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Abstract— Contact constraints, such as those between a foot
and the ground or a hand and an object, are inherent in
many robotic tasks. These constraints define a manifold of
feasible states; while well understood mathematically, they
pose numerical challenges to many algorithms for planning
and controlling whole-body dynamic motions. In this paper,
we present an approach to the synthesis and stabilization of
complex trajectories for both fully-actuated and underactuated
robots subject to contact constraints. We introduce a trajectory
optimization algorithm (DIRCON) that extends the direct col-
location method, naturally incorporating manifold constraints
to produce a nominal trajectory with third-order integration
accuracy—a critical feature for achieving reliable tracking
control. We adapt the classical time-varying linear quadratic
regulator to produce a local cost-to-go in the manifold tangent
plane. Finally, we descend the cost-to-go using a quadratic
program that incorporates unilateral friction and torque con-
straints. This approach is demonstrated on three complex
walking and climbing locomotion examples in simulation.

I. INTRODUCTION

Many of the fundamental problems in robotics, such as
locomotion and manipulation, involve the robot making and
breaking contact with its environment. The last few years
have seen rapid advances in motion planning techniques,
based on trajectory optimization, to synthesize locally opti-
mal trajectories which make and break contact, even for very
complex robots and tasks [22], [24], [29], [33]. However,
there has been relatively little work on stabilizing the re-
sulting plans using local feedback for robust execution, with
[29] a notable exception. Our own initial attempts to stabilize
these trajectories were thwarted by numerical difficulties
related to insufficient accuracy in the motion plans.

Contact, when sustained over time, represents kinematic
constraints on the evolution of the dynamical system. In
simple cases, the constrained system can be described by
a set of minimal coordinates. However, these constraints
frequently create closed kinematic chains, such as in four-bar
linkages, or when a walking robot is in double support with
both legs contacting the ground. When minimal coordinates
do not exist, we must consider the robot’s state to be on a
manifold embedded in a higher dimensional space [21], [4].

In this paper, we provide extensions to the widely used
direct collocation trajectory optimization algorithm [13] and
classical linear quadratic regulator (LQR) stabilization tech-
nique that address the challenges posed by working on these
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Fig. 1. An Atlas robot climbing a step with aid of a hand. The algorithms
presented here synthesize and stabilize dynamic, multi-contact trajectories.

manifolds. We introduce DIRCON, a planning algorithm for
constrained dynamical systems with third-order integration
accuracy; it maintains the advantages of direct collocation,
thereby enabling more reliable stabilization as compared with
existing methods. The results are then combined with recent
advances in humanoid control, leveraging quadratic program-
ming, to incorporate constraints such as input saturations
and friction limits into the feedback policy [19], [18]. These
three elements provide an end-to-end recipe for generating
and stabilizing optimal trajectories that exhibit complex and
varying contact configurations. We demonstrate the approach
on three different locomotion examples in simulation: walk-
ing in three dimensions, underactuated planar (2D) walking,
and planar climbing utilizing contact between the hand and
the environment.

II. BACKGROUND AND RELATED WORK

There is an extensive literature related to planning and con-
trolling rigid-body systems through intermittent contacts. In
the following section, we summarize the background material
and related work necessary to motivate our contributions.

A. Constrained Dynamics

In this paper, we will consider constrained Lagrangian
systems [10], [21], which we briefly review here. Letting
q, v ∈ Rn be the generalized position and velocity coordi-

nates, we have the state vector, x =

[
q
v

]
. Take the control

input u ∈ Rm and consider dynamics of the standard form:

q̇(t) = v(t), v̇(t) = f(x(t), u(t)), (1)

such that the dynamics constrain the system evolution to
always satisfy the d-dimensional constraint φ(q(t)) = 0 for
φ : Rn → Rd. With φ a smooth mapping, this constraint has
the effect of restricting trajectories to a (2n−2d)-dimensional



manifold. For the purposes of trajectory optimization, we will
also write the dynamics in an implicit form:

v̇(t) = f̄(x(t), u(t), λ(t)), (2)

with the constraint force λ ∈ Rd. Since the constraint
must be satisfied over the entirety of a trajectory, x(t),
the time derivatives of φ(q(t)) must also vanish. Defining

the Jacobian J(q) =
∂φ

∂q
, we know that trajectories and

constraint forces must satisfy the following conditions:

φ(q(t)) = 0, (3)

ψ(q, v) ≡ dφ

dt
= J(q)v = 0, (4)

α(q, v, u, λ) ≡ d2φ

dt2
=

dJ(q)

dt
v + J(q)f̄(x, u, λ) = 0, (5)

where we have defined ψ(q, v) and α(q, v, u, λ) as the
constraint velocity and acceleration, respectively.

