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Abstract

The fundamental promise of robotics centers on the ability to productively interact with
a complex and changing world. Yet, current robots are largely limited to basic tasks in
structured environments and act slowly and cautiously, afraid of incidental contact. In this
thesis, we consider a class of control and planning problems for robots dynamically interacting
with their environment. We address challenges that arise from non-smooth motions induced
by contact, where discontinuities result from impact events and frictional forces. First, we
examine the problem of trajectory optimization in contact-rich environments, and present
two algorithms for synthesizing motions which make and break contact. The novel contact-
implicit trajectory optimization algorithm lifts the problem and reasons over the set of
possible contacts forces. In doing so, we eliminate the requirement for an a priori sequencing
of the active contacts, and avoid explicit combinatorial complexity. We also introduce a direct
collocation algorithm for optimizing high-accuracy trajectories, given an arbitrary contact
schedule. This approach eliminates drift in the numerical integration of contact constraints,
even when constraints result in closed kinematic chains and require non-minimal coordinates.

Second, this thesis concerns questions of control synthesis and provable stability verifica-
tion of a robot making and breaking contact. To verify stability, we introduce an algorithm
for discovering polynomial Lyapunov functions, where the system dynamics include impacts
and friction. We leverage the measure differential inclusion representation of non-smooth
contact mechanics to efficiently optimize over Lyapunov functions in multi-contact settings.
Since avoiding hazardous falls is a primary necessity for bipedal walking robots, we use sim-
ilar tools to characterize the capabilities of multiple simple models used for balancing and
push recovery. Using the notions of barrier functions and occupation measures, we explicitly
bound the set of disturbances from which a robot can recover by balancing or stepping.

The primary contributions of this thesis are computational in nature, and we heavily
leverage modern approaches to both general nonlinear programming and convex optimiza-
tion. Sums-of-squares, an approach to polynomial optimization utilizing semidefinite pro-
gramming, plays a central role in our methods for formal stability analysis.

Thesis Supervisor: Russ Tedrake
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The field of robotics has grown tremendously in recent years, and robots are poised to have a

transformative impact on everyday life. We hope to soon see an abundance of autonomous or

semi-autonomous devices in the home, e.g. providing assistance to older adults and people

with disabilities, and of robots in the workplace performing advanced manufacturing and

logistical tasks. Whether a robot is assisting a stroke victim to move about his or her home,

or packing shipping containers in a warehouse, the fundamental promise of robotics centers

on the ability to productively interact with a complex and changing environment in a safe

and controlled fashion. Yet, for the most part, current robots are limited to basic tasks in

highly structured environments; they typically operate slowly and cautiously, afraid that any

incidental contact with the outside world, however minor, will result in catastrophic failure.

There is little room for dynamic adaptation since new interactions, like initiating contact to

gain sensory information or bracing against a nearby surface, must be planned in advance.

Safely and reliably achieving dynamic interaction, encompassing both locomotion and

manipulation, in multi-contact settings continues to pose significant challenges to the field.

These challenges are characterized by the complex structure of the dynamical descriptions of

interaction. Many computationally efficient techniques for modeling contact use impulsive

impact models along with the dry Coulomb friction assumption. However, these models in-

troduce discontinuities that make standard tools for planning and control especially poorly

suited in scenarios with complex or uncertain contacts between the robot and the environ-

ment. Impacts and friction additionally lead to extremely high sensitivity in the governing
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equations of motion, which, in some scenarios, is expressed by rigid-body models as the

existence of non-unique solutions. When applied to smooth systems, both classical and

optimization-based existing methods heavily leverage the uniqueness and differentiability of

trajectories of such systems; therefore, new paradigms and new algorithms are required to

address contact-rich tasks. To address these issues, this thesis will introduce computationally

tractable algorithmic techniques for planning, control, and formal analysis of such systems.

1.1 Contributions

In this thesis, we consider a series of control and planning problems for a robot dynamically

interacting with its environment. While the primary examples studied relate to questions of

robot locomotion, the methods introduced are general to many multi-contact applications,

like dexterous manipulation. First, we investigate the optimal control problem for such

systems, with the goal of producing locally optimal trajectories in contact-rich environments

where the robot must initiate and break contact to achieve some specified goal. This problem

is especially difficult when the sequencing of such contacts is unknown a priori, as explicitly

reasoning over the set of such possible sequences is computationally intractable. This thesis

presents an algorithm for contact-implicit optimization, published in [98, 100], where a single

nonlinear program determines both the smooth trajectory and implicitly defines the mode

sequence. With this method, we are now able to automatically generate new motions for

systems with dozens of potential contacts.

The contact-implicit optimization algorithm is based in a first-order time-stepping method,

and so would require a large number of discretization points to produce high-accuracy tra-

jectories. To compensate for this shortcoming, we will also introduce an extension of the

direct collocation algorithm of Hargraves and Paris [45], which we published in [101], to

properly handle any constraint introduced by sustained contact. Since this algorithm does

require a mode schedule, it can be used to improve upon trajectories first generated by the

contact-implicit approach. These algorithms are evaluated on high-dimensional walking and

running robots in simulation.

This thesis also explores algorithms for formal, numerical analysis of systems contacting
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the environment. Methods based on sums-of-squares (SOS) for numerical computation of

certificates have proven to be powerful tools for analyzing the stability of continuous nonlin-

ear systems, and can additionally be used to automatically synthesize stabilizing feedback

controllers. However, to address systems in contact, these methods also have traditionally

used hybrid models and hybrid certificates, which must explicitly enumerate and verify ev-

ery hybrid mode and transition. In this thesis, we will avoid this exponential enumeration,

and instead generate Lyapunov certificates for stability, positive invariance, and safety over

admissible (non-penetrating) states and contact forces [99, 102]. The approach is demon-

strated on multiple robotics examples, including simple models of a walking robot, a perching

aircraft, and control design of a balancing robot.

Tools for formal analysis, like those mentioned above, typically only scale to systems of

moderate dimensionality, while humanoid robots have dozens of joints. At the same time,

low-dimensional models like the linear inverted pendulum model (LIPM) have proven in-

credibly powerful in the realm of robotic walking and push recovery (e.g. [54, 58]). Despite

their widespread use, it is not fully understood what limitations these simple models impose

when used to design balancing and recovery controllers. Here, we utilize convex optimization

and provide concrete answers to this question by formally analyzing and bounding the capa-

bilities of policies that exploit angular momentum and the impact dynamics of stepping to

prevent falling [103]. Furthermore, this approach will generate explicit push recovery policies

and compare their performance against the provable upper bound and against policies based

on the LIPM.

1.2 Outline

In Chapter 2, we discuss prior and related work on control and planning with contact, plac-

ing the work of this thesis into context. Chapter 3 reviews necessary background material: a

description of rigid-body dynamics with impacts and friction, relevant classical trajectory op-

timization techniques, and an introduction to sums-of-squares techniques for Lyapunov and

reachability analysis. In Chapter 4, we introduce the contact-implicit trajectory optimiza-

tion for simultaneously synthesizing trajectories and contact sequences. Chapter 5 extends
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the classical direct collocation trajectory optimization algorithm and the linear quadratic

regular (LQR) controller to address systems with arbitrary contact constraints. Chapter 6

presents a scalable algorithm, utilizing sums-of-squares optimization, to design provably sta-

ble local control policies, through contact, and associated Lyapunov functions. Chapter 7

presents additional SOS-based algorithms for the formal analysis of a series of bipedal mod-

els, explicitly bounding the balancing and push recovery capability gained by deviating from

the classical linear inverted pendulum approach. Chapter 8 concludes the thesis with a dis-

cussion of the contributions and limitations of the presented methods, and the potential for

further extensions and new research directions.
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Chapter 2

Related Work

2.1 Motion Planning with Contact

Contact between the robot and environment has long played a pivotal role in questions of

motion planning, with a great deal of work devoted to attempting to avoid contact via

collision-free planning and optimization (e.g [70, 111, 116] and many others). However, the

discontinues due to impact and friction greatly complicate the task of intentionally planning

for contact. Optimization-based methods are heavily reliant upon smooth, local approxi-

mations of the optimization landscape–using gradients of the objective and constraints with

respect to the control input and state parameters. As such, these local approximations are

only valid when constrained to a particular contact sequence, and classical trajectory opti-

mization methods (see [10] for an overview) typically cannot utilize new contacts. Stochastic

approaches, such as the genetic algorithms in [72, 38], are capable of bypassing these discon-

tinuities via chance, but these methods still contain no guiding information about unexplored

potential contact.

2.1.1 Hybrid optimization with mode schedules

The vast majority of existing techniques for optimal control subject to contact make use of

hybrid models, where the optimization is performed with a hybrid mode schedule, defined

a priori or selected via an outer loop optimization [117, 123, 142, 21, 85, 112, 145, 48]. In
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a The system evolves continuously
through one mode before striking a
guard, where a discontinuous jump (in-
dicated by the dashed line) transitions
from one mode to the next.

b When the transition map is more com-
plex, the switching surfaces formed by
multiple guards may lie close together,
and the set of possible mode sequences
can be extremely large. In these cases,
it is no longer simple to specify an ap-
propriate mode sequence.

Figure 2-1: Hybrid trajectories can be found by optimizing over the continuous dynamics
defined by a specified mode sequence.

this setting, a hybrid mode defines a contact mode (the set of active contacts and whether

the contact is sticking or sliding). The system dynamics, restricted to the set of states

corresponding to a particular mode, are differentiable. Discontinuities, in both trajectories

and vector fields, are confined to the moments in which guard conditions are met (e.g., the

robot’s foot hits the ground), where a discontinuous jump in state-space occurs, as cartooned

in Figure 2-1a. For a fixed mode schedule, direct methods for hybrid trajectory optimization

proceed by optimizing each segment independently, with additional constraints ensuring that

the segments connect to each other through the hybrid events.

However, in contact-rich settings, the geometric constraints imposed by the hybrid system

become more daunting. Hybrid events occur every time contact is initiated or broken,

during slip-stick transitions, whenever one of the robot joints strikes or leaves a joint-limit.

The number of possible hybrid modes of the system therefore grows exponentially with the

number of possible constraints. The geometry of the hybrid guards becomes very complex,

as cartooned in Figure 2-1b. In these models, small changes to the control input can result in

a very different schedule of hybrid modes. Restricting the trajectory optimization search to

the initial mode schedule can result in a very limited search and in failure to find high-quality,

feasible trajectories.

Despite the obvious limitation of requiring a mode schedule, it has proven surprisingly

difficult to remove this assumption in the direct methods. Some variations from the original

20



sequence are possible if the formulation allows the time duration of individual modes to

vanish, as in the work of Srinivasan and Ruina [123]. For problems with fewer possible

modes, Wampler and Popović [142] used outer optimization loops to determine the hybrid

mode schedule. In some cases, the combinatorial problem of solving for a mode schedule

has been addressed by combinatorial planners. For example, a variant of the Rapidly-

Exploring Random Tree (RRT) algorithm was used by Shkolnik et al. [119] to produce

quadrupedal trajectories over terrain. Methods for optimal control which approximate the

global optimum, such as brute force methods based on dynamic programming, have also

been applied [16], but are computationally limited to low dimensional problems.

2.1.2 Related work in mode invariant optimization

A number of researchers are currently pursuing mode invariant trajectory optimization al-

gorithms, as contrasted with the more traditional hybrid systems-based approach. Berard

et al. [8] used the linear complementarity problem (LCP) formulation of contact to design

trajectories of single body on a vibrating plate. Here, they optimize over a small set of pa-

rameters describing the oscillating behavior of the plate; this approach can best be described

as a shooting method. For systems with only a few potential contacts, Yunt and Glocker

[146] used a nonlinear programming penalty method to jointly optimize over trajectories and

contacts. Tassa and Todorov [131] have also explored the use of stochastic complementarity

for optimal control using differential dynamic programming (DDP). Since this, and similar

approaches make local, gradient-based improvements to a nominal trajectory, they will not

naturally discover new contact sequences not already present–therefore relying on the nat-

ural dynamics of the system to make contact. Mordatch et al. [87] demonstrated contact

invariant optimization of complex, lifelike behaviors of humanoid figures using relaxations

of the contact complementarity constraints governing physically realistic forces. To pose a

simpler problem, Mordatch et al. additionally assume that the limbs of the figures are mass-

less. The work of [31] optimized a human running gait by smoothing the contact dynamics

to make use of a custom inverse dynamics formulation. Mordatch includes the feasibility

of the contact forces as a penalty term in the optimization cost function, rather than as a

direct constraint. Broadly speaking, the work in [31, 87, 86] make varying relaxations of
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physical or dynamic constraints to pose more tractable (and unconstrained) optimization

problems. In particular, these works relax constraints to allow contact forces to act at a dis-

tance; while this may produce dynamically infeasible trajectories, it has a smoothing effect

and provides gradient information that would otherwise be unavailable in typical shooting

methods. The weighting parameters that define these relaxations present a trade-off be-

tween physical realism and the stiffness (and, correspondingly, numerical performance) of

the resulting optimization problems. Additionally, all three works make heavy use of inverse

dynamics. For highly underactuated systems, arbitrary state or end effector trajectories are

not dynamically feasible, posing difficulties for methods reliant upon inverse dynamics.

