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Abstract— Frictional contact has been extensively studied as
the core underlying behavior of legged locomotion and manipu-
lation, and its nearly-discontinuous nature makes planning and
control difficult even when an accurate model of the robot is
available. Here, we present empirical evidence that learning
an accurate model in the first place can be confounded by
contact, as modern deep learning approaches are not designed
to capture this non-smoothness. We isolate the effects of
contact’s non-smoothness by varying the mechanical stiffness
of a compliant contact simulator. Even for a simple system,
we find that stiffness alone dramatically degrades training
processes, generalization, and data-efficiency. Our results raise
serious questions about simulated testing environments which
do not accurately reflect the stiffness of rigid robotic hardware.
Significant additional investigation will be necessary to fully
understand and mitigate these effects, and we suggest several
avenues for future study.

I. INTRODUCTION

Advances in model-based control and planning have al-
ways been essential to state-of-the-art robotic manipulation
and locomotion. Traditionally, roboticists have relied on
high-accuracy, physics-based models of tightly-controlled
laboratory environments. However, as robotic systems tran-
sition to practical applications in unknown and unstructured
environments, learning accurate models from limited data
becomes increasingly important. Despite recent successes
leveraging modern deep learning to this end (e.g. [1], [2],
[3], [4]), robotic performance remains decidedly sub-human
in almost all scenarios. One limiting factor is that contact
is challenging to leverage, even given an accurate model;
controlling the nearly-discontinuous behaviors of impact
remains incredibly difficult, despite extensive study [5]. In
this work, we show the same properties also seriously impede
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common deep learning methods from obtaining an accurate
model in the first place.

Impacts among robots and their surroundings are partic-
ularly difficult to model. When objects collide, materials
deform on an imperceptibly small spatial and temporal scale,
preventing interpenetration. The underlying material property
driving this rapidity, mechanical stiffness, causes multiple
forms of numerical stiffness in the equations of motion of
these systems (See Figure 2). Slight inaccuracies in either
initial conditions or model parameters can generate wildly-
different predictions, even over a small time horizon [6], [7].
Furthermore, measurements of the velocities are extremely
sensitive to the time that they are recorded, as they change
near-instantaneously during impact [8], [9]. These properties
become significant problems when learning a model of a real
system from noisy sensor measurements.

Several associated issues have been duly noted in prior
works on system identification (sysID) [10], [8] and differ-
entiable physics [11], [12]. In these settings, a handful of
unknown parameters of a physics-based model are fit to data.
However, constructing an appropriate model space requires
extensive knowledge of the robot and its surroundings; fitting
model parameters requires expertise in both mechanics and
optimization; and even excellent implementations are limited
by inaccurate approximations, such as object rigidity and
inelastic impact, inherent to tractable physical models [13].

The flexibility of deep neural networks (DNN’s) can
circumvent each of these issues, but they also introduce
challenges unique to their high-dimensional optimization
setting. First, stiffness in the learned dynamics introduce
both stiffness and local minima into the training optimiza-
tion landscape [10], [11]. While sysID methods address
this issue by exploiting either second-order [10] or global
[11] optimization techniques, these tools cannot be tractably
applied to the high-dimensional parameter spaces of DNN’s.
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−6

−5

−4

−3

−2

−1

0

1

N
ex

t
Ve

lo
ci

ty
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Fig. 1: Challenges of learning stiff dynamics are shown on a 1-D example. (a): A point mass (blue) falls from an initial height zt = 1
toward compliant ground (yellow), modeled as a spring-damper system. (b): For each of two stiffnesses (k), 100 predictive models are
trained on noisy data to predict the next velocity żt+1 from different initial velocities żt . Learning performance is heavily degraded on the
stiffer k = 2500 system, despite meticulous hyperparameter optimization; training loss, ground-truth mean square error, and inter-model
variance are 197%, 413%, and 309% higher than for k = 100. Details of this experiment may be found in Appendix I.