We assume that, for given initial conditions, there exists
a unique solution x(t) to the constrained dynamics. Since
J(q) may have a non-empty nullspace, we do not require
that λ(t) be unique. We assume that J(q) has constant
rank. Let λ∗(q, v) define a constraint force that satisfies the
acceleration constraint, α(q, v, u, λ∗(q, v)) = 0 for all q and
v. In Section III, we will present strategies for trajectory
optimization and control of constrained dynamical systems.

B. Trajectory optimization

There is a rich literature on both control and planning of
nonlinear systems as applied to mobile robotics. Trajectory
optimization has been particularly successful in synthesizing
highly dynamic motions in high-dimensional state spaces.
See Betts [3] for both an overview and a description of the
variety of existing algorithms. Broadly speaking, trajectory
optimization aims to find dynamically consistent state and
control trajectories x(t), u(t) that minimize a cost functional
subject to a set of constraints. A popular class of techniques,
commonly known as transcription methods, discretizes the
trajectories in time as x1, ..., xN , u1, ..., uN and, between
these knot points, enforces the integral of the dynamics as a
constraint. Within this class are multiple-shooting methods,
which numerically integrate from xk to xk+1 and have been
successfully applied to robotic locomotion tasks [22], [27].
Another common approach, called direct collocation, avoids
costly numerical integration by approximating trajectories
as Hermitian splines [13] (Section II-C). Remy [26] used
direct collocation with pre-specified contact sequences to
generate 1-leg hopping and 2-leg gaits. Buss et al. [5] used
direct collocation in minimal coordinates to optimize walking
phases for a medium-scale humanoid robot.

When applied to a constrained dynamical system, it is
natural to require that the points xk lie on the constraint
manifold and satisfy (3)-(4). This poses a challenge due
to inherent error in numerical integration methods; naive
application of standard trajectory optimization methods will
be unable to satisfy these additional constraints. However,
corrective techniques for integration on manifolds exist, such

Fig. 2. The Hermite spline of the direct collocation algorithm, shown in
red, is constructed between two knot points. The defect is the discrepancy
between the collocation dynamics f(xc, uc) and the slope of the spline ẋc.

as augmenting the dynamics to force trajectories to drift back
toward the manifold [6], [11].

Recent research has seen the development of contact-
implicit trajectory optimization algorithms, capable of syn-
thesizing motions without an a priori specification of the
contact sequence [24], [23]. Based on approaches widely
used in simulation, a first-order integration method was
used in [24]. However, the integration error induced by
such a low-accuracy method greatly complicates the tasks of
trajectory execution and stabilization, an effect also observed
in [33]. Here, we will assume that the contact sequence is
specified, which in practice can be provided by a contact-
implicit method or by the designer. In Section III-A, we
introduce a third-order integration method, motivated by
classical Hermite-Simpson integration, that does not require
minimal coordinates and is especially adapted to the task of
optimal control on manifolds.

C. Direct Collocation

The original direct collocation algorithm, introduced by
Hargraves and Paris, uses cubic Hermite splines to inter-
polate between a sequence of knot points [13]. The state
and input are defined at a sequence of equally spaced knot
points at times t1, .., .tN such that the timestep between
sequential points is h. This defines the list of decision
parameters z = (x1, ..., xN , u1, ..., un). We briefly describe
the algorithm here, as applied to a second-order system.

The plant dynamics are evaluated at each knot point
v̇k = f(xk, uk) and, for every sequential pair of knot
points xk, xk+1 and inputs uk, uk+1, a cubic spline xs :
[tk, tk + h] → R2n is generated that matches the state and
its first derivative at the knot points:

xs(tk) = xk, xs(tk+1) = xk+1,

ẋs(tk) =

[
vk

f(xk, uk)

]
, ẋs(tk+1) =

[
vk+1

f(xk+1, uk+1)

]
.

