.5×1{collision with terrain}

[vdes,sALIP]. This serves as input to the LSTM network,
which generates the actions. Prior to sending the actions out,
the actions are concatenated with gait timing information to
ensure temporal consistency with the gait cycle. The actor
and critic networks do not share any layers.

B. Reward Function

We denote v as the linear velocity, a as the footstep action,
ω as the angular velocity, and τ as the torque. The reward
function is the sum of the reward terms and penalty terms
shown in Table II. The total reward is constrained to be non-
negative; If the cumulative penalty exceeds the cumulative
reward, the total reward is set to zero. This design choice
helps prevent the destabilizing effects of large penalties and
promotes more stable policy learning.
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The reward terms rvx and rvy encourage the policy to track
the desired velocities, while rφ promotes pelvis stability by
minimizing yaw angular velocity. The rz term aligns footstep
heights with terrain elevation, and rat encourages action con-
tinuity within the same stance. Finally, rreg regulates actions
to remain close to optimal footsteps determined by the LQR
equation. The penalty term ptrack penalizes deviations in
swing foot trajectory tracking, pτ penalizes torque usage
to discourage the policy from generating excessively large
torque commands, pedge discourages stepping near edges
detected by a Sobel filter [33], and pcollision penalizes front
foot collisions with the terrain.

Excluding edge penalties led to foot placements near stair
edges, resulting in frequent slips and elevation map artifacts
caused by the drift correction. Without the collision penalties,
Cassie developed a toe-probing strategy before stepping up.
While this strategy is viable in simulation, this behavior
results in hardware failures.

C. Policy Training

The Proximal Policy Optimization (PPO) algorithm [34]
is used to learn the footstep controller in a Drake simulation
environment [35]. To enhance the accuracy of the value
estimation and speed up training, we employ an asymmetric

TABLE III
TERRAIN CATEGORIES

Terrain Parameters Range
Flat × ×

Flat w/ Obstacle Obstacle Dimension XYZ [m] [0.2,0.5]
No. of Obstacle [30,40]

Block
Block Dimension XY [m] [0.5,1.0]
Block Dimension Z [m] [0.05,0.15]

No. of Block [10,20]

Stair Stair Height [m] [0.075,0.17]
Stair Width [m] [0.5,1.5]

Stair w/ Slope
Stair Height [m] [0.07,0.14]
Stair Width [m] [0.8,1.6]

Slope Angle [rad] [0.03,0.07]
Slope Slope Angle [rad] [0.1, 0.34]

actor-critic in which only the critic has access to the priv-
ileged information. Unlike the actor, the critic additionally
receives the ground truth height map, joint positions, and
pelvis pose. We include a symmetric mirror loss [36] to the
original PPO objective function to discourage asymmetric
footsteps and keep a healthy symmetric gait:

Lmirror(θ) = w
N

∑
i=0

∥πθ (si)−Ψact (πθ (Ψobs(si)))∥2 (3)

where πθ is the policy, si represents the ith observation,
Ψact(·) and Ψobs(·) mirrors the actions and observations, and
N is the number of rollout samples. The coefficient w defines
the importance of symmetry, and w = 2 is used for training.

We initialize the agent in a randomized pose and swing
phase. The commanded velocities are sampled from vx ∈
[−0.8,0.8], vy ∈ [−0.4,0.4] for flat terrain and vx ∈ [0,0.8],
vy ∈ [−0.4,0.4] for non-flat terrain. Backward walking is
restricted to only flat terrains.

The policy is trained across six terrain categories (Fig. 4):
(1) flat terrain; (2) flat terrain with randomly distributed ob-
stacles of varying dimensions; (3) flat terrain with randomly
distributed blocks of varying sizes; (4) stairs with varying
width and height; (5) stairs with slopes; (6) slopes with
varying angles. Episodes are conducted for 400 timesteps,
equivalent to 10 seconds in simulation time, across random
terrains and modeling parameters. Early termination occurs
under three conditions: (1) foot-to-pelvis distance is less than
20 cm, indicating a fall; (2) the magnitude of swing foot
tracking error exceeds 50% or (3) self-collision.