2.2 Reachability and Stability Verification

For smooth nonlinear dynamical systems, techniques for reachability analysis stability veri-

fication have been shown to play a pivotal role in incremental motion planning and control

design strategies and in direct optimization over feedback laws. To accommodate potential

contact, the standard approach here has again been to use the formalisms of hybrid systems.

In this space, a number of researchers have built computational approaches based on the

Hamilton-Jacobi-Bellman equation, as in the level set methods of [27], with hybrid formu-

lations and variations found in [84, 77, 40]. Recent research has utilized sums-of-squares

(SOS) programming, described in detail in 3.4, to compute Lyapunov and barrier functions,

along with inner approximations to the associated regions of attraction and feedback control

policies (e.g. [105, 104, 49, 134, 135, 78]). Hybrid barrier functions, utilizing SOS, were

introduced in [93], though examples were limited to only two hybrid modes. Manchester

additionally computed regions of stability of transverse dynamics about hybrid limit cycles

with a fixed mode sequence [81]. Related approaches, utilizing the notions of occupation

measures and moment relaxations, have been introduced to compute outer approximations

to the reachable set [46], with extensions to control synthesis [60, 80] and hybrid systems

[118]. Any approach to stability and reachability analysis must consider all potential contact

events and modes in a given region of state space. Therefore, in this setting, there can be

no notion of restricting the analysis to a desirable contact sequence, and hybrid formula-
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tions will inherently be combinatorial in nature. However, for computational reasons, the

hybrid approaches discussed above only address systems with an extremely small number

of potential modes. This limitation leaves systems with even two potential contacts, and

associated sticking and sliding modes, outside the reach of these methods. Also of interest,

the recent work of Várkonyi and Or [140] has specifically explored stability criteria for a

rigid body with two contacts, although this analytically rigorous approach is limited to a

local approximation called zero order dynamics.

2.3 Balancing and Step Recovery

Push recovery is a fundamental skill for any bipedal robot–necessary to prevent damaging

falls in the presence of unanticipated disturbances. Broadly speaking, typical approaches

for push recovery blend together techniques for active balancing and for stepping. To be

successful, control policies must be able to rapidly decide when stepping is necessary, and

to make such decisions while considering physical limitations on potential motion. The

study of push recovery strategies has heavily focused upon simple models, many of which

admit closed-form solutions to the critical questions of control synthesis and reachability

analysis. In particular, the Linear Inverted Pendulum Model (LIPM) [53, 54] has been

broadly influential on the study of walking robots. The LIPM is appealing because it captures

the critical centroidal dynamics of the robot while remaining relatively simple to analyze

and control. Stephens [126] characterized and studied the LIPM in the context of push

recovery. Utilizing the notions of the capture point and capturability, recent work has fully

determined the set of states in which can be stabilized within 𝑁 steps [108, 58]. This notion

of capturability is critical to safe execution of bipedal motion, as an accurate understanding

of the stabilizable states enables effective balancing and step recovery.

The LIPM makes a number of key assumptions to simplify the dynamical equations

of motion, resulting in a two dimensional linear model that is easy to control and analyze.

Recent robotics research has examined some of these assumptions, both in terms of balancing

and step recovery. Goswami and Kallem [42] studied the role of angular momentum on

balance, and Koolen et al. [59] characterized the role of height variation. Capturability
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analysis was also used to analyze reaction wheel models [58] and inverted pendulum models

[147]. Additionally, Mummolo et al. [91] used discretization and nonlinear optimization to

perform exhaustively calculation on low-dimensional jointed models. Biomechanical studies

have additionally investigated balancing from the perspective of optimal control [64] and the

role of arm swing as a mechanism for modifying angular momentum [20]. In this thesis, we

present a more unified approach to this analysis, based on recent developments from convex

optimization.
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Chapter 3

Background

This chapter serves as a survey of necessary material for this thesis and introduces the princi-

pal notation used throughout. Section 3.1 discusses the continuous dynamics of rigid-bodies,

both in free space and when constrained by active contacts. Section 3.2 presents models used

to represent the discontinuous impact dynamics. Section 3.3 presents an introduction to tra-

jectory optimization algorithms, most relevant to Chapters 4 and 5. Lastly, Section 3.4

covers background material on sums-of-squares optimization and applications to stability

and reachability analysis, relevant to Chapters 6 and 7.

3.1 Rigid-Body Dynamics with Contact

Many robotic systems are appropriately modeled as a set of rigid links connected through

some combination of joints [120, 32]. The continuous dynamics of these rigid-body systems

subject to frictional contact forces, derived via the constrained Lagrangian, can be modeled

by the manipulator equations

𝐻(𝑞(𝑡))𝑣̇(𝑡) + 𝐶(𝑞(𝑡), 𝑣(𝑡)) = 𝐵𝑢(𝑡) + 𝜏(𝑡),

where 𝑞 and 𝑣 are the generalized positions and velocities, respectively. For simplicity, we will

assume that 𝑞, 𝑣 ∈ R𝑛 and 𝑣(𝑡) = 𝑞(𝑡), though this may not always be the case (e.g. with the

quaternion formulation of three dimensional rotations). 𝜏 represents the net external forces
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acting on the system. Here, 𝐻(𝑞) is the inertia matrix, 𝐶(𝑞, 𝑣) is the combined Coriolis

and gravitational terms, and 𝐵 maps the control inputs 𝑢 into joint coordinates. Where

appropriate, we will also write the entire state vector 𝑥 =

⎡⎣𝑞
𝑣

⎤⎦.
We will focus on the dynamics of rigid bodies interacting at a finite number of contact

points, though these points may not necessarily be fixed on their respective bodies. When the

external forces are generated at a set of𝑚 such point contacts, we will write them in the local

contact frame and split the forces into the components normal to the contacts, 𝜆𝑁 ∈ R𝑚, and

the frictional forces tangential to the contact surface, 𝜆𝑇 . Note that we assume contacts do

not “pull”, and so 𝜆𝑁 ≥ 0. This and all other vector inequalities will be taken elementwise.

For planar systems, 𝜆𝑇 ∈ R𝑚, while 𝜆𝑇 ∈ R2𝑚 in the full three dimensional case. We will

also write 𝜆 to be the stacked vector

⎡⎣𝜆𝑁
𝜆𝑇

⎤⎦. The matrices 𝐽𝑁(𝑞) ∈ R𝑚×𝑛 and 𝐽𝑇 (𝑞) ∈ R𝑚×𝑛

(in the planar case) project the normal and frictional contact forces into joint coordinates,

with 𝐽 similarly representing the stacked matrix

⎡⎣𝐽𝑁
𝐽𝑇

⎤⎦. We will also refer to 𝐽𝑁,𝑖(𝑞) and

𝐽𝑇,𝑖(𝑞) as the 𝑖th row of 𝐽𝑁 and 𝐽𝑇 , associated with the particular contact forces 𝜆𝑁,𝑖 and

𝜆𝑇,𝑖. With this notation, we write the manipulator equations

𝐻(𝑞)𝑣̇ + 𝐶(𝑞, 𝑣) = 𝐵𝑢+ 𝐽𝑁(𝑞)𝑇𝜆𝑁 + 𝐽𝑇 (𝑞)𝑇𝜆𝑇 , (3.1)

where the dependence of 𝑞, 𝑣, 𝜆𝑁 , and 𝜆𝑇 on time has been suppressed for clarity. When 𝜑

represents the distances between pairs of bodies, we can take 𝐽𝑁 to be the Jacobian
𝜕𝜑

𝜕𝑞
and

𝐽𝑇 defines the frictional plane. Hence, the velocity of the 𝑖th contact point has components

𝐽𝑁,𝑖𝑣(𝑡) and 𝐽𝑇,𝑖𝑣(𝑡) normal to and tangential to the contact surface. We use a simple

Coulomb friction model to represent our contact forces:

𝐽𝑇,𝑖𝑣 = 0⇒ ||𝜆𝑇,𝑖|| ≤ 𝜇𝜆𝑁,𝑖,

𝐽𝑇,𝑖𝑣 ̸= 0⇒ 𝜆𝑇,𝑖 = − 𝐽𝑇,𝑖𝑣

||𝐽𝑇,𝑖𝑣||
𝜇𝜆𝑁,𝑖.

When the tangential velocity vanishes, 𝜆𝑇,𝑖 can take on any value within the friction cone.

If the contact point is sliding, then 𝜆𝑇,𝑖 directly opposes the direction of slip. Note that
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Coulomb friction results in a differential equation (3.1) with a discontinuous right-hand side.

To address this issue, we make use of the notion of a differential inclusion of the form

𝑥̇ ∈ ℱ(𝑡, 𝑥), where 𝐹 is a set valued function. For instance, we can rewrite the formula for

Coulomb friction above as

𝜆𝑇,𝑖 ∈ −𝜇𝜆𝑁,𝑖 sgn 𝐽𝑇,𝑖𝑣,

where sgn𝑥 is a set-valued signum function, with sgn 0 = [−1, 1]. See [121, 5] for an overview

of differential inclusions.

Contact exists when the gap function vanishes: 𝜑(𝑞(𝑡)) = 0. Therefore, for contact to

be sustained over some interval, we must also have 𝜑̇(𝑞(𝑡)) = 𝜑(𝑞(𝑡)) = 0. Similarly, if the

contacts are sticking, the tangential velocity and accelerations must also vanish. As a result,

if the contact mode is known, the set of feasible forces can be described by a set of convex

equations and inequalities. For example, in the planar, sticking case, the forces must satisfy

𝐽𝑁𝑣 + 𝐽𝑁 𝑣̇ = 0

𝐽𝑇𝑣 + 𝐽𝑇 𝑣̇ = 0

𝜆𝑁 ≥ 0

𝜇𝜆𝑁 − |𝜆𝑇 | ≥ 0,

where 𝑣̇ and 𝜆 are related by (3.1). If no such forces exist, then either contact separation or

a stick-slip transition must occur to produce a solution.

3.2 Collision Modeling

When two relatively rigid bodies collide, such as when a stiff robot impacts its environment,

these collisions are events characterized by relatively large forces applied over short dura-

tions. Broadly speaking, this leads to two approaches to modeling these events. In one,

material properties are used to attempt to capture the force profile and material deforma-

tion throughout an impact event. Naturally, for rigid robots, this approach results in stiff

differential equations which can be problematic in both simulation and control algorithms.
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In the second approach, we consider the limiting case where the event is instantaneous

and the forces are approximated by Dirac delta functions. As a result, velocity profiles are

discontinuous in time and differential equations are only used to describe motion between

impact events. Following an impact, contact between multiple bodies may be sustained over

some duration, resulting in continuous contact forces. While instantaneous collisions are

only an approximation of the complex interactions between bodies, if the impulsive forces

can be determined, this approach offers significant computational advantages. In this thesis,

we will treat impacts as instantaneous events with different pre- and post-impact velocities,

𝑣−(𝑡) and 𝑣+(𝑡), using standard notation for the left and right limits. An overview of the

modeling techniques used in this thesis is provided below, but a more detailed discussion of

the discontinuous dynamics can be found in [127], [71], or [13].

3.2.1 Inelastic Collisions with Friction

Using the above notation, impacts occur at some time 𝑡* when there is contact, 𝜑𝑖(𝑞(𝑡
*)) = 0,

and when consistency requires an instantaneous change in velocity to prevent penetration.

Note that this consistency requirement often results from d𝜑𝑖(𝑞(𝑡))
d𝑡

⃒⃒⃒
𝑡*
< 0, but impacts may

also necessarily occur when the first derivative is exactly zero, as in the case of Painlevé’s

Paradox [127]. As with the continuous case, we let Λ𝑁 ,Λ𝑇 be the normal and frictional

components of the net impulse. Derived from the manipulator equations, the pre- and post-

impact velocities for a collision at the 𝑖th contact point are related by 𝑣+(𝑡) = 𝑣−(𝑡) +

𝐻−1(𝐽𝑇
𝑁,𝑖Λ𝑁,𝑖 + 𝐽𝑇

𝑇,𝑖Λ𝑇,𝑖). In the special case of a single, frictionless inelastic collision, we

observe that the inelastic condition is 𝐽𝑁,𝑖𝑣+(𝑡) = 0 and so we can explicitly solve for the

normal impulse and post-impact state:

Λ𝑁,𝑖 = −(𝐽𝑁,𝑖𝐻
−1𝐽𝑇

𝑁,𝑖)
−1𝐽𝑁,𝑖𝑣−(𝑡), (3.2)

𝑣+(𝑡) =
(︀
𝐼 −𝐻−1𝐽𝑇

𝑁,𝑖(𝐽𝑁,𝑖𝐻
−1𝐽𝑇

𝑁,𝑖)
−1𝐽𝑁,𝑖

)︀
𝑣−(𝑡). (3.3)

However, when considering Coulomb friction, we have no explicit formula. Multiple

approaches have been proposed for modeling frictional impacts, see [18] for an overview

and more detailed discussion of some common models. In particular, these approaches may
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differ in how they resolve stick-slip transitions and slip reversal (where the direction of slip

is changed by an impact). Here, we first adopt an impact law first proposed by Routh [114]

and described in detail in [143, 11]. Originally a graphical approach, this method constructs

a path in impulse space. To briefly summarize Routh’s technique for computing the net

impulses and the post-impact state:

1. Monotonically increase the normal impulse Λ𝑁,𝑖 with some slope Λ′
𝑁,𝑖.

2. Increment the tangential impulse Λ𝑇,𝑖 with slope Λ′
𝑇,𝑖, according to the friction law:

𝐽𝑇,𝑖𝑣 = 0⇒ ||Λ′
𝑇,𝑖|| ≤ 𝜇Λ′

𝑁,𝑖,

𝐽𝑇,𝑖𝑣 ̸= 0⇒ Λ′
𝑇,𝑖 = − 𝐽𝑇,𝑖𝑣

||𝐽𝑇,𝑖𝑣||
𝜇Λ′

𝑁,𝑖,

where 𝑣 = 𝑣−(𝑡) +𝐻−1(𝐽𝑇
𝑁,𝑖Λ𝑁,𝑖 + 𝐽𝑇

𝑇,𝑖Λ𝑇,𝑖) is the velocity after impulses Λ𝑁,𝑖 and Λ𝑇,𝑖.