The state at the midpoint of this spline, xc = xs(tk + .5h),
called the collocation point, is simply a linear combination
of the state and its derivative at the adjacent knot points. The
collocation constraint function, g, matches the slope of the
spline to the plant dynamics at the collocation point, where
the control input is typically taken to be the result of a first-
order hold, uc = uk+uk+1

2 . Therefore, we define:

g(xk, uk, xk+1, uk+1) = ẋs(tk + .5h)−
[

vc
f(xc, uc)

]
. (6)



These collocation constraints, illustrated in Figure 2, are an
efficient and accurate representative of the plant dynamics.
The integration error over a single timestep is O(h4) and
so the error over a fixed time interval is then O(h3) [12].
This third-order accuracy compares favorably with Euler-
integration based methods, which have only O(h) accuracy
over similar intervals. With higher order methods, accu-
rate trajectories can be achieved with fewer knot points–
and therefore smaller optimization problems. The resulting
trajectory optimization problem, with running cost `(xk, uk)
and a final cost `f (xN ) can then be expressed as:

minimize
z

`f (xN ) + h

N∑
k=1

`(xk, uk)

subject to 0 = g(xk, uk, xk+1, uk+1)

for k = 1, . . . , N − 1

0 ≥ m(z),

(7)

where m(z) represents arbitrary additional constraints on
state and input, such as variable bounds or boundary values.

D. Control of walking systems

The most widespread algorithms applied to modern robots
are those that optimize and track trajectories using a re-
duced dynamical model. The power of these approaches
was demonstrated at the DARPA Robotics Challenge in
June 2015, where highly complex robots were able to move
through a challenging course with little hesitation on the part
of their algorithms (but considerable hesitation on the part
of their operators). There is a large literature on trajectory
design and stabilization for legged robots, using dynamic
quantities like the zero moment point [15] or the capture
point [16]. The simple expressions for these quantities admit
efficient algorithms for planning and computing optimal con-
trollers [31] and can form the basis for tracking controllers
that utilize Quadratic Programs (QPs) to reason, real-time,
about the constraints of the system [19], [17], [8], [14].
Although these approaches are versatile and computationally
simple, they fall short as tools for generating highly dynamic
and energetically-efficient motions in underactuated systems.

Dai et al. [7] showed that by starting with the full
coordinates and removing torque limits, direct trajectory
optimization problems can be formulated considering only
the floating base, or Centroidal, dynamics and the full
body kinematics. This leads to a more tractable nonlinear
optimization problem but is restricted to fully-actuated robots
and removes the ability to reason about torque limits and
costs. Tassa et al. [29] use smoothed contact models to
achieve short-horizon motion planning through contact at
online rates using differential dynamic programming.

There are also successful examples of dynamic walking
systems that do not use trajectory optimization. Westervelt
et al. [32] developed the hybrid zero dynamics (HZD)
framework whereby virtual holonomic constraints are defined
and tracked in the minimal coordinates. This approach has
been used to produce dynamic walking and running examples
in physical robots [28]. Ames et al. [1] extended this line of
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Fig. 3. A block diagram shows the interaction between the three
components. The DIRCON algorithm, given an objective and constraints,
produces a nominal trajectory. The constrained version of LQR solves for
a quadratic cost-to-go function. This cost-to-go is used to synthesize a QP,
which is solved in real-time as a feedback control policy.

work by using QPs to formulate exponentially stabilizing
control-Lyapunov controllers for HZD-based walking sys-
tems. The challenge for HZD approaches remains to extend
to more general, aperiodic motions.

Our current approach differs from previous work in that
we optimize trajectories for constrained systems in the full
coordinates with realistic impact models. The numerical
accuracy of these trajectories is sufficient to stabilize using
a combination of techniques that can be considered as
standard: LQR and QP.

III. APPROACH

Planning and control is achieved via three components,
detailed in the following sections and illustrated in Figure 3.
The direct collocation algorithm is extended to seamlessly
produce trajectories for constrained dynamical systems that
also obey Coulomb friction limits. An extension of the LQR
synthesizes a local controller and cost-to-go function, valid
near the nominal motion. Rather than directly applying the
LQR controller, the cost-to-go is used as the objective of a
QP that is solved, real-time, as a feedback policy that respects
inequalities and changing contact conditions.

A. Constrained Direct Collocation

Observe that simply adding in the manifold constraints
(4)-(5) to the standard direct collocation optimization (7)
results in an over-constrained problem. This can best be
seen by formulating the optimization as a single-step forward
prediction: fix x0, u0, and u1 and solve for x1. Assuming that
x0 lies on the manifold, we still have the constraints (4), (5),
and (6), a total of (2n+2d) equality conditions, greater than
the dimensionality of the unknown x1.