Furthermore, while a fundamental advantage of DNN’s is
their ability to approximate any dynamical system, a corre-
sponding challenge is that many distinct model parameters
may fit the training data well, and one must be selected
via an inductive bias. Unfortunately, in direct conflict with
the stiff and nearly-discontinuous behaviors of frictional
contact, deep learning techniques tend to select the smoothest
interpolator of the data. This behavior is both a predisposi-
tion of common training techniques like stochastic gradient
descent (SGD) [14], [15] and an explicit goal of common
regularizers such as weight-decay and spectral normalization
[16], [17]. This smoothing effect is particularly harmful when
available data is sparse, as can be see in a 1D example
in Figure 1. If stiffness indeed significantly influences the
performance of deep learning, then serious questions must
be raised not only about robotic learning methods, but also
the relevance of simulated results to the robotics commu-
nity. Many simulators (e.g. MuJoCo [18]) allow users to
specify mechanical stiffness; properly used, simulation can
produce physically-accurate behaviors [10], [19]. However,
ubiquitous benchmarking suites often use software default
values for stiffness, rather than values tuned for realism
[20]. The idea that unrealistic contact settings can generate
a gap between simulated and real-world performance is an
existing intuition in the robotics community [21]. However,
this phenomenon has not been rigorously examined in the
literature.

In this paper, we contribute an empirical quantification
and isolation of the detrimental effects of stiffness on deep
learning performance. We begin by describing how stiffness
enters into the equations of motion of a simple simulated
system in MuJoCo in Section II, and show that default
settings are significantly less stiff than many real systems.
In Section III, we propose a testing methodology to examine
the negative effects of stiffness on inherent unpredictability,
training process degradation, generalization, and long-term
prediction. As is common intuition, our results (Section
IV) show that raising stiffness degrades ground-truth model
predictions as the underlying system becomes more sensitive
to noise. However, we find that stiffness induces multiple
pathological behaviors beyond this effect:

1) The training error of learned models degrades with
stiffness nearly twice as fast as the ground-truth model,
even for single-step predictions.

2) While generalization error can be eliminated for non-
stiff systems with ample training data, test error stays
significantly higher than training error for stiff systems.

3) Data-efficiency degradeds 100-fold for our stiffest
models when evaluated on long-term prediction.

These results raise two serious questions which we encourage
the robotics community to confront head-on: Are we cor-
rectly utilizing deep learning’s most powerful and essential
behaviors in our current methods? And do our simulated
environments faithfully capture essential challenges of real-
world phsyics? In Section VI, we list current research related
to these questions (including our prior work [22]), and
furthermore list several unaddressed challenges.

II. EXAMPLE SYSTEM

We now describe a simple example system and associated
data generation methodology, for which we will isolate the
effects of stiffness on learning performance.

A. Simulation Environment

While the many uncontrollable factors of real-world ex-
periments offer a challenging environment to test newly-
developed algorithms’ performance, the primary goal of this
paper is to isolate the effects of stiffness on commonplace
methods in robotics. Unmodeled material complexities and
unknowable noise distributions in a real robotic system
would therefore befuddle the results presented here, rather
than strengthen them. We therefore conduct our experiments
in a simulated environment, which allows them to be easily
repeated or used as a benchmarking task in future research.
We conduct our experiments MuJoCo [18], because it allows
for direct control over contact stiffness. Using MuJoCo
also enhances the relevance of our results to ubiquitous
benchmarking suites which use the simulator [20], [23].

While MuJoCo models objects as being exactly rigid, it
allows for an interpretation of mechanical stiffness by using
a “soft contact” model similar to the one used in Figure 1;
a detailed discussion can be found in [18] and in the online
MuJoCo documentation1. MuJoCo solves for appropriate
contact forces with a convex optimization problem, and
thus there is no closed form expression for the forces as a
function of the current state. However, when an object makes
contact with a static environment, inter-body penetration r
approximately2 obeys

r̈ ≈−bṙ− kr . (1)

Here, the “stiffness” k is the primary mechanism resisting
penetration, and the damping ratio ζ = b

2
√

k
controls elasticity

of impacts. Similar techniques have long been used for stable
simulation of constrained dynamical systems, dating back
to Baumgarte’s 1972 formulation [24]. We note that the
units of k are N

kgm , whereas mechanical stiffness is typically
expressed in N

m units. MuJoCo’s default values for k are in the
2000–2500 N

kgm range. However, as we will discuss in Section
II-C, the corresponding contact behavior is far softer than
that of many real-world objects, including common robotic
platforms.