3. Terminate when the normal contact velocity vanishes1, 𝐽𝑁,𝑖𝑣 = 0, and take 𝑣+(𝑡) = 𝑣.

This method amounts to following continuous path in the impulse space where the slopes

of the impulses are Λ′
𝑁,𝑖 and Λ′

𝑇,𝑖. This process could equivalently be modeled as a using a

differential inclusion where Λ𝑁,𝑖 takes the role of “time” in the inclusion. Diagrams depicting

the resolution of two potential planar impacts are shown in Figure 3-1. Along each linear

section, these slopes must satisfy the Coulomb friction constraints. Solutions may transition

from sliding to sticking and vice versa and the direction of slip may even reverse as a result

of each impact. While the generated path is piecewise linear in the planar case, this is not

true in three dimensions.

3.2.2 Simultaneous Impacts

The question of simultaneous impacts has been well studied in both simulation and analysis

(e.g. [18, 113]), but remains a difficult problem. General, impulsive models to simultaneous

impacts do not necessarily produce unique solutions, where the primary difficulty lies in

determining an order in which to resolve the impacts (think, for instance, of a pool break

1To permit resolutions to Painlevé’s Paradox, terminate only when consistency no longer requires an

instantaneous change in velocity.

29



JTv
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a The contact velocity, in the contact
frame, is plotted throughout an impact
resolution by Routh’s method. At the
initial state, 𝑣−, the extreme rays of the
friction cone are shown as solid arrows.
Since the contact is sliding, 𝐽𝑇 𝑣 < 0, the
impulse increments along the appropri-
ate ray. When 𝑣(𝑠), shown in the dot-
ted line, intersects the 𝐽𝑇 𝑣 = 0 axis, the
contact transitions to sticking and the
impact terminates when 𝐽𝑁𝑣(𝑠) = 0.

JTv

-JNv
v-

v+

b In this case, the impulse required to
maintain sticking is not within the fric-
tion cone. Therefore, when 𝑣(𝑠) crosses
the vertical axis, the contact does not
stick, but the direction of slip reverses,
and the impulse increments along the
other extreme ray until termination.

Figure 3-1: Example impact resolutions via Routh’s method.

in a game of billiards). In Routh’s method, multiple impacts might be resolved sequentially

or via a blended approach. The simulation and computer graphics communities typically

resolve the question of uniqueness by modifying the model to select a single outcome, for

instance by optimizing some user-specified desirable criteria, as in Kaufman et al. [55]. In

the context of control and planning, we will typically adopt a similar approach, with the

acknowledgement that this remains a potential shortcoming to be addressed in the future.

In this thesis, we will also formally investigate the question of stability of such systems.

Here, we will take a permissive view of simultaneous impacts by explicitly not attempting

to resolve the issue of uniqueness. If the set 𝒥 ⊂ {1, ...,𝑚} is the set of active impacts

(𝜑𝑖 = 0, 𝐽𝑁,𝑖𝑣 ≤ 0), then we proceed with Routh’s method where the incremental impulses

are any arbitrary convex combination of the incremental impulses for each impact. That is,
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where 𝑒𝑖 are the standard basis vectors,

Λ′
𝑁 =

∑︁
𝑖∈𝒥

𝑒𝑖Λ
′
𝑁,𝑖

Λ′
𝑇 =

∑︁
𝑖∈𝒥

𝑒𝑖Λ
′
𝑇,𝑖

1 =
∑︁
𝑖∈𝒥

Λ′
𝑁,𝑖,

Λ′
𝑁,𝑖 = 0 for 𝑖 /∈ 𝒥 .

With this approach, for a system to be considered stable, it must be stable even if the

collisions are resolved simultaneously or in an arbitrary order.

3.2.3 Measure Differential Inclusions

To capture both impulsive and continuous contact forces, the dynamics community has

developed models built using measure differential inclusions (MDIs), first introduced by

Moreau [89], with additional details and precise definitions in [127, 71, 13]. By taking the

time-derivative of state from a set-valued (and not necessarily bounded) function, MDIs

address both the discontinuities and non-smoothness of the system evolution that arise from

impacts and standard friction force laws. We provide a high-level overview of MDIs here,

focused on autonomous Lagrangian mechanical systems.

A solution of a measure differential inclusion will be taken to be a pair of functions, 𝑞(𝑡)

and 𝑣(𝑡), such that 𝑞(𝑡) is absolutely continuous and 𝑣(𝑡) is of locally bounded variation,

allowing for countably many discontinuities. The left and right limits of 𝑣(𝑡), denoted 𝑣−(𝑡)

and 𝑣+(𝑡), are guaranteed to exist and we require that solutions satisfy:

𝑞(𝑡)− 𝑞(𝑡0) =

∫︁ 𝑡

𝑡0

𝑣(𝜏)𝑑𝜏, (3.4)

𝑣+(𝑡)− 𝑣−(𝑡0) =

∫︁ 𝑡

𝑡0

𝑣̇(𝜏)𝑑𝜏 +

∫︁ 𝑡

𝑡0

𝑣+(𝜏)− 𝑣−(𝜏)𝑑𝜂(𝜏). (3.5)

Here 𝑣̇(𝑡) is an integrable function and 𝜂 is a sum of Dirac measures centered at times

{𝑡𝑘}∞𝑘=1, which model the continuous evolution and jumps in the velocity respectively. By
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assumption, 𝑣(𝑡) has no singular part (see [71], Ch. 3). One advantage of this framework is

that it naturally permits Zeno executions: where an infinite number of impact events occur

in a finite period of time, as might result from a bouncing ball or rocking block. Within the

language of hybrid systems, addressing Zeno Phenomena requires special care and attention

[50, 92].

Rules for specifying legal values of 𝑣̇(𝑡), the locations {𝑡𝑘}∞𝑘=1, and the jumps 𝑣+(𝑡𝑘) −

𝑣−(𝑡𝑘) are described in Sec. 3.2.1. Furthermore, as with a standard differential inclusion, we

require 𝑣̇(𝑡) ∈ F(𝑞(𝑡), 𝑣(𝑡)) for almost all 𝑡, where F(𝑞, 𝑣) is a set valued function. Similarly,

the value of jumps, 𝑣+(𝑡)− 𝑣−(𝑡), will be drawn from a set which generally depends on 𝑞(𝑡)

and 𝑣−(𝑡). The locations of impacts will be defined implicitly by the locations where 𝑣+(𝑡)

and 𝑣−(𝑡) disagree. Finally, we take 𝑣(𝑡) to be undefined at points of discontinuity. Our

problems center around systems where solutions must lie in an admissible set, 𝒜, defined as

the set of non-penetrating states:

𝒜 = {(𝑞, 𝑣) ∈ R2𝑛 | 𝜑𝑖(𝑞) ≥ 0 ∀ 𝑖 ∈ {1, . . . ,𝑚}}. (3.6)

3.2.4 Contact Dynamics as a Complementarity Problem

We can formulate the dynamics of rigid bodies as an MDI where the contact forces, both

continuous and impulsive, must satisfy a set of complementarity constraints. For instance,

one such constraint relates the contact normal force to the gap function:

𝜆𝑁 ≥ 0

𝜑(𝑞) ≥ 0

𝜑(𝑞)𝑇𝜆𝑁 = 0

where the inequalities are taken element-wise and the third constraint implies that there can

be no force at distance. These three constraints, taken together, form a complementarity

constraint and can be written succinctly as 0 ≤ 𝜆𝑁 ⊥ 𝜑(𝑞) ≥ 0. With this notation, we can
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write the frictionless, continuous dynamics as:

𝐻(𝑞)𝑣̇(𝑡) + 𝐶(𝑞, 𝑣) = 𝐵𝑢+ 𝐽𝑁(𝑞)𝑇𝜆𝑁

0 ≤ 𝜆𝑁 ⊥ 𝜑(𝑞) ≥ 0

This format can also be extended to include Coulomb friction, though it requires additional

notation from convex analysis which would otherwise be unnecessary in this thesis. We refer

interested readers to Stewart [127] and Trinkle et al. [138] for the details. The framework

has been further adapted for use within time-stepping methods where it has been widely

successful in simulation, starting with [128] and [4]. Given the current state 𝑞𝑘, 𝑣𝑘 and con-

trol input 𝑢𝑘 at time 𝑡𝑘, and a timestep ℎ, these approaches pose the problem of simulation

as a search for the state at time 𝑡𝑘+1 = 𝑡𝑘 + ℎ along with dynamically consistent contact

forces. Typically, these methods will linearize the relevant dynamics and kinematics func-

tions, posing a Linear Complementarity Problem (LCP) [25]. For example, the case for a

planar simulation can be written:

find 𝑞𝑘+1, 𝑣𝑘+1 ∈ R𝑛 and 𝜆𝑁 , 𝜆𝑇+, 𝜆𝑇−, 𝛾 ∈ R𝑚 (3.7)

𝑠.𝑡. ℎ−1𝐻(𝑞)(𝑣𝑘+1 − 𝑣𝑘) + 𝐶(𝑞, 𝑣) = 𝐵𝑢𝑘 + 𝐽(𝑞)𝑇𝜆, (3.8)

ℎ−1(𝑞𝑘+1 − 𝑞𝑘) = 𝑣𝑘+1 (3.9)

0 ≤ 𝜑(𝑞𝑘) + ℎ𝐽𝑁(𝑞)𝑣𝑘+1 ⊥ 𝜆𝑁 ≥ 0 (3.10)

0 ≤ 𝜇𝜆𝑁 − 𝜆𝑇+ − 𝜆𝑇− ⊥ 𝛾 ≥ 0 (3.11)

0 ≤ 𝛾 − 𝐽𝑇 (𝑞)𝑣𝑘+1 ⊥ 𝜆𝑇+ ≥ 0 (3.12)

0 ≤ 𝛾 + 𝐽𝑇 (𝑞)𝑣𝑘+1 ⊥ 𝜆𝑇− ≥ 0, (3.13)

where 𝜆 =
[︁
𝜆𝑇𝑁 (𝜆𝑇+ − 𝜆𝑇−)𝑇

]︁𝑇
and 𝛾 ∈ R𝑚 is a slack variable. The state (𝑞, 𝑣) is used

for computation of the manipulator equations, and is chosen to be some explicit function

of (𝑞𝑘, 𝑣𝑘), such as 𝑞 = 𝑞𝑘 + ℎ𝑣𝑘 and 𝑣 = 𝑣𝑘. Taken together, these constraints enforce an

exact representation of the friction cone for planar simulation. In three dimensions, a linear

approximation of the friction cone is typically used.
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3.3 Trajectory Optimization

There is a rich literature on both control and planning of nonlinear systems as applied to mo-

bile robotics. Trajectory optimization has been particularly successful in synthesizing highly

dynamic motions in high-dimensional state spaces. See Betts [10] for both an overview and a

description of the variety of existing algorithms. Broadly speaking, trajectory optimization

aims to find dynamically consistent state and control trajectories 𝑥(𝑡), 𝑢(𝑡) that minimize

a cost functional (specified here via ℓ and ℓ𝑓 ) subject to an additional set of specified con-

straints given by 𝑔.

minimize
𝑥(𝑡),𝑢(𝑡),𝑇

ℓ𝑓 (𝑥(𝑇 )) +

∫︁
ℓ(𝑥(𝑡), 𝑢(𝑡))d𝑡

s.t. 𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡))

𝑔(𝑥(𝑡), 𝑢(𝑡)) ≥ 0

A popular class of techniques, commonly known as transcription methods, forms a finite

dimensional optimization by discretizing the trajectories in time as 𝑥1, ..., 𝑥𝑁 , 𝑢1, ..., 𝑢𝑁 and,

between these knot points, enforcing the integral of the dynamics as a constraint. Within this

class are multiple-shooting methods, which typically use variable step numerical integrators

from 𝑥𝑘 to 𝑥𝑘+1 and have been successfully applied to robotic locomotion tasks [85, 117,

48]. Other common methods avoid this costly integration by using implicit, single step

schemes between these knot points (e.g. via Euler integration schemes or by approximating

trajectories as Hermitian splines [10, 45]). The direct collocation algorithm of Hargraves and

Paris [45], and similar techniques, have been widely used within the robotics community to

optimize walking and running gaits (e.g [15, 112, 48]). In this thesis, we will make use of an

Euler-based scheme in Chapter 4 and a direct collocation approach in Chapter 5.