To resolve this issue, we present Constrained Direct Col-
location (DIRCON), an extension of the classical algorithm
that naturally handles the difficulties presented by an implicit
constraint manifold. This algorithm has two main contri-
butions: 1) it achieves O(h3) accuracy for constrained La-
grangian systems and 2) by explicitly representing the forces
λ, constraints on the forces like friction limits are easily
expressed. First, the algorithm incorporates the constraint
forces at the knot points, λ1, ..., λN , as explicit decision
variables in the optimization. Second, it reduces the effective



Fig. 4. A one dimensional constraint manifold, embedded in a two
dimensional space, is cartooned in blue. A Hermite spline, in red, between
two points will not overlap the manifold, and its slope will not lie within
the tangent plane at the collocation point. DIRCON implicitly projects the
spline slope onto the manifold to form the proper constraint defect.

dimensionality of (6) by restricting it to the tangent plane of
the constraint manifold, through the use of additional slack
variables λ̄1, ..., λ̄N−1, γ̄1, ..., γ̄N−1. These variables repre-
sent forces and a velocity correction, respectively, applied
at the collocation point. The resulting projected collocation
constraint, cartooned in Figure 4, is:

ḡ(xk, uk, λk, xk+1, uk+1, λk+1, λ̄k, γ̄k) = ...

ẋs(tk + .5h)−
[
vc + J(qc)

T γ̄k
f̄(xc, uc, λ̄k)

]
. (8)

Defining the set of optimization parameters as z =
(x1, ..., xN , u1, ..., uN , λ1, ..., λN , λ̄1, ..., λ̄N−1, γ̄1, ..., γ̄N−1),
we have the trajectory optimization problem:

minimize
z

`f (xN ) + h

N∑
k=1

`(xk, uk)

subject to 0 = ḡ(xk, uk, λk, xk+1, uk+1, λk+1, λ̄k, γ̄k)

for k = 1, ..., N − 1 (9)
0 = φ(qk) = ψ(xk) = α(qk, vk, uk, λk)

for k = 1, ..., N

0 ≥ m(z).

As with standard collocation, additional constraints on the
state, input, and constraint forces can all be added to sup-
plement the trajectory optimization.

Theorem 1: If the dynamics and kinematics functions
(f̄ , λ∗, φ, ψ, α) are analytic and Lipschitz continuous, the al-
gorithm above has O(h3) accuracy over a fixed time-interval.
More specifically, take (x0, u0, λ0, x1, u1, λ1, λ̄0, γ̄0) to be
bounded and satisfy (8). Let x(t) for t ∈ [0, h] be the true
solution to ẋ(t) = f(x(t), u(t)) with x(0) = x0 and u(t) a
first-order hold between u0 and u1. Then, we have that the
error ||x(h)− x1|| < Ch4 for some constant C.

Proof: Let qs(t) and vs(t) correspond to the joint
position and joint velocity cubic splines. For simplicity, we
will write qc = qs(.5h), q̇c = q̇s(.5h), vc = vs(.5h),
and v̇c = v̇s(.5h). Note, because the parameters z are
bounded, qs(t) and vs(t) are also bounded and so φ(qs(t))
will be both bounded and analytic. First, we demonstrate that
φ(qc) = O(h4). Since φ(qs(0)) and φ̇(qs(0)) both vanish,
the Taylor expansion of φ(qs(t)) is

t2

2

d2φ

dt2

∣∣∣∣
t=0

+
t3

6

d3φ

dt3

∣∣∣∣
t=0

+
t4

24

d4φ

dt4

∣∣∣∣
t=0

+ ...

By substituting and differentiating this expansion, and ex-
ploiting the fact that φ(qs(h)) and φ̇(qs(h)) also vanish, we
can eliminate the quadratic and cubic terms from φ(qc),

φ(qc) =
233

1142
h4

d4φ

dt4

∣∣∣∣
t=0

+O(h5). (10)

Therefore, for sufficiently small h we have ||φ(qc)|| <
Ch4 and, similarly, ||φ̇(qc)|| < Ch3. For notational ease,
we take C to be some global constant of sufficient size.
A similar expansion of ψ(qs(t), vs(t)) demonstrates that
||ψ(qc, vc)|| < Ch4 and ||ψ̇(qc, vc)|| < Ch3. The bounds
on these two values for the constraint velocity, φ̇(qc) and
ψ(qc, vc), combined with the collocation constraint (8) give
a bound on the velocity correction,

||J(qc)
T γ̄0|| < Ch3. (11)