B. System Description

High-dimensional systems, much like real-world environ-
ments, are also commonly used to stress-test new robot
learning algorithms [20]. By contrast, in this paper, picking
a simple, low-dimensional system instead allows us to more
thoroughly and tractably analyze the effects of stiffness under
reduced computational and sample complexity. We follow
previous studies ([25], [26], [22]), and choose a “die roll”
system, in which a single, rigid cube makes contact with

1http://www.mujoco.org/book/computation.html
2A more detailed treatment of this behavior can be found in Appendix

II.



Fig. 2: Sensitivity to initial conditions and near-instantaneous im-
pact of a 2D block on flat ground are shown. (left) Two trajectories
begin from nearly identical initial conditions, where the block (blue)
contacts the ground (yellow) at 1 corner; the center of mass is left
of the contact point in the upper trajectory and to the right in the
lower one. (center) after some time has elapsed, the state of the
cube differs drastically in the two trajectories. (right) the velocity
of the cube jumps to zero abruptly as it hits the ground in both
cases.

the ground. Despite being low-dimensional, the cube exhibits
many of the hallmark challenges in contact modeling: stick-
slip transition, discontinuous impact, multiple contact points,
and extreme sensitivity to initial conditions; Figure 2 illus-
trates some of these behaviors in 2D.

Our 3D die system has a 13-dimensional state

xt =
[
pt ; qt ; ṗt ; ωt

]
, (2)

where pt ∈ R3 is the center of mass position; qt ∈ S3

is the orientation of the cube, expressed as a quaternion;
ṗt ∈ R3 is the world-frame c.o.m. velocity; and ωt ∈ R3 is
the body-frame angular velocity. We will often identify the
generalized velocity of the system as vt = [ṗt ; ωt ]. When
simulating the dynamics in discrete-time, Newton’s second
law is often approximated with a semi-implicit formulation,
as in MuJoCo [18]. These equations have the form

xt+1 = f (xt) . (3)

For a symmetric cube3, f is calculated as

m(ṗt+1− ṗt) = (F(xt)−mg)∆t , (4)
I(ωt+1−ωt) = τ(xt)∆t , (5)

pt+1− pt = ṗt+1∆t , (6)

q−1
t ⊗qt+1 = Q(ωt+1∆t) , (7)

where ∆t is the time-step duration; m and I are the cube’s
mass and inertia; g is the gravitational acceleration vector;
and F and τ are the average contact force and torque over
the time step. Q(v) = [cos ||v||22 ; v̂sin ||v||22 ] is the quaternion
corresponding to a rotation of angle ||v||2 about axis v̂= v

||v||2
and ⊗ is the quaternion product. We use system parameters
that are identical to the real system used in [22]; a full list
can be found in Table I.

C. Data Generation

In order to isolate how different stiffnesses k generate
different behaviors, for each of 3 stiffnesses listed in Table

3the symmetry assumption implies that the Coriolis forces are zero, as
the inertia tensor is a multiple of the identity matrix.

TABLE I: Die Roll System Parameters

Constant Symbol Value Units

mass m 0.37 kg
inertia I 6.167e−4 kgm2

side length l 0.1 m
gravity g 9.81 m

s2
friction coefficient µ 1 (none)
stiffness k (varies) N

kgm
damping ratio ζ 1.04 (none)
time-step ∆t 6.74e−3 s

II, we generate a dataset {τ} of “dice roll” trajectories τ =
{x0,x1,x2, ...xT−1} with an identical process, summarized
here and detailed further in Appendix II. We refer to the
three stiffnesses as Hard, Medium and Soft.

We instantiate the system for a given stiffness in MuJoCo
with the parameters in Table I; the damping coefficient b
is selected to keep the damping ratio ζ consistent between
stiffnesses. Initial states are sampled uniformly around a
nominal state x0,re f . From the initial state, we simulate
forward in time with MuJoCo’s dynamics (4)–(7) until the
cube impacts the ground and comes to rest.