VI. SIM-TO-REAL TRANSFER

A. Domain Randomization

To address modeling and measurement uncertainties be-
tween the simulated and real-world environments, we intro-
duce randomization across dynamics parameters and observ-
able states. Empirically, we found that randomizing all of
the parameters in Table IV is necessary for sim-to-real. All
randomization follows a uniform distribution sampled within
a predefined range shown in Table IV. We introduce noise
into the mass-normalized ALIP states to tackle discrepancies
between simulation and hardware due to the differences in
dynamics during ground contact. In addition, we perturb the
elevation map through a combination of local and global
displacements. At the beginning of each episode and at every



Fig. 4. Terrain types used for training. Top row (left to right): flat, flat
with obstacles, and block terrains. Bottom row (left to right): stairs, stairs
with slopes, and sloped terrains.

TABLE IV
DOMAIN RANDOMIZATION PARAMETERS

Parameters Range

Dynamics
Model

PD Gains [0.5,1.5]×Default
Joint Damping [0.5,2.5]×Default
Link Mass [0.6,1.4]×Default
ALIP state [−0.03,0.03]
Friction Coefficient [0.3,1.1]

Elevation
Map

Shift XY per episode [−0.03,0.03]m
Shift XY per timestep [−0.02,0.02]m
Shift Z per episode [−0.02,0.02]m
Shift Z per timestep [−0.01,0.01]m
Uniform Noise [−0.02,0.02]m
Point Cloud Bias XYZ [−0.03,0.03]m

Communication Delay [0,0.025]s

Perturbations Force XY on pelvis [−20,20]N
Force Z on pelvis [−10,10]N

timestep, the entire elevation map is shifted along the x,y,z
axes. Uniform noise is further applied to the elevation map
to regularize the encoder. To emulate imperfections in real-
world sensor calibration, we also introduce systematic biases
in the point cloud data along the x,y,z directions.

B. Curriculum Learning

We adopt a curriculum that adjusts the environment and
domain randomization parameters for stable training. In the
initial phase, training is conducted on flat terrain, staircases
with a maximum height of 10 cm, and slopes. During
this phase, domain randomization is excluded, as premature
introduction of these elements causes policy divergence and
cheating of the agent. After convergence of the initial stage,
we include all terrain types and apply domain randomization.
We constrain the probability of the flat terrain at 10% to
avoid catastrophic forgetting of learned negative velocity
commands since the flat terrain is the only terrain type that
associates with negative x direction velocity.

C. Elevation Map Drift Correction

Due to the lack of direct global position sensing on the per-
ception module, we observe consistent drift in the vertical (z)
direction of the state estimator. This drift is primarily caused
by impacts during foot contact, which perturb the floating
base estimate over time, and as a result, the elevation map
underestimates the terrain height. To address this problem,

Fig. 5. Velocity tracking performance in simulation using a predefined
velocity profile for motion in the x direction on flat terrain.

a drift correction strategy based on the known position of
the stance foot is used [5]. Before each update of the map,
we compute the vertical offset between the current stance
foot position and the corresponding elevation in the map.
This difference is applied as a correction offset and maintains
alignment between the map and the ground surface.

VII. SIMULATION EXPERIMENTS

A. Simulation Setup

We trained two policies for analysis using identical net-
work architecture, where the ALIP policy refers to a model
using an observation space that includes the elevation map,
desired velocity commands, and the mass-normalized ALIP
state (Fig. 2). The Joint policy shares this observation space,
with the addition of joint positions. Both policies are trained
using all the methods discussed in this paper. In simulation,
we compare ALIP, Joint, and a vision-based ALIP MPC
footstep planner from [5]; denoted as MPC.

The controllers are evaluated using two primary metrics:
velocity tracking accuracy and success rates across vary-
ing terrain types and friction coefficients. Stair terrains are
generated using the parameters listed in Table III, with a
17-degree incline used for the slope terrain and friction
coefficients of 0.4, 0.8, and 1.1 as specified in Table V. For
each experimental configuration, 200 episodes are collected
with random target velocities. All evaluations are performed
without any noise. An episode is considered successful if the
robot does not fall for 15 seconds.

B. Simulation Evaluation

1) Controller Comparison: As shown in Table V, both
the RL policies consistently outperform MPC in velocity
tracking across all terrain types and achieve higher success
rates for ascending and descending stair and slope terrains.
Furthermore, the Joint policy demonstrates better perfor-
mance in velocity tracking compared to the ALIP policy
across all of the evaluated terrains with similar success rates.

2) Collision Evaluation: Hard collisions with staircases
accounted for a large proportion of failures, contributing to
the lower performance of MPC on stair terrains. To further
investigate, we assess the footstep planners based on footstep
collisions with forces exceeding 1000 N. We quantify the fre-
quency of such collisions and identify instances where these
collisions directly lead to failure. A collision is classified as
failing if the robot falls within two seconds of the impact.