Combined with the velocity component of (8), we have

||α(qc, vc, uc, λ̄0)|| < Ch3. (12)

Simply put, (11) and (12) bound the defect between the
derivative of the splines and the manifold tangent plane. To
leverage existing results regarding collocation methods and
ODEs, we extend the constrained dynamics by defining ẋ
when x is off the manifold,

q̇(t) = v(t) + J(q(t))T γ(t) (13)
v̇(t) = f(x(t), u(t), λ(t)), (14)

where the constraint forces are such that J(q(t))q̇(t) = 0
and α(q(t), v(t), u(t), λ(t)) = 0. Note that these extended
dynamics agree with the constrained dynamics for states
on the manifold, but define an ODE for all x ∈ Rn.
Using standard results in Hairer [12] and Betts [3], a direct
collocation algorithm for these extended dynamics would
have O(h4) accuracy over a single timestep. While (11)
and (12) imply O(h3) errors in extended dynamics when
evaluated at the collocation point, this error is multiplied by
h in computation of the integral and so the overall accuracy
is still O(h4).

1) Friction Limits: By explicitly introducing the con-
straint forces λ as decision parameters within the optimiza-
tion, we can easily require that they obey a set of nonlinear
constraints as in [24]. For instance, we can require that they
lie within the Coulomb friction cone µ2λ2z ≥ λ2x+λ2y , where
λz is the component normal to the contact surface.

This is of particular interest when the rows of the Jacobian
J are not linearly independent, a common case that occurs
in all of the examples in this paper. When J is full row-
rank, one might directly solve for the unique λ such that
α(q, v, u, λ) = 0 and evaluate the friction constraints by
solving a simple linear system of equations. However, when
J is rank deficient, there are a subspace of such forces.
Therefore, solving for a force that satisfies the constraints
is equivalent to a convex optimization problem in and of
itself. Explicit representation of the forces avoids this added
complexity, and greatly simplifies the representation of these
constraints.



2) Hybrid Collocation: As with other trajectory opti-
mization algorithms, DIRCON can be simply extended to
the hybrid case. The hybrid trajectory optimization problem
constructs one set of decision parameters and constraints
per contact state, or hybrid mode. Consistency between the
modes is enforced via a hybrid jump condition, described by
explicitly including the impulse Λ. Letting zj be the decision
variables for the jth mode, jump constraints are then:

qj1 = qj−1
Nj−1 (15)

vj1 = vj−1
Nj−1 +G(qj−1

Nj−1 ,Λ
j−1), (16)

where G(q,Λ) represents the change in velocity that results
from applying impulse Λ at the active contact points in
mode j at the given position q. Additional constraints prevent
contact penetration, and guard conditions to ensure that mode
changes occur when the appropriate points are in contact.

B. Equality-Constrained LQR

Given a trajectory output from the collocation algorithm
described in the previous section, we next address the prob-
lem of designing a tracking controller. The presentation here
is similar in principle to [21], though we base the design
around LQR. A powerful tool for the stabilization of both
time-invariant and time-varying linear dynamical systems,
LQR is also widely used for local stabilization of non-
linear systems [2]. For a linear system, finite horizon LQR
minimizes the quadratic cost,

x(T )TQfx(T ) +

∫ T

0

[x(t)TQx(t) + u(t)TRu(t)]dt, (17)

by solving the Hamilton-Jacobi-Bellman (HJB) equation.
The product is an optimal controller u(t) = −K(t)x(t) and
the cost-to-go V (t, x(t)) = x(t)TS(t)x(t). To track a trajec-
tory of a nonlinear system, a linearization of the dynamics
about the nominal motion can be used to generate a feedback
policy. Here, we provide a straight-forward extension of the
classical notion of LQR to constrained dynamical systems.
Consider the time-varying linear system

ẋ = A(t)x(t) +B(t)u(t), (18)

where the dynamics constrain the state to the manifold
defined by F (t)x(t) = 0 and F (t) is full row-rank. While
the derivations in this section apply to generic systems, for
notational consistency, we will continue to focus on second-
order plants with F : R+ → R(2n−2d)×2n. The manifold
constraint implies that the system is neither controllable nor
stabilizable in the traditional senses. As a result, we cannot
simply ignore F (t) and solve the standard Riccati equation.