3.3.1 Direct Collocation

The direct collocation algorithm, introduced by Hargraves and Paris, uses cubic Hermite

splines to interpolate between a sequence of knot points [45]. The algorithm optimizes over

the decision parameters 𝑧 = (𝑥1, ..., 𝑥𝑁 , 𝑢1, ..., 𝑢𝑁) defined at the times 𝑡1, .., .𝑡𝑁 with the

34



Figure 3-2: The Hermite spline of the direct collocation algorithm, shown in red, is con-
structed between two knot points. The defect is the discrepancy between the collocation
dynamics 𝑓(𝑥𝑐, 𝑢𝑐) and the slope of the spline 𝑥̇𝑐.

uniform timestep ℎ. We briefly describe the approach here, as applied to a second-order

system. The plant dynamics are evaluated at each knot point 𝑣̇𝑘 = 𝑓(𝑥𝑘, 𝑢𝑘) and, for every

sequential pair of knot points 𝑥𝑘, 𝑥𝑘+1 and inputs 𝑢𝑘, 𝑢𝑘+1, a cubic spline 𝑥𝑠 : [𝑡𝑘, 𝑡𝑘+ℎ]→ R2𝑛

is generated that matches the state and its first derivative at the knot points:

𝑥𝑠(𝑡𝑘) = 𝑥𝑘, 𝑥𝑠(𝑡𝑘+1) = 𝑥𝑘+1, (3.14)

𝑥̇𝑠(𝑡𝑘) =

⎡⎣ 𝑣𝑘

𝑓(𝑥𝑘, 𝑢𝑘)

⎤⎦ , 𝑥̇𝑠(𝑡𝑘+1) =

⎡⎣ 𝑣𝑘+1

𝑓(𝑥𝑘+1, 𝑢𝑘+1)

⎤⎦ . (3.15)

The state at the midpoint of this spline, 𝑥𝑐 = 𝑥𝑠(𝑡𝑘 + 1
2
ℎ), called the collocation point,

is simply a linear combination of the state and its derivative at the adjacent knot points.

Similarly, 𝑥̇𝑠(𝑡𝑘 + 1
2
ℎ) can be easily calculated:

𝑥𝑠(𝑡𝑘 + 1
2
ℎ) = 1

2
(𝑥𝑘 + 𝑥𝑘+1) + ℎ

8
(𝑓(𝑥𝑘, 𝑢𝑘)− 𝑓(𝑥𝑘+1, 𝑢𝑘+1)),

𝑥̇𝑠(𝑡𝑘 + 1
2
ℎ) = 3

2ℎ
(−𝑥𝑘 + 𝑥𝑘+1)− 1

4
(𝑓(𝑥𝑘, 𝑢𝑘) + 𝑓(𝑥𝑘+1, 𝑢𝑘+1)).

The collocation constraint function, 𝑔, matches the slope of the spline to the plant dynamics

at the collocation point, where the control input is typically taken to be the result of a

first-order hold, 𝑢𝑐 = 𝑢𝑘+𝑢𝑘+1

2
. Therefore, we define:

𝑔(𝑥𝑘, 𝑢𝑘, 𝑥𝑘+1, 𝑢𝑘+1) = 𝑥̇𝑠(𝑡𝑘 + 1
2
ℎ)−

⎡⎣ 𝑣𝑐

𝑓(𝑥𝑐, 𝑢𝑐)

⎤⎦ . (3.16)
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These collocation constraints, illustrated in Figure 3-2, are an efficient and accurate repre-

sentative of the plant dynamics. The integration error over a single timestep is 𝒪(ℎ4) and so

the error over a fixed time interval is then 𝒪(ℎ3) [44]. This third-order accuracy compares

favorably with Euler-integration based methods, which have only 𝒪(ℎ) accuracy over similar

intervals. With higher-order methods, accurate trajectories can be achieved with fewer knot

points and, therefore, with smaller optimization problems. The resulting trajectory opti-

mization problem, with running cost ℓ(𝑥𝑘, 𝑢𝑘) and a final cost ℓ𝑓 (𝑥𝑁) can then be expressed

as:

minimize
𝑧

ℓ𝑓 (𝑥𝑁) + ℎ
𝑁∑︁
𝑘=1

ℓ(𝑥𝑘, 𝑢𝑘)

subject to 0 = 𝑔(𝑥𝑘, 𝑢𝑘, 𝑥𝑘+1, 𝑢𝑘+1) for 𝑘 = 1, . . . , 𝑁 − 1

0 ≥ 𝑔(𝑧),

(3.17)

where 𝑔(𝑧) represents arbitrary additional constraints on state and input, such as variable

bounds or boundary values.

3.4 Stability and Reachability

Recent advances in polynomial optimization, particularly sums-of-squares (SOS) optimiza-

tion, have proven to be powerful numerical tools for formal analysis of dynamical systems

[95, 66]. In this section, we review convex optimization based numerical methods for com-

puting stability and reachability analysis of nonlinear dynamical systems. We first discuss

the necessary concepts from nonlinear control, and then relate these these concepts to SOS

computational approaches. SOS optimization will be used throughout Chapters 6 and 7.

3.4.1 Lyapunov and Barrier Functions

Lyapunov functions capture the stability properties of nonlinear dynamical systems (see

[56] for a thorough treatment). For example, given an autonomous system 𝑥̇ = 𝑓(𝑥) with
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𝑓(0) = 0 and some class 𝒦 function 𝛼, if 𝑉 : R𝑛 → R can be found such that

𝑉 (0) = 0 (3.18)

𝑉 (𝑥) ≥ 𝛼(||𝑥||) (3.19)

d𝑉 (𝑥(𝑡))

d𝑡
≤ 0, (3.20)

then 𝑉 (𝑥) is a Lyapunov function and the origin is locally stable in the sense of Lyapunov.

Furthermore, the conditions above prove that every sublevel set of 𝑉 is positively invariant.

Remark 3.1. Note that if the inequality (3.20) holds strictly away from the origin (bounded

by another class 𝒦 function), then the origin is globally asymptotically stable. However, for

systems with friction, equilibria are rarely isolated and asymptotically stable, and so we will

primarily focus on local stability and invariance.

Since typical robotic systems will not be globally stable, we are primarily concerned with

regional statements. If the criteria (3.20) holds for all 𝑥 in the 𝜌-sublevel set of 𝑉 ,

{𝑥 : 𝑉 (𝑥) < 𝜌},

then the origin is stable in the sense of Lyapunov, the 𝜌-sublevel set is positively invariant,

and all contained sublevel sets are also invariant.

Barrier functions, similar in principle to Lyapunov functions, are a popular technique

for verifying reachable sets for nonlinear systems. Here, we briefly discuss the role of time-

varying barrier functions [135]. The time-invariant case, also used in this thesis, is merely a

simple modification. Barrier functions can be used to partition the state space by capturing

relevant dynamical properties. Under mild conditions, if functions 𝑉 : R+ × R𝑛 → R and

𝜌 : R+ → R+ can be found, such that

𝑉 (𝑡, 𝑥) = 𝜌(𝑡) and 𝑡 ∈ [0, 𝑇 ]⇒ d𝜌(𝑡)

d𝑡
− d𝑉 (𝑡, 𝑥(𝑡))

d𝑡
> 0 (3.21)
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then the 𝜌-sublevel set of 𝑉 ,

{(𝑡, 𝑥) : 𝑡 ∈ [0, 𝑇 ], 𝑉 (𝑡, 𝑥) < 𝜌},

is positively invariant over the given time interval. In other words, if, on the boundary of

the sublevel set, 𝑉 is decreasing in time faster than 𝜌 is, then trajectories that start within

the sublevel set cannot leave it. Note that if (3.21) were to hold for all 𝑉 (𝑡, 𝑥) ≤ 𝜌(𝑡), then

𝑉 would be a Lyapunov function–thus the barrier condition is generally less restrictive.

3.4.2 Sums-of-squares and the S-procedure

Observe that if 𝑉 , 𝜌, and the system dynamics are known polynomial functions, then both the

Lyapunov and barrier criteria above are fundamentally questions of positivity of polynomials

on basic semialgebraic sets. We will first utilize a technique referred to as the S-procedure

[95], deriving from the Positivstellensatz [125, 109], to construct a sufficient condition. For

example, to demonstrate that 𝑔(𝑥) ≥ 0 and ℎ(𝑥) = 0, together, imply 𝑓(𝑥) ≥ 0, we introduce

multiplier polynomials 𝜎𝑖(𝑥) and 𝑞(𝑥), requiring

𝜎1(𝑥)𝑓(𝑥)− 𝜎2(𝑥)𝑔(𝑥)− 𝑞(𝑥)ℎ(𝑥) ≥ 0, (3.22)

𝜎1(𝑥)− 1 ≥ 0, (3.23)

𝜎2(𝑥) ≥ 0. (3.24)

While some theoretical guarantees do exist, for multipliers of limited degree, this sufficient

condition is generally not necessary. See Laurent [69] for an overview of the topic. With

the S-procedure, the Lyapunov and barrier criteria can now be cast as questions of global

positivity. Sum-of-squares (SOS) methods enable optimization over linearly parameterized

polynomials that are guaranteed to be non-negative [94, 95].. If constraints like (3.22) are

linear in the coefficients of the unknown polynomials, then this sufficient condition can be

efficiently represented and solved via Semidefinite Programming (SDP), a form of convex

optimization (see [12] for an overview). Given some polynomial 𝑝(𝑥) ∈ R[𝑥], a sufficient

condition for 𝑝(𝑥) to be non-negative for all 𝑥 is the existence of a positive semidefinite

38



matrix 𝑄 and the decomposition

𝑝(𝑥) = 𝑚(𝑥)𝑇𝑄𝑚(𝑥) (3.25)

𝑄 = 𝑄𝑇 ⪰ 0, (3.26)

where 𝑚(𝑥) is a polynomial basis vector, e.g. the vector of all monomials up to some degree.

Ultimately, by restricting the search for Lyapunov and barrier functions to a particular (but

expressive) subclass of functions, SOS-based approaches allow synthesis of answers to the

fundamentally hard questions of stability and reachability.

3.4.3 Bilinear Alternations

In this thesis, we will often be interested in situations where both the original polynomials

and multipliers in (3.22) are unknown, and so bilinear approaches will be used. Bilinear

formulations are also required when the control policy is unknown, as (3.20) and (3.21) will

include the product of 𝑉 and 𝑢. Fixing one set of free coefficients (e.g. those of 𝑓, 𝑔 and

ℎ), we can search over the free coefficients of the others, and vice versa. These allows for

a coordinate-descent strategy, related to the techniques of DK-iteration [73], where each

step consists of a single convex optimization problem and is guaranteed to improve the

objective value. Similar approaches have been applied to determine region-of-attraction

estimates for smooth dynamical systems [137]. Note that bilinear techniques require a feasible

initialization, a condition that may be difficult to satisfy for some problems.

In practice, bilinear alternations have the possibility of failing due to numerical condi-

tioning. Many of the SDPs generated from SOS programs have no feasible interior, due

to an overparameterization of the the sums-of-squares basis. This issue is referred to as

the problem of facial reduction, and recent work has been done to enhance the typical pre-

processing steps to reduce the dimensionality of the SDP [97, 96]. However, no tractable

general solution exists for solving the facial reduction problem.
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Chapter 4

Contact-implicit Trajectory

Optimization

As described in 3.3, trajectory optimization is a powerful framework for planning. In this

chapter, we consider the problem of trajectory optimization for rigid-body systems in contact-

rich environments [98, 100]. In particular, we will plan new motions, interacting with the

environment via inelastic collisions and friction, where the sequencing of such contacts is

entirely unknown a priori. A popular method for control of such systems uses the language

of hybrid dynamical systems (refer back to 2.1.1). While there are many impressive success

stories for trajectory optimization of these hybrid models, they are plagued with the major

short-coming that the optimization is constrained to operate within pre-specified ordering of

the hybrid modes (contacts). For some motions with relatively few or intuitive mode transi-

tions, this may be acceptable. It is much more difficult to imagine a mode specification for a

multi-fingered hand manipulating a complex object that is frequently making and breaking

contact with different links on the hand. Perhaps as a result, there is an apparent lack of

planning solutions for robotic manipulation which plan through contact - most planners plan

up to pre-grasp then activate a separate, heuristic based, grasping controller.