TABLE V
PERFORMANCE COMPARISON OF RL POLICY ARCHITECTURES VS. MPC

Metric Terrain Type ALIP RL Joint RL MPC [5]
µ=0.4 µ=0.8 µ=1.1 µ=0.4 µ=0.8 µ=1.1 µ=0.4 µ=0.8 µ=1.1

Mean Squared Error of
Velocity Tracking (m2/s2)

Stair (ascend) 0.0388 0.0514 0.0505 0.0203 0.0209 0.0236 0.0834 0.0726 0.0725
Stair (descend) 0.0299 0.0351 0.0398 0.0228 0.0247 0.0260 0.0709 0.0665 0.0708
Slope (ascend) 0.0186 0.0153 0.0211 0.0046 0.0064 0.0072 0.0258 0.0213 0.0227
Slope (descend) 0.0424 0.0323 0.0346 0.0129 0.0104 0.0099 0.1166 0.0708 0.0654

Success Rate (%)

Stair (ascend) 90.5 88 81.5 95.5 88.5 91.5 56 72.5 68.5
Stair (descend) 92 94.5 95 91.5 91.5 91 63.5 78 83
Slope (ascend) 100 100 96 100 100 100 100 100 100
Slope (descend) 82.5 100 100 99.5 99 99 5 80.5 96.5

Fig. 6. Given a forward velocity command of 0.4m/s and no lateral velocity
input, the policy successfully avoids obstacles while moving forward.

Evaluation results indicate that the MPC baseline exhibits
a significantly higher frequency of hard collisions per episode
compared to the RL-based planners. MPC achieves an aver-
age of 0.4833 hard collisions per episode, while ALIP and
Joint achieve lower rates of 0.1467 and 0.11, respectively.

3) Recovery: In addition to reducing the frequency of
hard collisions, the RL-based policies demonstrate improved
recovery capabilities following hard collision events. The
failure rate following a collision for MPC is 52.68%, whereas
ALIP and Joint show considerably lower failure rates of
38.88% and 27.71%, respectively. Notably, recovery behav-
iors observed in simulation also transfer to hardware, where
the RL-based policies show the ability to maintain balance
and continue locomotion following disturbances.

4) Obstacle Avoidance: We demonstrate that incorpo-
rating obstacles directly into the simulation environment
without introducing explicit safety or obstacle avoidance
reward/penalty terms is sufficient for the policy to learn
obstacle avoidance behaviors. Even in the absence of lateral
velocity commands, the policy can navigate around obstacles
while maintaining forward motion (Fig. 6). However, the
policy may get stuck between obstacles, resulting in an in-
place stepping behavior.

VIII. HARDWARE EXPERIMENTS

A. Hardware Setup

The state estimator and operational space controller are ex-
ecuted on Cassie’s onboard NUC computer, and we transmit
the joint torque commands to Cassie’s target PC via UDP.
The RL footstep planner and perception module operate on
a ThinkPad p15 Laptop, equipped with an 8-core, 2.3 GHz
Intel 1180H processor and 24 GB of RAM. The laptop is
carried by one of the safety bar carriers and is networked
with the NUC over Ethernet for LCM [37] communication.

Fig. 7. Feature attribution visualizations for flat, slope, and stair terrains
on the Joint policy. Left: Saliency maps, Right: Integrated gradients.

B. Hardware Evaluation

The policy transferred to hardware despite a bent right
bar and a difference in pelvis mass, with the custom battery
used for hardware testing being approximately 1 kg lighter
than the nominal URDF model. We demonstrate our walking
controller across three scenarios: indoor flat terrain, outdoor
flat-like terrain, and outdoor stairs with non-uniform, irreg-
ular slopes, all with perception in the loop. Trials are shown
in Fig. 8. The controller performs successfully on flat-like
terrains in both indoor and outdoor environments. However,
shows poor performance when ascending stairs, where ALIP
underperforms relative to Joint, achieving a maximum of two
steps before failure, compared to four steps with Joint.

IX. ANALYSIS

A. ALIP as a Policy Input

We evaluate the comparative performance of the ALIP and
Joint policies in stair-climbing tasks using the mean stairs-
to-failure metric. In this evaluation, episodes are extended to
50 seconds, and episodes are terminated if the robot falls,
has hard collisions with the stairs, or deviates significantly
in the lateral (y) direction. A total of 200 episodes were
collected for each policy. Joint averaged 10.024 steps before
failure, outperforming ALIP, which averaged 6.534 steps.
This is consistent with hardware observations and reflects the
limitations of the ALIP model in handling height variations.