While we may not have a set of minimal coordinates, we
can derive a time-varying basis for locally minimal coordi-
nates and then apply traditional LQR techniques. Assume
that F (t) is differentiable and take some P (0) to be an
orthonormal basis of the nullspace of F (0):

PPT = I2d (19)

PFT = 02d×(2n−2d). (20)

To ensure that these identities hold for all time, we differen-
tiate and write an ordinary differential equation for P (t),

ṖPT + PṖT = 0 (21)

ṖFT + PḞT = 0.

For any x ∈ R2n, we can write x = PT y + FT z for
some y ∈ Rd and z ∈ Rn−d. However, as a result of the
constraints, we know that Fx(0) = z(0) = 0. Additionally,
along any trajectory x(t), we have ż(t) = 0 and so x(t) =
PT y(t) and y(t) = Px(t). The dynamics of y are given by:

ẏ = Ṗ x+ Pẋ = Āy + B̄u, (22)

for Ā = ṖPT + PAPT and B̄ = PB. We can apply
classical LQR control techniques to this system in a two-
step process. First, given F (t), generate an appropriate P (0)
and then numerically integrate (21) to find P (t). Note that
some regularization of the ODE may be required to ensure
that the solution does not drift from the identities (19)-(20).
Second, use P (t) to perform the change of coordinates from
x to y. Solve the resulting Riccati equation and transform
the solution back to the original coordinates.

The LQR solution from an individual mode can be pro-
jected through hybrid transitions using a linearization of
the instantaneous impact dynamics, via the jump Riccati
equation described in [20].

1) Example: Kinematic Constraint: We cast the case of a
kinematic constraint φ(q) into the constrained LQR formula-
tion. Given a nominal trajectory q0(t), v0(t) that satisfies the
constraints φ(q0(t)) = 0 and ψ(q0(t), v0(t)) = 0, linearize
the dynamics about this trajectory:

q(t) = q0(t) + q̃(t), v(t) = v0(t) + ṽ(t)

˙̃q(t) = ṽ(t)

˙̃v(t) = Ã(t)

[
q̃(t)
ṽ(t)

]
.

Linearizing the constraint, and suppressing the dependence
of q0 and v0 on time, we get[

φ(q)
ψ(q, v)

]
≈

[
J(q0) 0
dJ(q0)

dt
J(q0)

] [
q̃(t)
ṽ(t)

]
= F (t)

[
q̃(t)
ṽ(t)

]
(23)

which gives F (t) as a kinematic function of nominal tra-
jectory. Since we require F (t) to be full rank, but J(q) will
often be rank deficient (though constant rank), it is necessary
to extract a full rank basis for J and its time derivative.

C. QP Feedback Controller

Rather than executing the time-varying linear policy output
from the constrained LQR algorithm, we instead solve a
constrained minimization at each control step. This allows
us to explicitly take input and friction limits into account
and handle minor variations in the timing of impacts. The
optimization problem takes the form of a QP. Given a



planned nominal trajectory x0(t), u0(t) and LQR solution,
we formulate:

minimize
u,β

ũTRũ+ 2x̃TS(Ax̃+Bũ)

subject to Hq̈ + C = Bu+ JTβ β

J̇q̇ + Jq̈ = 0

umin ≤ u ≤ umax

β ≥ 0,

(24)

where x̃ = x − x0(t), ũ = u − u0(t). We have suppressed
dependence on time and state. The cost function is derived
from the HJB equation for the time-varying LQR system.
Therefore, in the absence of unilateral constraints, the QP
solution is equivalent to the optimal LQR input. The Riccati
matrix S is evaluated based on time, with the exception that if
an impact occurs early, within a few timesteps of the planned
impact, S is evaluated from the next mode. This helps avoid
large errors in velocity states at impacts.

The decision variables β are force coefficients that mul-
tiply a set of generating vectors that define a polyhedral
approximation to the friction cone, λj =

∑Nd

i=1 βijwij ,
where wij = nj + µjdij , nj , dij are the contact-surface
normal and ith tangent vector for the jth contact point,
respectively, µj is the friction coefficient, and Nd is the
number of tangent vectors used in the approximation. The
contact points included in β are determined at each control
step. Note that any point in contact will be added to the
QP, whether or not it is planned, giving the system the
opportunity to use environmental forces to correct deviations
from the desired trajectory.