In the real world, position and orientation of similar
systems are commonly tracked via computer vision, which
can incur a small amount of slowly-drifting measurement
noise [22]. To approximate this error, for each trajectory,
we add a small, uniformly random offset to the entire
trajectory, and a second round of smaller noise independently
to each datapoint. Finally, velocity states are reconstructed
using the finite difference equations (6)–(7) on the noisy
configurations. The total noise injected through this process
on each state variable is on the order of 1 mm, deg, mm

s , or
deg

s .
For each stiffness setting, we collect 10,000 trajectories

{τ}train for hyperparameter optimization and training pur-
poses, and 1,000 more trajectories {τ}eval for evaluation of
the optimized models. To evaluate physical realism of each
of these settings, we also compute the maximum ground
penetration of the die, averaged over trajectories (Table II
and Figure 3). Even for the Hard stiffness, which is compa-
rable to MuJoCo’s default, we observe ground penetration
of around 10% of the die body-length. By comparison,
deformations on real-world objects are often imperceptible
to the human eye. Thus, even our Hard model is far less
stiff than the real-world dynamics upon which our system
was based [22].

Fig. 3: From left to right, illustration from MuJoCo demonstrating
the variation in the amount of ground penetration for Hard, Medium,
and Soft settings, respectively. These visualizations are captured
from trajectories with identical initial states.



TABLE II: Stiffnesses and corresponding ground penetrations

Stiffness Setting k
( N

kgm

)
Max. Penetration (mm)

Hard 2500 12
Medium 300 26

Soft 100 40

III. EXPERIMENTS

We now describe the process of learning a dynamical
system from data; challenges that stiffness imposes in dy-
namics learning; and motivate the design of our experiments.
The Pytorch codebase is accompanied by further details and
experiments online4.

A. Representing System Dynamics with Neural Networks

Many modern deep learning-based modeling approaches
(e.g. [1], [2], [3], [4], [7]) follow the same fundamental
approach: fitting a neural network approximation of the
system dynamics (3) directly to data. In these methods, a
DNN fθ (xt−h+1:t) with parameters θ outputs the next-state
xt+1 given a window of previous states xt−h+1:t , where h is
the history length. In this paper, we implement two of the
most common architectures. The first, and most elementary,
is to pick h = 1 and map xt to xt+1 with a simple multilayer
perceptron (MLP) ([2], [4]). However, this method has been
shown to struggle with noisy data in a manipulation setting
[1], [7], an expected behavior given the sensitivity of contact
dynamics [10]. An intuition in robotics is that better esti-
mates of the current state can be generated by fusing multiple
sensor readings. Correspondingly, a common approach is to
use recurrent neural networks (RNN’s) with history length
h > 1 [1], [7], and thus our second set of architectures are
RNN-based. We experiment with the three RNN variants:
Long Short Term Memory (LSTM) [27], Gated Recurrent
Unit (GRU) [28] and Bi-directional LSTM (BiLSTM) [29].

Internally, MuJoCo predicts the next velocity vt+1, and
then constructs the next configuration using the finite-
differencing method given by (6)-(7) [18]. Since our velocity
data is generated with the same finite-difference, it is suffi-
cient to output either fθ (xt−h+1:t) ≈ vt+1 or fθ (xt−h+1:t) ≈
∆v = vt+1− vt from the network, and then reconstruct the
next configuration with (6)-(7) as MuJoCo does. The em-
pirically determined optimal network structure and target
variable choice for all stiffness setting were found to be
GRU and vt+1 respectively, as listed in Table III. A detailed
explanation of the process is given in Appendix III.

B. Training Process

To train one of our networks, we first aggregate a set of N
trajectories {τ1:N} randomly sampled from {τ}train and slice
them into training data inputs {xt−h+1:t} and corresponding
outputs {vt+1}. To improve numerical conditioning during
training, we follow a standard procedure of normalizing
the input data to have zero mean and unit variance [4].

4https://sites.google.com/view/
contact-learning-bias

TABLE III: Optimized Hyperparameters

Hyperparameter Stiffness Setting
Hard Medium Soft

Network architecture GRU GRU GRU
Target variable vt+1 vt+1 vt+1
learning-rate 1e-4 1e-5 1e-5
hidden-size 128 128 128

history-length 16 16 16
weight-decay 0 4e-5 4e-5

We further split the sliced data {xt−h+1:t ,vt+1} in 70:20:10
proportions into training (Dtrain), validation (Dval) and test
(Dtest) sets.