To address this short-coming, we present here a contact-implicit trajectory optimization

algorithm. We demonstrate that it is natural to fold the complementarity constraints used

to implicitly represent contact forces (see 3.2.4) directly into nonlinear optimization for

trajectory design, resulting in a mathematical Program with complementarity constraints
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Figure 4-1: The bipedal FastRunner robot is designed to run at speeds of over 20 mph.
Each leg has 5 degrees of freedom and multiple passive springs and tendons. The legs are
driven at the hip to keep the leg mass as low as possible.

(MPCC), or, equivalently, a mathematical program with equilibrium constraints (MPEC)

[76]. While these are generally difficult to solve, significant research has been done in this

area, and we leverage sequential quadratic programming (SQP) techniques - a particular class

of algorithms for solving general nonlinear programs that have been shown to be effective [3,

35]. Broadly speaking, SQP solves a sequence of quadratic programs which each approximate

the original nonlinear program. The key to this formulation is in resolving the contact

forces, the mode-dependent component of the dynamics in the traditional formulation, as

additional decision variables in the optimization. We demonstrate that this is an effective and

numerically robust way to solve complex trajectories without the need for a mode schedule.

This work was motivated by the challenge of optimizing trajectories for a novel running

robot called “FastRunner”, designed and built by researchers at the Florida Institute for

Human and Machine Cognition (IHMC) [26]. FastRunner, shown in Figure 4-1 is a bipedal

robot concept designed to run at speeds over 20 mph and up to 50 mph. Most notably, Fas-

tRunner has a clever, but also complex, leg design with four-bar linkages, springs, clutches,

hard joint stops, tendons and flexible toes. The planar FastRunner model has 13 degrees

of freedom, 6 contact points, 16 additional constraint forces, and only 2 actuators, and was

beyond the scope of our previously existing trajectory optimization tools.
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4.1 Contact-implicit Approach

The dynamics of robots in contact, formulated using the complementarity conditions, fit nat-

urally into the direct formulation of trajectory optimization. Rather than solving the LCP

for the contact forces 𝜆 at each step, we directly optimize over the space of feasible states,

control inputs, constraint forces, and trajectory durations. Treating the contact forces as

optimization parameters is similar to how direct methods treat the state evolution implic-

itly. The number of parameters and constraints increases, but the problem is often better

conditioned and more tractable to state-of-the-art solvers. Over this expanded parameter

set, the optimization problem can be written as

minimize
{ℎ,𝑥0,...,𝑥𝑁 ,𝑢1,...,𝑢𝑁 ,𝜆1,...,𝜆𝑁}

ℓ𝑓 (𝑥𝑁) + ℎ
𝑁∑︁
𝑘=1

ℓ(𝑥𝑘−1, 𝑢𝑘). (4.1)

4.1.1 Optimization Constraints

This optimization problem is subject to constraints imposed by the manipulator dynamics

and by rigid body contacts. To integrate the dynamics, both forward and backward Euler

methods are equally applicable. Time-stepping simulation methods commonly use semi-

implicit methods, but the dynamics constraints in our optimization problem are already

fully implicit, and so we chose backwards integration for added numerical stability. For

ease of notation, we will write 𝐻𝑘 = 𝐻(𝑞𝑘) and likewise for other matrix functions in the

manipulator equations. For 𝑘 = 1, . . . , 𝑁−1, the dynamics from (3.1) imply the constraints:

𝑞𝑘 − 𝑞𝑘+1 + ℎ𝑣𝑘+1 = 0 (4.2)

𝐻𝑘+1(𝑣𝑘+1 − 𝑣𝑘) + ℎ
(︀
𝐶𝑘+1 −𝐵𝑘+1𝑢𝑘+1 − 𝐽𝑇

𝑘+1𝜆𝑘+1

)︀
= 0.

For notational simplicity, we first consider the case where the (frictional) contact dynam-

ics are planar and later discuss the extension to 3D contacts. For a given contact point,

write the contact force 𝜆 =
[︁
𝜆𝑇+ − 𝜆𝑇− 𝜆𝑁

]︁𝑇
. Following the formulation of [128], we have

split the tangential force into its positive and negative components. We also introduce the

additional slack variable 𝛾, which can be thought of as the magnitude of the relative tan-
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gential velocity at a contact. Similar to the simulation description in (3.8)-(3.13), we have

the set of complementarity constraints

0 ≤ 𝜑(𝑞𝑘) ⊥ 𝜆𝑘,𝑁 ≥ 0, (4.3)

0 ≤ 𝜇𝜆𝑘,𝑁 − 𝜆𝑘,𝑇+ − 𝜆𝑘,𝑇− ⊥ 𝛾𝑘 ≥ 0, (4.4)

0 ≤ 𝛾𝑘 − 𝐽𝑇 (𝑞𝑘)𝑣𝑘 ⊥ 𝜆𝑘,𝑇+ ≥ 0, (4.5)

0 ≤ 𝛾𝑘 + 𝐽𝑇 (𝑞𝑘)𝑣𝑘 ⊥ 𝜆𝑘,𝑇− ≥ 0. (4.6)

Taken together, (4.3)-(4.6) describe inelastic impacts and a Coulomb coefficient of friction 𝜇.

Unlike with the task of pure simulation, as in 3.2.4, where these constraints and the dynamical

constraints in (4.2) can be linearized about the initial state, here we must consider the higher-

order behavior along complex trajectories, and so we use the true nonlinear formulation.

In addition to expressing frictional contacts, we can also describe simple position con-

straints such as hard joint limits or kinematic loops in a similar manner. Here, 𝜆 is an

internal torque or force acting directly on a joint. For example, if there is a physical stop

enforcing the requirement that 𝑞 ≥ 𝑞𝑚𝑖𝑛, write

0 ≤ 𝑞𝑘 − 𝑞𝑚𝑖𝑛⏟  ⏞  
𝜑(𝑞𝑘)

⊥ 𝜆𝑘 ≥ 0 (4.7)

It is important to note the relative indexing of the complementarity and dynamical con-

straints. Over the interval [𝑡𝑘, 𝑡𝑘+1], the contact impulse can be non-zero if and only if

𝜑(𝑞𝑘+1) = 0; that is, the bodies must be in contact at the end of the given interval. This

allows the time-stepping integration scheme to approximate inelastic collisions where the

interacting bodies stick together. This is not necessarily an appropriate approximation for

bodies that may rapidly rebound off one another, since any compliance must be modeled

through a linkage in one of the bodies and the time step must be appropriately small.

Remark 4.1. At a high level, our approach lifts up the problem via overparameterization

and embeds the discontinuous and combinatoric planning problem into the nonlinear comple-

mentarity constraints. At pre-terminal stages of the optimization solver, whether by a SQP

or other method, some or all of these constraints will likely be violated. This, in a sense,
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permits force to be exerted at a distance in these intermediate stages. Intuitively, the gradi-

ents of these violated constraints represent information about the set of contacts that might

be made–allowing the optimization to simultaneously search over all possible sequences.

4.1.2 Solving the Optimization Problem

The optimization problem (4.1), subject to the constraints in Section 4.1.1, forms an MPCC:

a class of nonlinear programs that is generally difficult to solve due to the ill-posed nature

of the constraints [76]. However, it is an area of optimization research that has garnered

significant attention in recent years. There are a number of theoretical and practical results

which we leverage here to ensure that our trajectory optimization problem is solvable with

current techniques, particularly those used by the nonlinear solver SNOPT [39]. For vector-

valued functions 𝐺(𝑧) and 𝐻(𝑧), many of our constraints are of the form

𝐺(𝑧) ≥ 0, (4.8)

𝐻(𝑧) ≥ 0, (4.9)

𝐺(𝑧)𝑇𝐻(𝑧) = 0. (4.10)

To improve the convergence properties of the optimization routines, we can consider equiv-

alent formulations of these complementarity conditions. Fukushima et al. [37] propose an

iterative method that sequentially tightens relaxations of the complementarity constraints.

In our work, we primarily adopt the scheme of Anitescu [3] who proposed leveraging the

elastic mode of SQP solvers like SNOPT to solve a set of similar, and equivalent constraints,

𝐺(𝑧) ≥ 0, (4.11)

𝐻(𝑧) ≥ 0, (4.12)

𝐺𝑖(𝑧)𝐻𝑖(𝑧) ≤ 0, (4.13)

where the last inequality is evaluated element-wise. Additionally, it was observed by Fletcher

et al. in [35] that, since SQP iterations always satisfy linear constraints, the introduction of

45



slack variables 𝛼 and 𝛽 can help avoid infeasible QP iterations:

𝛼, 𝛽 ≥ 0, (4.14)

𝛼 = 𝐺(𝑧), (4.15)

𝛽 = 𝐻(𝑧), (4.16)

𝛼𝑖𝛽𝑖 ≤ 0. (4.17)

In practice, these seemingly innocuous substitutions have greatly improved the speed and

robustness of our optimization routines relative to our initial formulation, described in [98].

For more complex examples, we have also found it to be practically useful to temporarily

relax the final constraint to 𝛼𝑖𝛽𝑖 ≤ 𝜖 and solve a sequence of problems (typically no more

than three or four), starting with some 𝜖 > 0 and finishing with 𝜖 = 0 to achieve strict

feasibility. This has the effect of allowing intermediate iterations to exert contact force

at a small distance, and experimentally has improved the conditioning of the optimization

problem and the quality of our solutions. This is similar in principle to existing approaches,

like that in [37].

4.1.3 Extension to Three Dimensions

To handle three dimensional contacts, note that only the variables and constraints in 4.1.1

related to the frictional force 𝜆𝑇 and tangential velocity 𝐽𝑇 (𝑞)𝑣 are specific to the 2D case.

One straightforward approach to extending to 3D would be to treat both 𝜆𝑇 and 𝐽𝑇 (𝑞)𝑣 as

two-vectors, and write down a set of nonlinear constraints for Coulomb friction in the tangent

plane, such as in [1]. However, to preserve the MPCC structure of our problem, we instead

use a polyhedral approximation of the friction cone, as in [128]. Let 𝐷𝑖 for 𝑖 = 1, .., 𝑑 be unit

vectors in R2 whose convex hull is the polyhedral approximation. Then, let 𝜆𝑇 =
∑︀𝑑

𝑖 𝐷𝑖𝜆𝑇𝑖

be the net frictional force where each 𝜆𝑇𝑖
is a scalar. We replace the friction cone constraints
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(4.4)-(4.6) with

0 ≤ 𝜇𝜆𝑘,𝑁 −
𝑑∑︁
𝑖

𝜆𝑘,𝑇𝑖
⊥ 𝛾𝑘 ≥ 0, (4.18)

0 ≤ 𝛾𝑘 +𝐷𝑇
𝑖 𝐽𝑇 (𝑞𝑘)𝑣𝑘 ⊥ 𝜆𝑘,𝑇𝑖

≥ 0, (4.19)

where (4.19) is repeated for all 𝑖. By increasing 𝑑 and growing the size of the MPCC, the

approximation can be made arbitrarily tight to the true friction cone.

4.1.4 Time Discretization

We also note here the role of the discrete time steps when resolving contacts. Since we

use a time-stepping model, our approach makes no effort to determine the exact time that

contact between bodies is made or broken. Impulsive and continuous forces are not treated

independently, and so we avoid the difficult and potentially combinatorial task of hybrid

mode resolution. Instead, the constraint forces over the time step directly before a collision

are precisely those required for the two bodies to be in contact. Additionally, since no force is

permitted during the period when contact is being broken, there is the implicit requirement

that take-off exactly coincide with one of the discrete time intervals. While it is common

for numerical implementations of trajectory optimization to allow the overall duration of the

trajectory to change, they typically do not adjust the individual time steps. Here, this would

result in an overly restrictive optimization problem that may exclude desirable trajectories.

Overly simple parameterizations which use each time step duration as a parameter can have

trivial or undesirable solutions (e.g, with many time steps having zero duration). One feasible

approach is to create decision variables that divide each time step ℎ into two periods. This

can alternatively be expressed as having individual time steps ℎ𝑘 with pairwise constraints:

ℎ2𝑗−1 + ℎ2𝑗 = ℎ2𝑗+1 + ℎ2𝑗+2, 𝑗 = 1, . . . , floor

(︂
𝑁 − 3

2

)︂
, (4.20)

If the total duration of the motion is fixed, this is equivalent to constraining ℎ2𝑗−1 + ℎ2𝑗 to

be constant. In practice, these additional free parameters are useful in expanding the space
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of feasible solutions while still allowing for relatively large time steps. Since both state and

constraint forces are solved implicitly, this program has a relatively large number of decision

variables and constraints. However, as is typical in direct methods, this resulting program

is generally sparse and so is suitable for implementation with sparse solvers.

4.2 Example Applications

In this section, we apply our contact-implicit algorithm algorithm to four increasingly com-

plex examples. These problems were solved on a standard desktop computer. While the solve

time varied from problem to problem, the simpler examples completed in a few minutes or

less in about one hundred major iterations of the solver, and the FastRunner trajectories

took up to an hour to converge. As discussed above, the MPCCs are formulated to take

advantage of the elastic mode in the SQP solver, although, in all cases, we achieve final

convergence to a strictly feasible solution.