The second equation in (24) acts as a “no slip” constraint
by requiring that the planned contact points do not accelerate
with respect to the world frame when they are active. The
Jacobian J , as previously defined, maps joint velocities to
Cartesian velocities of the contact points. JTβ represents the
use of the generating vectors, and so maps forces along
the generating vectors into generalized forces. In practice,
we often soften the constraint J̇ q̇ + Jq̈ = η, where the
slack variable η is penalized quadratically. This formulation
shares several features with our QP-based controller used on
Atlas [19], [18], with the important distinction that the local
cost-to-go is in the full coordinates.

IV. EXPERIMENTS

The components above are tested on three examples
related to robotic locomotion. The algorithms were imple-
mented in MATLAB within the Drake planning and control
toolbox [30], also used for simulation, and the source code
is all openly available online1. Trajectory optimizations were
solved with the SNOPT toolbox [9]. Depending on complex-
ity, the trajectory optimization and LQR components were
solved offline on a desktop computer within ten minutes to
two hours. The QP controller was solved at real-time rates
during simulation. Highlights from the experiments here are

1http://drake.mit.edu and https://github.com/mposa/

Fig. 5. Joint angle and body pitch tracking error along four steps of the
underactuated walker. The nominal trajectory is shown in the dashed lines
and the executions are in the solid lines. Tracking error is worst shortly
following the impacts (where the trajectories are not differentiable).

shown in figures below, and the full executions are available
within the accompanying video2.

A. Underactuated planar biped

We first demonstrate the approach on underactuated planar
biped, where each leg has a degree of freedom in the hip,
knee, and ankle. The hips and knees are actuated, but the
ankle consists solely of a passive spring and damper. With a
back joint and the planar floating base, this model has an 20-
dimensional state space. Contact points are modeled at the
toe and heel of each foot. The mass properties are similar to
those of the Atlas robot [18] and the ankle spring and damp-
ing coefficients are 10 Nm/rad and 2 Nms/rad. To produce
limit cycle walking, a hybrid trajectory optimization was
executed with a contact sequence containing both single and
double support phases. The objective was to minimize effort,
a quadratic penalty on control input uTu. Linear constraints
were imposed on x1 and xN to produce a periodic motion
and a minimum average walking speed. A small penalty was
added to acceleration, 10−4

∑
k ||f̄(xk, uk, λk)||2, to encour-

age smoothness in the solution. Additional constraints on the
foot position enforced some amount of swing clearance. For
the LQR component, simple, diagonal matrices were used
for both Q and R. Elements of Q were 100 and 1 for the
generalized positions and velocities respectively, while the
diagonal R was uniformly 0.01.

Figure 5 shows body pitch and joint angle tracking over
four steps. Overall, the controller is able to closely track the
nominal motion, with deviations most noticeable shortly after
impacts with the ground. One of the aims of this trajectory
optimization is to create motions that are both dynamic and
efficient. Mechanical cost of transport (COT) serves as a
useful metric for locomotion efficiency: if M is the mass
and d is the total distance traveled, we integrate the total
joint work done and the unitless cost of transport is COT =

1
Mgd

∫
|work|dt. While we did not explicitly minimize COT,

minimizing effort produced an efficient nominal gait with a
COT of 0.139. Execution of the trajectory should increase
this cost, as the controller must expend energy to eliminate

2http://web.mit.edu/mposa/www/



Fig. 6. A sequence of states from the executed trajectory as the robot uses
its arm to help climb up onto the step in less than 3 seconds.

Fig. 7. A sequence of states as the robot walks and then executes a sudden
halting maneuver. The leftmost two images illustrate phases of the walking
motion and the rightmost image shows the final state after the rapid stop.

error. However, as an indication of the accuracy of the
nominal motion, the executed COT over the four steps in
the figure was only 0.143–a marginal increase.

B. Multi-contact climbing

We examine a planar humanoid model where the biped
from the previous example has been augmented with a two
degree of freedom arm (shoulder and elbow joints), also
based off the Atlas. Note that the previously used back joint
has been eliminated for simplicity and the ankle joints are
actuated, giving the plant a 22-dimensional state space. A
single contact point is included at the end of the arm, for a
total of five possible contacts. The restrictive joint limits of
the physical Atlas robot have been relaxed to allow greater
flexibility for this motion. The trajectory optimization was
constrained to use both the hand and feet to climb a 0.3 meter
step and then reach a stable position using a sequence of five
different contact modes. As before, constraints were used to
enforce swing clearance and the objective was to minimize
effort. The costs used for LQR are identical in nature to those
from the walking example. The duration of the resulting
trajectory was less than 3 seconds, so the robot must move
quickly and dynamically to execute it successfully. Figure 6
shows a set of illustrative key-frames from the motion.