For a dataset D with |D| observations, we define the mean-
square error loss over D for a model f as

L ( f ,D) =
1
|D| ∑

(xt−h+1:t ,vt+1)∈D
‖(vt+1)− f (xt−h+1:t)‖2

2 . (8)

Accordingly, we train our dynamics models using the Adam
optimizer [30] to minimize L ( fθ ,Dtrain). We terminate train-
ing with early stopping with a patience of 30 epochs, and
save the model with the lowest validation loss L ( fθ ,Dval).
Test set error L ( fθ ,Dtest) is then used as the metric during
hyperparameter optimization. To provide an optimistic per-
spective on how the dynamics of each stiffness setting can
be learned, we optimize separate hyperparameters for each
stiffness. This process is detailed in Appendix III, and Table
III specifies the final set of selected hyperparameter values
for each of the stiffness setting.

C. Measuring Stiffness’s Effect on Learning Performance

To perform an optimistic analysis on how well learning
algorithms perform on systems with different stiffnesses, we
focus performance analysis on our hyperparameter-optimized
models in three settings: the effectiveness of Adam in mini-
mizing the training set loss; generalization performance; and
long-term prediction performance.

Broadly, the goal of supervised learning methods, includ-
ing our dynamics learning process, is to generate accurate
outputs for unseen inputs. In deep learning, this behavior is
quantified as low test error L ( fθ ,Dtest). Our discussion in
Section I suggests that the test error will increase for higher
stiffness settings, but it is important to note that the test
set error can be driven up by many mechanisms. Inspired
by the separate treatment of approximation, estimation, and
generalization error common in statistical learning theory
[31], we now define, motivate, and hypothesize about the
following decomposition of the test error:

L ( fθ ,Dtest) = L ( foracle,Dtrain)

+(L ( fθ ,Dtrain)−L ( foracle,Dtrain)) (9)
+(L ( fθ ,Dtest)−L ( fθ ,Dtrain)) .

As discussed in Section I, it is important to acknowledge
that even if the exact MuJoCo model used to generate the
data is simulated from a noisy initial condition, it will make
an imperfect prediction of the future states. Furthermore, it is
well known that stiff dynamics will exacerbate this issue [6],
[10], [22]. We capture this effect with the first term in the test



error decomposition (9), eoracle = L ( foracle,Dtrain). To be
precise, our MuJoCo oracle model foracle(xt−h+1:t) predicts
the next velocity vt+1 with MuJoCo using the current state
xt and the Netwton-Euler equations (4)-(5). As the MuJoCo
oracle captures the underlying true behavior of the system, it
serves as a natural, optimal baseline for the learned models.

Since prediction loss can be poorly conditioned when
learning stiff dynamics [11], [22], we hypothesize that Adam
will have difficulty in converging to good minima consis-
tently; therefore, the training loss at convergence of stiffer
models is likely to have higher mean. To test this hypothesis,
we train models on data with different stiffnesses and dataset
sizes, and then observe how much the resulting training error
is degraded in comparison to the performance of the MuJoCo
oracle: (L ( fθ ,Dtrain)−L ( foracle,Dtrain)).

Deep learning is biased towards fitting a smooth interpola-
tor on the data [14], [15]; however, as we note in Section I,
the underlying behavior of contact is non-smooth. Hence,
at equal training set sizes, we expect that DNNs fit to
stiffer systems’ data will suffer worse generalization error.
We examine this hypothesis by comparing the generaliza-
tion error (L ( fθ ,Dtest)−L ( fθ ,Dtrain)) of learned models
corresponding to different stiffnesses and dataset sizes.

While we have followed a commonly used approach by
training our models on single-step predictions (e.g. [3], [4]),
long-term prediction quality is essential for model-based
control methods, such as MPC [3]. We therefore additionally
evaluate our models’ long-term prediction capability. For
a particular ground-truth trajectory τ ∈ {τ}eval, we use the
initial (h) ground-truth states {xt}t=h−1

t=0 ∈ τ as input for the
learned model and recursively construct predicted trajectory
for next T̂ time-steps {x̂t}t=h+T̂−1

t=h . Similar to [22], we report
the temporally-averaged absolute position and rotation error
for each model:

epos =
1
T̂

h+T̂−1

∑
j=h

∥∥p̂ j− p j
∥∥

2 , erot =
1
T̂

h+T̂−1

∑
j=h

∣∣angle
(
q̂ j,q j

)∣∣ ,
where, angle(·, ·) represents the relative angle between two
quaternions.

To make a fair evaluation for models with different history
length and simultaneously ensure that the prediction horizon
is long enough to capture ground impact and block tumbling,
we use T̂ = 50 (a 337 ms duration) in our experiments.