4.2.1 Finger Contact

Recent research by Tassa and Todorov [131] used a DDP based approach to find a trajectory

for the sample problem of a two link manipulator that must spin an ellipse. This is a simple

example with three degrees of freedom and only one contact point, so there are only two

possible modes (excluding sliding). However, it provided an early test for our methods. We

constrained the system to start from rest, 𝑣 = 0, and optimized for a quadratic cost on

control input and velocity of the free ellipse:

𝑔(𝑥, 𝑢) =
𝑁∑︁
𝑘=1

𝑣𝑇3 𝑄𝑣3 + 𝑢𝑇𝑅𝑢. (4.21)

The parameters for size and mass and for the cost function were chosen to directly parallel

the previous work. Our approach succeeded in quickly finding a locally optimal trajectory.

As we increased the overall duration of the trajectory, the optimization process found an

increasing number of flicking motions where, after making contact, it drew the finger back up

to make another pass. Additionally, Tassa and Todorov note that the effect of gravity was
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Figure 4-2: The two link finger, shown above, is fully actuated and makes contact with
the unactuated third ellipse to drive it about its axis. Here, 𝜑(𝑞) is the shortest distance
between the distal finger and the free ellipse.

required to pull the manipulator into contact with the ellipse in order for the optimization

process to discover the possibility of contact. Our approach does not have this limitation.

If we eliminate gravity from the system, even given an initial trajectory that starts at rest

with 𝑢(𝑡) = 0, our methods successfully initiate contact between the manipulator and ellipse.

Both of these results speak to the capability of our algorithm to actively identify a mode

schedule that is not forced by the initial trajectory or the system’s dynamics.

4.2.2 Simple Manipulation

Given the complexity of manipulator problems, trajectory optimization usually involves di-

viding the planner into two parts: planning the motion to the object through unobstructed

space and then subsequently planning the grasp. During grasp planning, specifying a mode

schedule would require determining the order in which the manipulator fingers should inter-

act with the object. However, it is clear that in many situations, the precise order is not

important so long as a proper grasp is ultimately achieved. Thus, an optimization technique

that does not require a priori specification of contact order is far more appropriate for these

types of problems. Furthermore, some grasp planners neglect the dynamics of manipulated

objects, essentially treating them as fixed to the manipulator. The method presented here
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Figure 4-3: A simple planar gripper was modeled with five actuated joints and three
contact points, shown as black dots. Both the ball and the three contact points could
also interact with the ground, where the ball is initially resting, resulting in seven possible
contacts.

fully accounts for the dynamical properties of the manipulated object throughout optimiza-

tion of the entire trajectory. The following example consists of a planar manipulator tasked

with grasping a circular object, originally on the ground, and lifting it into the air. We

model the gripper with three contact points and five actuated joints, shown in Figure 4-3.

Here, we desire to minimize the overall effort while moving the ball to a strictly specified

goal location.

There are, of course, a number of different ways in which to precisely specify this opti-

mization problem. Since we use a local method, the problem definition and initial trajectories

can have a significant impact on the final result. We choose an approach similar to standard

grasp planning by specifying an intermediate state where the manipulator fully grasps the

ball before attempting to raise it; and we additionally specify the final state in terms of both

ball and manipulator. For an initial trajectory, we construct a simple, three point linear

interpolation between the initial, intermediate, and final states where the intermediate state

is the grasp chosen by the user. Additionally, the optimization problem is initialized with all

zeros for both control inputs and contact forces. Furthermore, we are able to require that the

trajectory achieve a force closure on the ball, before attempting to raise it. With this simple

problem formulation, our algorithm quickly converges to a trajectory that grasps and raises

the ball. If, instead, we were to only specify a fixed initial state with the manipulator held

above the ball, the algorithm could produce interesting motions that, while locally optimal,

may lack robustness. For instance, using a single finger to hit the ball into the air satisfies
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a A walking gait for Spring Flamingo that minimizes mechanical cost of transport. To
generate this trajectory, the height of the swing foot was not considered, so the solution is
a minimalist trajectory with very little ground clearance.
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b The height of the center of mass over the optimized and initial trajectories is plotted over
the sequence. The optimal trajectory minimizes unnecessary vertical motion of the robot.

Figure 4-4: Spring Flamingo walking.

this problem statement.

Since they are included as optimization parameters, the cost function and constraints

can be easily modified to explicitly include the contact forces. For example, to handle the

object gently, we could minimize the total contact forces between fingers and ball or even

prohibit these forces from crossing a specified threshold.

4.2.3 Spring Flamingo Walking Gait

To analyze a more realistic system, we tested our methods on a planar simulation of the

Spring Flamingo robot [107]. On Spring Flamingo, each leg has three actuated joints (hip,

knee, and ankle) and there are contact points at the toe and heel of each foot. Many hybrid

walking models use a constrained form of the dynamics, where a foot in contact with the
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Figure 4-5: The optimized mode sequence of the left and right feet is plotted against time
and the mode transitions are labeled. The SQP was initialized with a significantly different
sequence, demonstrating the ability of the algorithm to independently plan through contact
discontinuities. Note that, in this case, the locally optimal trajectory has distinct heel strike
and heel off events.

ground is treated as a pin joint. Here, however, we deal with the full constrained dynamics

where the body of the robot is modeled as a floating base parameterized by the variables

(𝑥, 𝑦, 𝜃), which represent the planar position and pitch of the robot. Periodic constraints were

used to generate a cyclic walking gait and the trajectory was optimized for mechanical cost

of transport. Cost of transport is a common, unitless indication of the energy consumption

required for locomotion, and the “mechanical” cost of transport is computed using the total

positive work done on the system independent of losses in the actuators or costs due to

onboard electronics [23]. Where 𝑑 is the total distance traveled, we write the cost as:

𝑔(𝑥, 𝑢) =
1

𝑚𝑔𝑑

𝑁∑︁
𝑘=1

∑︁
𝑖

|𝑣𝑘,𝑖𝑢𝑘,𝑖|. (4.22)

Note that negative work, which could potentially be stored in an elastic element or harvested

by regenerative breaking, is simply treated here with an equivalent cost to positive work.
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Since the solutions to the MPCC are local, our methods discovered a wide variety of

feasible gaits that satisfied the general constraints dependent on the initial condition set.

For instance, given the task of finding a periodic gait that travels a specific distance, hop-

ping motions and gaits with relatively short or long strides are possible local solutions. In

particular, the input 𝜆(𝑡) and 𝑥(𝑡) sequences implicitly identify the nominal mode sequence

of the initial guess. However, the solution is not restricted to the given ordering. Figure 4-5

shows the initial and optimized mode sequences of a particular Spring Flamingo gait. Here,

the initial trajectory leads to a solution with a right-left walking gait but details such as

independent heel strike and heel off were identified in the optimization process. To optimize

for a cyclic gait, it is natural to write the periodicity constraint 𝑥𝑁 = 𝑥1.

To shrink the optimization problem, we search over the smaller space of a half gait.

We add an additional constraint that the robot walk a minimum distance, we formulate a

periodicity requirement to account for symmetry. Where 𝑞𝑙 and 𝑞𝑟 are the left and right

joint vectors, respectively, 𝑑𝑚𝑖𝑛 is the minimum stride length, and (𝑥𝐶𝑀 , 𝑦𝐶𝑀 , 𝜃) represents

the position and orientation of the center of mass, we have:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦𝑁,𝐶𝑀

𝜃𝑁

𝑥̇𝑁,𝐶𝑀

𝑦̇𝑁,𝐶𝑀

𝜃𝑁

𝑞𝑁,1

𝑞𝑁,𝑟

𝑣𝑁,𝑙

𝑣𝑁,𝑟

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦1,𝐶𝑀

𝜃1

𝑥̇1,𝐶𝑀

𝑦̇1,𝐶𝑀

𝜃1

𝑞1,𝑟

𝑞1,𝑙

𝑣1,𝑟

𝑣1,𝑙

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.23)

𝑥𝑁,𝐶𝑀 ≥ 𝑥1,𝐶𝑀 + 𝑑𝑚𝑖𝑛. (4.24)

With these linear constraints and given a nominal trajectory from Pratt’s original work

on the robot where the mechanical cost of transport was 0.18 [106], our methods identified

a periodic walking gait which reduced the cost to 0.04. It is important to note that this is
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Figure 4-6: A generated trajectory for the FastRunner robot running at over 20 mph. The
solid elements show the leg linkages and the thin lines indicate springs and tendons. Only
the hip joints of the robot are actuated.

merely the cost of the nominal gait as calculated from (4.22), and that stabilizing the gait

in the presence of any disturbances or model error will result in a higher closed loop cost,

even in simulation. Using native C++ code for rapid computation of rigid body dynamics,

interfaced with a general purpose MATLAB framework, we are able to converge to solutions

for the Spring Flamingo in under ninety seconds. The other examples discussed in this work

are analyzed primarily in unoptimized MATLAB, and so are less relevant for comparison.

This is a significant reduction in cost and corresponds to an impressive level of walking

efficiency for a system with no passive elements to store and release energy. Figure 4-4a

shows the optimized walking gait and the height of the center of mass (CM) throughout

the trajectory, compared with that of the nominal gait. The optimal trajectory minimizes

wasteful up and down motion of the CM. Note also that the foot swing height is very low to

minimize any velocity at impact.

4.2.4 FastRunner Gait

This research was originally motivated by the challenges posed by the FastRunner platform,

shown in Figure 4-1. For the previous examples, it is certainly possible to identify a desired

mode sequence. This is a difficult task, however, for a system like FastRunner. A planar

model of the robot has 13 degrees of freedom, including three articulated toe segments on

each foot that can make or break contact with the ground. Additionally, there are a total

of 16 unilateral joint limits, many of which play a critical role in bearing load during the

high-speed running gait cycle. Scheduling the order of these contacts and joint limits is not

practical.
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Figure 4-7: Out of more than 4 million possible discrete modes, the sequence for one
locally optimal cyclic trajectory is shown. This sequence, which passes through 15 different
modes, is compressed and plotted above against the largely distinct mode sequence of the
initial trajectory.

Figure 4-6 shows a motion sequence of an optimized periodic running gait, averaging over

20 mph. As with Spring Flamingo, constraints (4.23) and (4.24) restricted the search space

and this trajectory was optimized for mechanical cost of transport. Both the leg linkages and

passive elements like springs and tendons are shown in the figure. For our model, we treat the

system as a linkage of rigid bodies, where the passive elements are treated as massless. The

complexity of the system and the stiffness of some of the springs posed additional problems

for the optimization. In this case, additional linear constraints were useful in guiding the

solver away from poorly conditioned or infeasible regions. This is typical for SQP methods,

where the program can be difficult to solve if the local QP is a poor estimate of the true

nonlinear program.

With 22 discrete variables, there are over 4 million possible discrete modes for the Fas-

tRunner robot. One possible mode sequence discovered by the optimization process is illus-

trated in Figure 4-7. The individual mode transitions shown occur when the contact state

of one of the toes changes or when a joint limit becomes active or inactive. While the states

of individual discrete variables, such as toe contacts, may overlap between the initial and

optimal trajectories, the aggregate discrete states show almost no agreement. This speaks

to the combinatorial complexity of planning a mode schedule for a system like FastRunner.
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Figure 4-8: Constrained trajectory optimization can be used to generate gaits that deviate
from the nominal motion. The images above show the robot ascending and descending 20 cm
steps, more than double the height that has been achieved through passive stabilization
alone.

Figure 4-9: The nominal gait can also be modified with explicit foot placement constraints.
Here, the robot must significantly alter its stride length to bridge the gaps shown above.

Despite the complexity of the system, by taking advantage of the complementarity constraint

formulation, our methods are now able to generate a locally optimal gait for FastRunner.

Our collaborators on the FastRunner project [26] designed the robot to be open loop

stable while tracking a simple sinusoidal gait. The design of the robot features an active

clutch that connects a large suspensory spring to the knee joint during stance and then

disconnects the spring during swing. It is critical that the clutch only be activated and

deactivated when the spring is in the neutral state and it has proven extremely difficult

to design such a trajectory by hand. Such a constraint, however, fits naturally into our

optimization algorithm. If 𝑐𝑘 corresponds to the clutch activation at time 𝑡𝑘 and and 𝑙(𝑞𝑘)

is the length of the spring, we then encode the two constraints:

𝑐2𝑘 − 𝑐𝑘 = 0 (4.25)

𝑙(𝑞𝑘+1)(𝑐𝑘+1 − 𝑐𝑘) = 0 (4.26)
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The first equation ensures that 𝑐𝑘 is binary, restricted to {0, 1}. The second describes

the requirement that the clutch activation can only change if the spring is in the neutral

position. With this new set of conditions, our optimization algorithm generates the complex

trajectories required for FastRunner.