C. 3D biped

The final example is a biped walking in three dimensions
along flat terrain. Also based upon the Atlas robot, we use
a model with six degrees of freedom in each leg: three at
the hip, one at the knee, and two at the ankle. Including
the floating base, the model has a 36-dimensional state
space with eight total contact points at the corners of the
feet. As with the underactuated biped, we synthesize limit
cycle walking with both single and double support phases.

The objective was to minimize effort, and linear constraints
enforced a periodic motion while walking at a human-like
speed of over 1 m/s. Locomotion at this speed requires
continuous, dynamic motion and the planned motion utilizes
push-off from the ankle during double support.

To illustrate the capability to produce and execute rapid,
aperiodic motions, we further synthesized a trajectory that
brought the robot to a complete halt within a half a stride
(starting from mid-swing). To stop this quickly, the robot
must quickly propel its swing leg forward before coming to
rest with its forward foot and rear toe in contact with the
ground. For the LQR component, simple, diagonal matrices
were again used for both Q and R. Components of Q were
200 and 1.5 for the generalized positions and velocities
respectively, while the diagonal R was uniformly 0.01.

We note that, when executed in simulation, the periodic
gait was not stable over an infinite horizon as small tracking
errors in the footfall locations and timings caused eventual
instability. Over shorter distances, however, the controller
produces efficient walking at human speeds. The accompa-
nying video demonstrates the robot taking four steps before
executing the stopping maneuver, with key-frames shown
in Figure 7. As evidence of the accuracy of the nominal
trajectory and the efficiency of the feedback policy, the
calculated COT of the executed trajectory was 0.399, only
slightly larger than the COT of the nominal motion, 0.382.

To examine the response of the closed-loop controller
to disturbances, randomly oriented 10N ·s impulses were
applied, mid-stance, at the pelvis of the robot and a single
walking step was simulated. The impulse causes a roughly
10% deviation in the center of mass velocity and sub-
stantial joint velocity errors. The LQR cost-to-go after the
disturbance and after one step was used as a measure of
robustness. After the disturbance, the median cost-to-go from
300 trials was 0.39 and, after a single step, the controller had
reduced the median cost-to-go to 0.07. Some of the random
disturbances did cause falls or other instabilities. In total, the
controller was able to reduce the cost-to-go in 96% of the
trials, empirically demonstrating some level of robustness.

V. DISCUSSION

The most common trajectory optimization approaches
utilize tools from general nonlinear optimization and are
therefore sensitive to the choice of the initial, or seed,
value for the unknown parameters. As an indication of the
robustness of the DIRCON method, all of the optimizations
in Section IV were initialized with exceedingly simple tra-
jectories: a constant, nominal pose for the states and white
noise for the control inputs. Even without carefully chosen
seed values, the optimizations consistently converged to high
quality solutions for problems of significant size.

While we are able to execute motions over finite horizons,
the walking trajectories discussed above are not stable over
an infinite sequence of steps. Perturbations around around the
moment of impact cause slight mismatches in footfall timing
and location, eventually leading to a fall. One potential
solution to this issue is to eliminate the explicit dependence



of the controller on time, either via use of transverse co-
ordinates [20] or through a zero dynamics manifold [28].
However, stabilization in the presence of contact uncertainty,
particularly contact modes that are not part of the original
plan, remains an open problem. While the QP controller
used here reasons about the current contact state, the cost-
to-go function from LQR provides no useful information
in directions normal to the planned manifold. Numerical
methods exist for formal stability analysis in the presence
of impacts, such as in [25], though these tools do not yet
scale to the dimensionality of these locomotion examples.

VI. CONCLUSION

In this work, we have presented a general purpose, end-to-
end approach for synthesis and stabilization of optimal trajec-
tories for robotic systems in contact with their environment.
These contacts restrict motion of the robot to manifolds of
feasible states, which can have complex geometries in multi-
contact scenarios. By explicitly addressing the nature of these
constraints, we design methods that seamlessly handle both
non-minimal coordinates and underactuated dynamics, both
of which present problems for many existing algorithms.
The DIRCON algorithm is efficient, robust to initial seeds,
and exhibits cubic integration accuracy. Use of lower order
methods complicates the task of stabilization and can result
in trajectories that do not accurately represent the true cost.
As evidenced by the examples above, the combined LQR
and QP control is capable of closely tracking these dynamic
motions in terms of both state and control effort.
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