IV. RESULTS

In Table IV we report MuJoCo oracle’s performance on
the single-step velocity prediction (L ( foracle,Dtrain)) task
across different stiffnesses. As expected, we observe that
the single-step prediction performance of the MuJoCo oracle
improves as the contact is made softer.

TABLE IV: MuJoCo oracle Prediction Performance

Stiffness Setting L ( foracle,Dtrain) epos (% width) erot (deg)

Hard 0.0836 ± 1.8e−3 4.31±0.13 3.98±0.03
Medium 0.011 ± 1.8e−4 3.57±0.08 3.26±0.03

Soft 3.19e−3 ± 1.9e−5 2.92±0.04 2.77±0.03

While the single-step oracle error for Hard contact is
nearly 20x higher when compared to Soft contact, we
find that it only accounts for approximately half of the
training error. Fig. 4a demonstrates the difference in the
converged training loss of learned models and the oracle
single-step errors (L ( fθ ,Dtrain)−L ( foracle,Dtrain)) across
different dataset sizes and different contact settings. The
resulting values were right skewed and non-negative; there-
fore, we assume their distribution to be log-normal and
construct its 95% confidence interval using Cox’s method
[32]. Stiffer models show worse average training loss across
all tested dataset sizes with high confidence, with nearly 10x
gap between the Hard and Soft models in the high data
regime. Furthermore, there is a large data efficiency gap;
Hard models trained on 5000 trajectories perform worse than
both Medium and Soft models trained at just 100 trajectories.

In Fig. 4b, we plot the generalization error of the learned
models with their 95% log-normal confidence intervals.
Similar to the trends noted in Fig. 4a, we observe that the
generalization error also exhibits a 10x gap in the high
data regime, and that again Hard models perform worse
than their Medium and Soft counterparts do with 50x less
data. Additionally, while Medium and Soft models improve
generalization by over a factor of 100 as the dataset size
increased from 50 to 5000 trajectories, Hard models by
contrast improve by less than a factor of 10.

We capture the long-term prediction errors (epos, erot ) of
the MuJoCo oracle in Table IV and that of the learned models
in Fig. 4c–4d. The MuJoCo oracle errors are at least 10x
smaller than the learned models for both metrics. We also
observe that for both MuJoCo oracle and the learned models,
the errors increase for stiffer models. In the case of learned
models, the Hard models perform worse when trained on up
to 5000 trajectories than the Soft models perform only for
50, a data-efficiency gap of at least 100x.

V. DISCUSSION

Our results provide compelling evidence that deep learning
methods are negatively impacted by stiffness induced by
contact. Of particular note is that this effect is significant
when compared to the inherent uncertainty of predicting stiff
dynamics for noisy data; training set error grows nearly twice
as fast with stiffness as the MuJoCo oracle model (Fig. 4a).
We also see in Fig. 4b that stiff dynamics can violate the
common intuition that generalization error vanishes as the
training set size approaches infinity. While our softer models
clearly behave as such, a 100x increase in training set size
made little impact on generalization for Hard models.

It is also vital to understand how learning performance
affects the downstream robotics task. Often, a goal in robotics
is to gain an accurate enough model as fast as possible to
use for long-term prediction. The bottleneck in this scenario
is often training data collection [4]. From this data-efficiency
perspective, increased stiffness has degraded learning perfor-
mance 100-fold, as that the Hard models are still worse than
the Soft models with 100 times more data (Fig. 4c–4d).



(a) (b) (c)

Fig. 4: We compare the quality of learned models across stiffness settings and dataset
sizes. We plot several metrics with 95% log-normal confidence intervals. (a): As
stiffness increases, the gap between the training error and the oracle’s error grows. (b):
Stiffer models show a significantly higher average generalization error across dataset
sizes. (c,d): We compare the performance of our optimized networks on long-term
prediction of position and orientation. Data-efficiency of learning Hard models is at
least 100x worse than for Soft models.

(d)

It is worth noting that long-term prediction performance
can decorrelate from short-term predictions, especially for
stiff dynamics [1], [9]. Training directly on multi-step pre-
diction error is therefore desirable. However, the stiffness of
the training optimization problem grows exponentially in the
prediction horizon [33], and we have seen here that even a
prediction horizon of 1 is challenging on stiff systems.