The trajectory optimization algorithm presented here allows us to synthesize efficient

gaits for a wide range of different tasks. Of equal importance to generating a nominal gait

is the ability to generate additional motions to handle atypical situations. For example, by

modifying the model of the environment, our algorithm was successful at finding trajectories

where the FastRunner robot must take 20 cm steps up or down, simulating running over

rough (but known) terrain, all while running at high speeds. Figure 4-8 shows the robot mid-

flight as it must step up and down. For these tasks, the initial and final states of the trajectory

were constrained to precisely match the nominal running gait so that these motions can be

smoothly strung together. We also applied our method to the task of explicitly modifying

stride length, for situations where we must more tightly control foot placement. Figure 4-9

shows a stop-motion of the results of this optimization, where the small ledges force large

deviations from the nominal stride length.

4.3 Discussion

In our approach, we write a complex MPCC that, in practice, has been tractable for modern

solvers. Since the problem is non-convex, we are limited to locally optimal solutions. As is

typical for non-convex problems, applying linear constraints on the decision variables to steer

the solver away from singularities or other poorly conditioned regions can be critical to finding

a desirable solution. In the examples above, this is typically done by eliminating obviously

undesirable or infeasible regions of the joint space. We have also found that intermediate

relaxations of the complementarity conditions can greatly improve the rate of convergence

and reduce the likelihood of a poor, local solution. These relaxations are then tightened so

the algorithm results in a strictly feasible trajectory. Other smoothing functions for nonlinear

complementarity problems exist and have been used to directly solve these problems, such

as the Fischer-Burmeister function [34] or the class of functions suggested by Chen and
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Mangasarian [19], and these functions may be applicable here as well.

As is mentioned above, throughout this work we have solely dealt with inelastic collisions

where the effective coefficient of restitution vanishes. While this is an appropriate assump-

tion for the locomotion and manipulation examples explored here, there are other potential

applications where the impacts are better modeled as partially elastic events. The work in

[4] has developed LCP-based simulation tools for multi-body contact and elastic collisions,

and we believe our methods can be extended to these areas as well.

To control highly-nonlinear robotic systems through real-world environments, it is critical

that we be able to generate feasible, high quality trajectories. Prior techniques struggle when

presented with complex systems where the hybrid sequence is difficult to intuit. Here, we

have presented a method for trajectory optimization through the discontinuities of contact

that does not rely on a priori specification of a mode schedule. Our approach combines

traditional, direct local control approaches with an complementarity based contact model

into a single nonlinear program. By writing the dynamics and constraints without explicit

reference to hybrid modes, we are now able to easily plan through the discontinuous dy-

namics of contact. Additionally, unlike with other methods, we do not require arbitrary or

hand-tuned parameters nor do we rely on the passive system dynamics to generate a mode

schedule. Once convergence is reached, the solution strictly satisfies all contact and dynamics

constraints.
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Chapter 5

Contact-constrained Optimization and

Tracking

In this chapter, we present further progress toward executing and stabilizing motions in

contact-rich settings. In Chapter 4, we demonstrated an approach to trajectory optimiza-

tion with an unknown contact schedule. The contact-implicit method is based on a first-order

Euler integration scheme, which, when combined with the relatively large step sizes that are

computationally required, results in significant integration error. Particularly for underac-

tuated systems, it can be incredibly difficult or impossible to track and stabilize nominal

trajectories that are dynamically inconsistent (as a result of integration error). Even with

a known contact schedule (resulting from a contact-implicit optimization or user-specified),

standard approaches to trajectory optimization often fail to address complex contact config-

urations. Contact, when sustained over time, is represented through kinematic constraints

on the evolution of the dynamical system. In simple cases, the constrained system can be

described by a set of minimal coordinates. However, these constraints frequently create

closed kinematic chains, such as in four-bar linkages, or when a walking robot is in double

support with both legs contacting the ground. When minimal coordinates do not exist, we

must consider the robot’s state to be on a manifold embedded in a higher dimensional space

[82, 14]. The standard approach, used in [48] and elsewhere, considers only the dynamics

induced by the manifold. However, by not directly constraining motions to remain on the

manifold, numerical integration error will necessarily result in drift (e.g. a foot leaving the
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Figure 5-1: An Atlas robot climbing a step with aid of a hand. The algorithms presented
here synthesize and stabilize dynamic, multi-contact trajectories.

DIRCON Manifold LQR

Known contact
mode schedule

Contact-implicit
Optimization

Real-time

QP Controller

Figure 5-2: A block diagram cartoons the interaction between components. The DIRCON
algorithm, given an objective and constraints, produces a nominal trajectory. The con-
strained version of LQR solves for a quadratic cost-to-go function. This cost-to-go is used
to synthesize a QP, which is solved in real-time as a feedback control policy.

ground).

To address this issue, we introduce Constrained Direct Collocation (DIRCON), a planning

algorithm for constrained dynamical systems with third-order integration accuracy [101].

DIRCON maintains the advantages of direct collocation [45], thereby enabling more reliable

stabilization as compared with existing methods. We additionally introduce a modest exten-

sion of the classical linear quadratic regulator (LQR) stabilization technique which addresses

the challenges posed by working on these manifolds.

To fully demonstrate these results, we then combine the optimized trajectories and LQR

policies with recent advances in humanoid control. By leveraging quadratic programming, we
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incorporate constraints such as input saturations and friction limits into the LQR feedback

policy as in Kuindersma et al. [61, 62]. These elements, illustrated in Figure 5-2, provide an

end-to-end recipe for generating and stabilizing optimal trajectories that exhibit complex and

varying contact configurations. We demonstrate the approach on three different locomotion

examples in simulation: walking in three dimensions, underactuated planar (2D) walking,

and planar climbing utilizing contact between the hand and the environment.

5.1 Constrained Direct Collocation

To plan trajectories with arbitrary contact and other kinematic constraints, we wish to

ensure that motions always satisfy the manifold constraints and that the dynamic flow of

the trajectories respects the dynamics on the manifold. For ease of notation, we introduce

here the functions 𝜓 and 𝛼 which implicitly define the constraint forces 𝜆:

𝜓(𝑞, 𝑣) ≡ d𝜑

d𝑡
= 𝐽(𝑞)𝑣 = 0, (5.1)

𝛼(𝑞, 𝑣, 𝑢, 𝜆) ≡ d2𝜑

d𝑡2
=

d𝐽(𝑞)

d𝑡
𝑣 + 𝐽(𝑞)𝑓(𝑥, 𝑢, 𝜆) = 0, (5.2)

where we have written the dynamics in an implicit form 𝑣̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡)). For

instance, deriving 𝑓 from the manipulator equations (3.1), we would have

𝑓(𝑥, 𝑢, 𝜆) = 𝐻(𝑞)−1(−𝐶(𝑞, 𝑣) +𝐵𝑢+ 𝐽(𝑞)𝑇𝜆).

With a slight abuse of notation, in this chapter we will let 𝜑(𝑞) : R𝑛 → R𝑚 represent

the 𝑚 active kinematic constraints (potentially corresponding to the normal and tangential

directions of a sticking contact constraint).

Remark 5.1. Observe that simply adding the manifold constraints 𝜑(𝑞𝑘) = 𝜓(𝑞𝑘, 𝑣𝑘) = 0

to the standard direct collocation optimization (3.17) results in an over-constrained problem.

This can be easily seen by formulating the optimization as a single-step forward prediction:

fix 𝑥0, 𝑢0, and 𝑢1 and solve for 𝑥1. Assuming that 𝑥0 lies on the manifold, we would still have

a total of (2𝑛+ 2𝑚) equality conditions, greater than the dimensionality of the unknown 𝑥1.
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Figure 5-3: A one dimensional constraint manifold, embedded in a two dimensional space,
is cartooned in blue. A Hermite spline, in red, between two points will not overlap the man-
ifold, and its slope will not lie within the tangent plane at the collocation point. DIRCON
implicitly projects the spline slope onto the manifold to form the proper constraint defect.

Alternatively, if the position and velocity level manifold constraints are ignored and only the

acceleration level constraint (5.2) is enforced, then integration error will cause the trajectories

to drift off the manifold.

The DIRCON algorithm extends classical direct collocation to naturally handle the dif-

ficulties presented by an implicit constraint manifold. This algorithm has two main contri-

butions:

1. we achieve 𝒪(ℎ3) accuracy for constrained Lagrangian systems,

2. by explicitly representing the forces 𝜆, constraints like friction limits are easily ex-

pressed.

As in Chapter 4, we incorporate the constraint forces at the knot points, 𝜆1, ..., 𝜆𝑁 , as ex-

plicit decision variables in the optimization. The key insight in our approach is to reduce the

effective dimensionality of the additional collocation constraint (recalling (3.16)) by restrict-

ing it to the tangent plane of the constraint manifold through the use of additional slack

variables 𝜆̄1, ..., 𝜆̄𝑁−1, 𝛾1, ..., 𝛾𝑁−1. These variables represent forces and a velocity correction,

respectively, applied at the collocation point. The resulting projected collocation constraint,

cartooned in Figure 5-3, is:

𝑔(𝑥𝑘, 𝑢𝑘, 𝜆𝑘, 𝑥𝑘+1, 𝑢𝑘+1, 𝜆𝑘+1, 𝜆̄𝑘, 𝛾𝑘) = 𝑥̇𝑠(𝑡𝑘 + 1
2
ℎ)−

⎡⎣𝑣𝑐 + 𝐽(𝑞𝑐)
𝑇𝛾𝑘

𝑓(𝑥𝑐, 𝑢𝑐, 𝜆̄𝑘)

⎤⎦ . (5.3)

Defining the set of optimization parameters as

𝑧 = (𝑥1, ..., 𝑥𝑁 , 𝑢1, ..., 𝑢𝑁 , 𝜆1, ..., 𝜆𝑁 , 𝜆̄1, ..., 𝜆̄𝑁−1, 𝛾1, ..., 𝛾𝑁−1),
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we have the trajectory optimization problem:

minimize
𝑧

ℓ𝑓 (𝑥𝑁) + ℎ

𝑁∑︁
𝑘=1

ℓ(𝑥𝑘, 𝑢𝑘)

subject to 0 = 𝑔(𝑥𝑘, 𝑢𝑘, 𝜆𝑘, 𝑥𝑘+1, 𝑢𝑘+1, 𝜆𝑘+1, 𝜆̄𝑘, 𝛾𝑘) for 𝑘 = 1, ..., 𝑁 − 1 (5.4)

0 = 𝜑(𝑞𝑘) = 𝜓(𝑞𝑘, 𝑣𝑘) = 𝛼(𝑞𝑘, 𝑣𝑘, 𝑢𝑘, 𝜆𝑘) for 𝑘 = 1, ..., 𝑁

0 ≤ 𝑔(𝑧).

As with standard collocation, 𝑔(𝑧) represents additional constraints on the state, input, and

constraint forces.

Theorem 5.2. If the dynamics and kinematics functions (𝑓, 𝜑, 𝜑′, 𝜑′′, 𝜓, 𝛼) are analytic and

Lipschitz continuous, the algorithm above has 𝒪(ℎ3) accuracy over a fixed time-interval.

More specifically, take (𝑥0, 𝑢0, 𝜆0, 𝑥1, 𝑢1, 𝜆1, 𝜆̄0, 𝛾0) to be bounded and satisfy (5.3). Let 𝑥(𝑡)

for 𝑡 ∈ [0, ℎ] be the true solution to 𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) with 𝑥(0) = 𝑥0 and 𝑢(𝑡) a first-order

hold between 𝑢0 and 𝑢1. Then, we have that the error ||𝑥(ℎ)− 𝑥1|| < 𝐶ℎ4 for some constant

𝐶.

Proof. Let 𝑞𝑠(𝑡) and 𝑣𝑠(𝑡) correspond to the joint position and joint velocity cubic splines of

the collocation algorithm. For simplicity, we will write 𝑞𝑐 = 𝑞𝑠(
1
2
ℎ), 𝑞𝑐 = 𝑞𝑠(

1
2
ℎ), 𝑣𝑐 = 𝑣𝑠(

1
2
ℎ),

and 𝑣̇𝑐 = 𝑣̇𝑠(
1
2
ℎ). Note, because the parameters 𝑧 are bounded, 𝑞𝑠(𝑡) and 𝑣𝑠(𝑡) are also

bounded, and so 𝜑(𝑞𝑠(𝑡)) will be both bounded and analytic. First, we demonstrate that

𝜑(𝑞𝑐) = 𝒪(ℎ4). Since 𝜑(𝑞𝑠(0)) and 𝜑̇(𝑞𝑠(0)) both vanish, the Taylor expansion of 𝜑(𝑞𝑠(𝑡)) is

𝑡2

2

d2𝜑

d𝑡2

⃒⃒⃒⃒
𝑡=0

+
𝑡3

6

d3𝜑

d𝑡3

⃒⃒⃒⃒
𝑡=0

+
𝑡4

24

d4𝜑

d𝑡4

⃒⃒⃒⃒
𝑡=0

+ ...