To assess the importance of ALIP states in policy decision-
making, we employ two attribution methods: saliency maps
[38] and integrated gradients [39]. As shown in Fig. 7,
the influence of joint position inputs increases, while the
contribution of ALIP state decreases with increasing terrain
complexity in the Joint policy. This suggests the need for
more expressive inputs in challenging discontinuous environ-
ments such as stair climbing. Our observation aligns with



Fig. 8. Sequence of images of Cassie walking on outdoor terrains. Top Row: Walking on outdoor flat terrain. Bottom Row: Descending (left three) and
ascending (right three) outdoor stair terrain.

TABLE VI
L2 RATIO OF OSC OUTPUT TRACKING ↓

Trajectory RL
Real

RL
Sim

Sim2real
Error (RL)

MPC
Real

MPC
Sim

Sim2real
Error (MPC)

Swing Foot x 0.2448 0.1698 0.075 0.1960 0.1279 0.0681
Swing Foot ẋ 0.7482 0.4966 0.2516 0.4921 0.4874 0.0047
Swing Foot y 0.0688 0.0529 0.0159 0.0607 0.0415 0.0192
Swing Foot ẏ 1.3454 0.1747 1.1707 1.0785 0.2417 0.8368
Swing Foot z 0.1440 0.1274 0.0166 0.1117 0.1169 0.0052
Swing Foot ż 0.3265 0.3084 0.0181 0.3036 0.2288 0.0748

CoM z 0.0179 0.0119 0.0060 0.0084 0.0094 0.0010
CoM ż 3.9889 3.0995 0.8894 2.2148 3.0187 0.8039

the findings of [9], which demonstrate successful policy
performance on sloped terrains but do not report evaluations
on discontinuous or stair-like environments, which are likely
to be less successful due to the limitations of the ALIP
reduced-order model.

B. Hierarchical Control

We evaluate the tracking performance of the operational
space controller (OSC) using reference trajectories from the
MPC and Joint footstep planners, averaged over four stair
ascent trials in both simulation and hardware (Table. VI). To
quantify performance, we report the L2 ratio, defined as:

L2 Ratio =

√
∑t ∥xerr(t)∥2√
∑t ∥xref(t)∥2

(4)

where xerr(t) is the tracking error and xre f (t) is the refer-
ence trajectory at time t. The scale-invariant metric allows
comparison across trials with different trajectory magnitudes.
Ideally, if the OSC successfully feedback linearized the
output, the L2 ratio would remain invariant to the reference
signal. However, Table VI shows this is not the case. While
both planners yield relatively low and comparable L2 ratios
in simulation, the RL planner consistently results in higher
L2 ratios across all output components in hardware.

This indicates that in the real-world, while the MPC
planner produces trajectories that remain within the effective

operating range of the OSC, the RL policy outputs footstep
positions that drive the OSC into domains where the perfor-
mance degrades. This effect is seen in hardware, where the
sim-to-real gap further exacerbates the degradation in OSC
performance, as reflected by the elevated L2 ratios.

X. CONCLUSION AND FUTURE WORKS

We present a learned hierarchical control framework for
vision-based bipedal locomotion. The RL footstep planner
utilizes a reduced-order ALIP model and an elevation map
derived from a single depth camera. By simplifying both
the observation and action spaces, we reduce the overall
problem complexity. We validated the framework through
simulation and hardware experiments, and interpreted the
collected data to identify limitations of reduced-order models
and hierarchical control within the context of hierarchical
reinforcement learning frameworks.

While the use of the ALIP model and a hierarchical
architecture offers benefits in terms of model simplicity and
training efficiency, we show their limitations in handling
complex tasks and real-world deployment. The ALIP-based
footstep planner underperforms in complex environments
due to its limited representational capacity. Additionally, al-
though hierarchical controllers are known to improve training
efficiency, interpretability, and modularity [24], our results
indicate they complicate sim-to-real transfer. Transferring
policies across layers increases the overall complexity of
the transfer process, and the hierarchical structure imposes
communication dependencies between layers, which require
precise modeling and can hinder policy generalization.

Future work will explore more expressive reduced-order
models for handling discontinuous terrain and focus on im-
proving the alignment between the learned high-level policy
and the low-level controller to enhance sim-to-real transfer.
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