VI. CONCLUSION AND FUTURE WORK

In this work, we have outlined a fundamental conflict
between the dynamics of contact and common deep learning
approaches, which significantly degrade the performance of
learned models. While compelling, these results are only
an initial study. Notably, our system has no actuation, and
has lower dimensional state than many robotics tasks; the
performance gap between hard and soft contact could be even
wider for more complex systems. Future studies into more
complex systems are vital to understanding this relationship.
Hardware experiments would also further relevance of our
results to real-world robotics. Data efficiency has also been
a primary focus of several recent contributions to robotic
learning. Some approaches have focused on training on long-
term prediction [7], [1]; and locally-accurate, task-specific
models [3]. While none of these methods attempt to handle
the conflict between stiffness and deep learning directly,
examining effects of stiffness on these algorithms would
strengthen the relevance of our results to the state-of-the-art.

The ultimate goal of quantifying stiffness’s challenges is to
inspire algorithms which can overcome them. One direction
is to shift deep learning’s inductive bias towards models with
near-discontinuity instead of explicitly embedding physics
priors. Some methods for instance attempt to capture sensi-
tivity via multi-modality [13], [34]. A key challenge of con-
tact is the huge quantity of modes [22], whereas application

of these methods have been limited to only a few. Another
option is to explicitly combine the structure of contact with
deep networks. While it requires a detailed system model,
Residual physics methods circumvent limiting mechanical
assumptions by learning a DNN which corrects an imperfect
physical model [7]. While such methods have been shown
to be data efficient, their ability to directly circumvent issues
due to numerical stiffness has not been proven. For instance,
if a discontinuity in the physical model is incorrectly located
in state space, the residual model will need to cancel out the
incorrect discontinuity and learn the correct one. By contrast,
our previous work [22] implicitly captures discontinuity by
embedding DNN-parameterized geometries and friction into
a physics-based simulator. While this method is numerically
well-behaved, it still requires significant knowledge of the
physical properties of the system, and furthermore is re-
stricted to inelastic impact and dry friction. Future extensions
of this work may alleviate the latter issue by combining
residual learning with implicit discontinuity representations.
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APPENDIX I
1D EXAMPLE

We now detail the prediction task explored in Figure 1.
The 1D system has state x = [z; ż] and continuous-time
dynamics

z̈ =

{
−9.81 z > 0 ,
−kz−2

√
kż−9.81 z≤ 0 .

(10)



For each stiffness setting, data (żt , żt+1) are selected with
an initial velocity żt ∼U ([−3,5]), and simulated (10) with
initial condition [1; żt ] for 1 s to generate the final velocity
żt+1. We add gaussian noise (σ2 = .01) to both velocities.

For each stiffness, we train 100 models on different sets
of 20 training and 20 validation datapoints selected from this
distribution; one such training set is displayed in Figure 1b.
Each model is an MLP with input żt , two hidden layers of
width 128, and output żt+1. Models are trained with MSE
loss, and terminated with early stopping with a patience
of 10 epochs. The Adam optimizer is used, with learning
rate and weight decay separately tuned for each stiffness by
grid search on {1e−2,1e−3,1e−4} and {1e−2,1e−4,0},
respectively, to minimize ground truth MSE. The average
prediction of these models with a 1 std. dev. window are
plotted in Figure 1b.

APPENDIX II
SIMULATION DETAILS

Here, we provide additional details on the physics of
MuJoCo and the data generation process.

A. Interpenetration in MuJoCo

Here we discussion interpenetration r in MuJoCo. During
contact, r = 0 may be considered a constraint which must be
stabilized for reliable simulation; the seminal approach of
Baumgarte [24] is to enforce penetration to obey dynamics
inspired by a spring-mass damper: r̈B = −(kr + bṙ). To
scale this idea to efficient multibody simulation, MuJoCo
computes a convex optimization-based approximation [18]:

r̈ ≈ (1−d(r))r̈s +d(r)r̈B , (11)

where r̈s is the acceleration due to gravity and inertia (-9.81
for the point mass in Figure 1), and d(r) ≈ 1 is a user-
specified function. A thorough description of this function is
available in the MuJoCo documentation online 5.

B. Data Generation

To generate an initial state, we generate a perturbation ∆x0
around the nominal state x0,re f , an initial condition taken
from the ContactNets dataset [22]:

x0,re f = [0.186, 0.026, 0.122,−0.525, 0.394,−0.296,
−0.678, 0.014, 1.291,−0.212, 1.463,−4.854, 9.870] ,

where the cube center of mass is ∼ 0.12m above the ground,
with initial downward velocity of ∼ 0.2 m

s . This perturbation
consists of ∆p0 ∼ U ([−0.1,0.1]3) m

s ; ∆q0 ∼ Q
(

θ
v
||v||2

)
,

a body-axis rotation of angle θ ∼ U ([−1,1]) rad and
axis v ∼ U ([1,1]3); ∆ṗ0 ∼ U ([−0.1,0.1]3) m

s ; and ∆ω0 ∼
U ([−0.1,0.1]3) rad

s . Since the average trajectory length for
the Hard setting is 80 time-steps (∼ 540ms), we truncate
the Medium and Soft trajectories to 80 time-steps to make
the amount of data per trajectory equal across all settings.
After a trajectory is generated from this initial condition,
we add two forms of noise to the configrations [pt ; qt ].

5http://www.mujoco.org/book/modeling.html

TABLE V: Hyperparameter Search Space

Hyperparameter Values

target variable vt+1 ∆v -
learning-rate 1e-3 1e-4 1e-5
hidden-size 128 256 512

history-length 4 8 16
weight-decay 0 4e-5 4e-3

First we add constant-in-time noise to represent cumulative
sensor drift: ∆p ∼ U ([1,1]3) mm and ∆q ∼ Q

(
θ

v
||v||2

)
,

with θ ∼ U ([−1,1]) deg and axis v ∼ U ([1,1]3). Then,
we add i.i.d. noise to each measurement to model the small
inconsistencies between measurements in the same fashion:
∆pt ∼ U ([.01, .01]3) mm and ∆qt ∼ Q

(
θ

v
||v||2

)
, with θ ∼

U ([−.01, .01]) deg and axis v ∼ U ([1,1]3). Velocities are
reconstructed from the noisy data by inverting the finite
difference equations (6)–(7). While measurements have very
small relative position noise, finite differencing amplifies the
velocity noise by 1

∆t ≈ 160s−1.

APPENDIX III
LEARNING DETAILS

Our MLPs consist of 4 hidden fully-connected layers
with ReLU activations, plus a final linear layer. Our RNNs
maintain a hidden state zt with initial value 0. zt is updated
sequentially for each xt as zt = φθ (xt ,zt−1) from the previous
hidden-state zt−1, where φθ is a learned non-linear function.
By recursively unfolding (visualized in Fig. 5),

zt = φθ (xt ,φθ (xt−1, . . .φθ (xt−h+1,0) . . .)) . (12)

Finally, we use a two layer fully-connected network as a
decoder φθ ,dec to extract the predicted velocity vector as
vt+1 = φθ ,dec(zt). The decoder consists of a hidden layer
of width half the size of RNN hidden-state followed by
ReLU activation units and the output layer. For each MLP
and RNN architecture, we tried different target variables and
sweep over different values of learning-rate, hidden-layer
size, and weight-decay, centered around hand-tuned values.
While the history-length is 1 for MLPs, for RNNs we also
tried different history-lengths. Table V provides the space
of hyperparameters sweeped over in this process. For each
combination of settings, we complete at least 10 training runs
on high data regime of 500 example trajectories, and then
select the setting with the lowest average MSE over Dtest.

While MLP’s and RNN’s had similar training error and
generalization error trends, the long-term prediction error
was noticeably different (see Fig. 6). To make a fair com-
parison with our RNN’s of history-length h = 16, our MLP
rollout experiments also start from the 16th time-step. RNN’s
are worse than MLP’s on Hard model rollouts, in spite of
their superior performance on single-step predictions. We
speculate that RNN models can exploit temporal consistency
between velocities for smooth systems. After all, if the trajec-
tory is smooth in time, then one can predict the velocity over
a short horizon by simply doing polynomial extrapolation.
However, as the velocity is nearly discontinuous in time for
hard models, this intuition may no longer be valid.
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Fig. 5: The structure of our RNN predictors.
φ is a recurrent unit (GRU), while φdec is an
MLP decoder. Fig. 6: We plot the performance of our optimized MLP networks on long-term prediction

of position and orientation with 95% confidence intervals.
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