By substituting and differentiating this expansion, and exploiting the fact that 𝜑(𝑞𝑠(ℎ)) and

𝜑̇(𝑞𝑠(ℎ)) also vanish, we can eliminate the quadratic and cubic terms from 𝜑(𝑞𝑐),

𝜑(𝑞𝑐) =
233

1142
ℎ4

d4𝜑

d𝑡4

⃒⃒⃒⃒
𝑡=0

+𝒪(ℎ5). (5.5)

Therefore, for sufficiently small ℎ we have ||𝜑(𝑞𝑐)|| < 𝐶ℎ4 and, similarly, ||𝜑̇(𝑞𝑐)|| < 𝐶ℎ3. For

63



notational ease, we take 𝐶 to be some global constant of sufficient size. A similar expansion of

𝜓(𝑞𝑠(𝑡), 𝑣𝑠(𝑡)) demonstrates that ||𝜓(𝑞𝑐, 𝑣𝑐)|| < 𝐶ℎ4 and ||𝜓̇(𝑞𝑐, 𝑣𝑐)|| < 𝐶ℎ3. Multiplying the

position component of the collocation constraint (5.3) by 𝐽(𝑞𝑐), and exploiting the bounds

on these two values for the constraint velocity, 𝜑̇(𝑞𝑐) and 𝜓(𝑞𝑐, 𝑣𝑐), we derive a bound on the

velocity correction,

||𝐽(𝑞𝑐)
𝑇𝛾0|| < 𝐶ℎ3. (5.6)

Similarly, by substituting 𝑣̇𝑐 = 𝑓(𝑥𝑐, 𝑢𝑐, 𝜆̄0) into an expansion of 𝛼(𝑞𝑐, 𝑣𝑐, 𝑢𝑐, 𝜆̄0) and employ-

ing the bound on 𝜓̇(𝑞𝑐, 𝑣𝑐), we have

||𝛼(𝑞𝑐, 𝑣𝑐, 𝑢𝑐, 𝜆̄0)|| < 𝐶ℎ3. (5.7)

Simply put, (5.6) and (5.7) bound the defect between the derivative of the splines and

the manifold tangent plane. To leverage existing results regarding collocation methods and

ODEs, we extend the constrained dynamics by defining 𝑥̇ when 𝑥 is off the manifold,

𝑞(𝑡) = 𝑣(𝑡) + 𝐽(𝑞(𝑡))𝑇𝛾(𝑡) (5.8)

𝑣̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡)), (5.9)

where the constraint forces are such that 𝐽(𝑞(𝑡))𝑞(𝑡) = 0 and 𝛼(𝑞(𝑡), 𝑣(𝑡), 𝑢(𝑡), 𝜆(𝑡)) = 0.

Note that these extended dynamics agree with the constrained dynamics for states on the

manifold, but define an ODE for all 𝑥 ∈ R𝑛. Using standard results in Hairer [44] and

Betts [10], a direct collocation algorithm for these extended dynamics would have 𝒪(ℎ4) ac-

curacy over a single timestep. Since (5.6) and (5.7) imply 𝒪(ℎ3) errors in extended dynamics

when evaluated at the collocation point, this results in 𝒪(ℎ4) accumulated error over the

interval [0, ℎ].
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5.1.1 Friction Limits

By explicitly introducing the constraint forces 𝜆 as decision parameters within the optimiza-

tion, we can easily require that they obey a set of nonlinear constraints as in [100]. For

instance, we can require that they lie within the Coulomb friction cone with 𝜆𝑁 ≥ 0 and

𝜇𝜆2𝑁 − ||𝜆𝑇 ||22 ≥ 0.

This is of particular interest when the rows of the Jacobian 𝐽 are not linearly independent,

a common case that occurs in all of the examples in this chapter. When 𝐽 is full row-rank,

one might directly solve for the unique 𝜆 such that 𝛼(𝑞, 𝑣, 𝑢, 𝜆) = 0 and evaluate the friction

constraints by solving a simple linear system of equations. However, when 𝐽 is rank deficient,

there are a subspace of such forces. Therefore, solving for a force that satisfies the constraints

is equivalent to a convex optimization problem in and of itself. Explicit representation of

the forces avoids this added complexity, and greatly simplifies the representation of these

constraints.

5.1.2 Hybrid Collocation

As with other trajectory optimization algorithms, DIRCON can be simply extended to the

hybrid case when the mode sequence is known. The hybrid trajectory optimization problem

constructs one set of decision parameters and constraints per contact state, or hybrid mode.

Consistency between the modes is enforced via a hybrid jump condition, described by ex-

plicitly including the impulse Λ. Letting 𝑧𝑗 be the decision variables for the 𝑗th mode, the

jump constraints are then:

𝑞𝑗1 = 𝑞𝑗−1
𝑁𝑗−1 (5.10)

𝑣𝑗1 = 𝑣𝑗−1
𝑁𝑗−1 +𝐻(𝑞𝑗−1

𝑁𝑗−1)
−1𝐽(𝑞𝑗−1

𝑁𝑗−1)
𝑇Λ𝑗−1, (5.11)

Note that the manifold constraints for the new mode automatically imply post-impact con-

ditions that constrain Λ. Additional constraints, defined by the gap function 𝜑(𝑞), prevent

contact penetration and guard conditions to ensure that mode changes occur when the ap-

propriate points are in contact.
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5.2 Equality-Constrained LQR

Given a trajectory output from the collocation algorithm described in the previous section,

we next address the problem of designing a tracking controller. The presentation here is

similar in principle to [82], though we base the design around LQR. A powerful tool for

the stabilization of both time-invariant and time-varying linear dynamical systems, LQR is

also widely used for local stabilization of non-linear systems [2]. For a linear system, finite

horizon LQR minimizes the quadratic cost,

𝑥(𝑇 )𝑇𝑄𝑓𝑥(𝑇 ) +

∫︁ 𝑇

0

[𝑥(𝑡)𝑇𝑄𝑥(𝑡) + 𝑢(𝑡)𝑇𝑅𝑢(𝑡)]d𝑡, (5.12)

by solving the Hamilton-Jacobi-Bellman (HJB) equation. The product is an optimal con-

troller 𝑢(𝑡) = −𝐾(𝑡)𝑥(𝑡) and the associated cost-to-go 𝑉 (𝑡, 𝑥(𝑡)) = 𝑥(𝑡)𝑇𝑆(𝑡)𝑥(𝑡). To track

a trajectory of a nonlinear system, a linearization of the dynamics about the nominal motion

can be used to generate a feedback policy. Here, we provide a straight-forward extension of

the classical notion of LQR to constrained dynamical systems. Consider the time-varying

linear system

𝑥̇ = 𝐴(𝑡)𝑥(𝑡) +𝐵(𝑡)𝑢(𝑡), (5.13)

where the dynamics constrain the state to the manifold defined by 𝐹 (𝑡)𝑥(𝑡) = 0 and 𝐹 (𝑡) is

full row-rank. While the derivations in this section apply to generic systems, for notational

consistency, we will continue to focus on second-order plants with 𝐹 : R+ → R(2𝑛−2𝑚)×2𝑛.

The manifold constraint implies that the system is neither controllable nor stabilizable in

the traditional senses. As a result, we cannot simply ignore 𝐹 (𝑡) and solve the standard

Riccati equation.

While we may not have a set of minimal coordinates, we can derive a time-varying basis

for locally minimal coordinates and then apply traditional LQR techniques. Assume that

𝐹 (𝑡) is differentiable and take some 𝑃 (0) to be an orthonormal basis of the nullspace of 𝐹 (0):

𝑃𝑃 𝑇 = 𝐼2𝑚 (5.14)

𝑃𝐹 𝑇 = 02𝑚×(2𝑛−2𝑚). (5.15)
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To ensure that these identities hold for all time, we differentiate and write an ordinary

differential equation for 𝑃 (𝑡),

𝑃̇𝑃 𝑇 + 𝑃𝑃̇ 𝑇 = 0 (5.16)

𝑃̇𝐹 𝑇 + 𝑃𝐹̇ 𝑇 = 0.

For any 𝑥 ∈ R2𝑛, we can write 𝑥 = 𝑃 𝑇𝑦+ 𝐹 𝑇 𝑧 for some 𝑦 ∈ R2𝑚 and 𝑧 ∈ R2𝑛−2𝑚. However,

as a result of the constraints, we know that 𝐹𝑥(0) = 𝑧(0) = 0. Additionally, along any

trajectory 𝑥(𝑡), we have 𝑧̇(𝑡) = 0 and so 𝑥(𝑡) = 𝑃 𝑇𝑦(𝑡) and 𝑦(𝑡) = 𝑃𝑥(𝑡). The dynamics of

𝑦 are given by:

𝑦̇ = 𝑃̇ 𝑥+ 𝑃𝑥̇ = 𝐴𝑦 + 𝐵̄𝑢, (5.17)

for 𝐴 = 𝑃̇𝑃 𝑇 + 𝑃𝐴𝑃 𝑇 and 𝐵̄ = 𝑃𝐵. We can apply classical LQR control techniques to

this system in a two-step process. First, given 𝐹 (𝑡), generate an appropriate 𝑃 (0) and then

numerically integrate (5.16) to find 𝑃 (𝑡). Note that some regularization of the ODE may be

required to ensure that the solution does not drift from the identities (5.14)-(5.15). Second,

use 𝑃 (𝑡) to perform the change of coordinates from 𝑥 to 𝑦. Solve the resulting Riccati

equation and transform the solution back to the original coordinates.

The LQR solution from an individual mode can be projected through hybrid transitions

using a linearization of the instantaneous impact dynamics, via the jump Riccati equation

described in [81].

5.2.1 Example: Kinematic Constraint

We cast the case of a kinematic constraint 𝜑(𝑞) into the constrained LQR formulation. Given

a nominal trajectory 𝑞0(𝑡), 𝑣0(𝑡) that satisfies the constraints 𝜑(𝑞0(𝑡)) = 0 and 𝜓(𝑞0(𝑡), 𝑣0(𝑡)) =
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0, linearize the dynamics about this trajectory:

𝑞(𝑡) = 𝑞0(𝑡) + 𝑞(𝑡), 𝑣(𝑡) = 𝑣0(𝑡) + 𝑣(𝑡)

˙̃𝑞(𝑡) = 𝑣(𝑡)

˙̃𝑣(𝑡) = 𝐴(𝑡)

⎡⎣𝑞(𝑡)
𝑣(𝑡)

⎤⎦ .
Linearizing the constraint, and suppressing the dependence of 𝑞0 and 𝑣0 on time, we get⎡⎣ 𝜑(𝑞)

𝜓(𝑞, 𝑣)

⎤⎦ ≈
⎡⎣𝐽(𝑞0) 0

d𝐽(𝑞0)
d𝑡

𝐽(𝑞0)

⎤⎦⎡⎣𝑞(𝑡)
𝑣(𝑡)

⎤⎦ = 𝐹 (𝑡)

⎡⎣𝑞(𝑡)
𝑣(𝑡)

⎤⎦ (5.18)

which gives 𝐹 (𝑡) as a kinematic function of nominal trajectory. Since we require 𝐹 (𝑡) to be

full rank, but 𝐽(𝑞) will often be rank deficient (though constant rank), it is necessary, but

straightforward, to extract a full rank basis for 𝐽 and its time derivative.

5.3 QP Feedback Controller

Kuindersma et al. [61] introduced a QP-based framework for combining an LQR policy

with the unilateral constraints due to input and friction limits. To evaluate the results of

DIRCON and the constrained LQR approaches, we utilize a similar approach and formulate

a quadratic program. We summarize here the formulation of [61, 62], applied in our setting.

Given a planned nominal trajectory 𝑥0(𝑡), 𝑢0(𝑡) and LQR solution 𝑆(𝑡), we write:

minimize
𝑢,𝛽

𝑢̃𝑇𝑅𝑢̃+ 2𝑥̃𝑇𝑆(𝐴𝑥̃+𝐵𝑢̃)

subject to 𝐻𝑣̇ + 𝐶 = 𝐵𝑢+ 𝐽𝑇
𝛽 𝛽

𝐽𝑣 + 𝐽𝑣̇ = 0

𝑢min ≤ 𝑢 ≤ 𝑢max

𝛽 ≥ 0,

(5.19)
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where 𝑥̃ = 𝑥 − 𝑥0, 𝑢̃ = 𝑢 − 𝑢0 and we have suppressed dependence on time and state. The

cost function is derived from the HJB equation for the time-varying LQR system. Therefore,

in the absence of unilateral constraints, the QP solution is equivalent to the optimal LQR

input. The decision variables 𝛽 are force coefficients that multiply a set of generating vectors

that define a polyhedral approximation to the friction cone, 𝜆𝑗 =
∑︀𝑁𝑑

𝑖=1 𝛽𝑖𝑗𝑤𝑖𝑗. This re-

parameterization of the contact force results in a less variable set of active constraints,

reducing computation time as the QP is solved repeatedly. The contact points included

in 𝛽 are determined at each control step, and any point in contact will be added to the

QP (whether or not it is originally planned), giving the system the opportunity to use

environmental forces to correct deviations from the desired trajectory. As compared with

[61, 62], the LQR cost-to-go used here is derived using the full, whole-body robot dynamics,

rather than the dynamics associated with a simplified model.

5.4 Example Applications

The components above are tested on three examples related to robotic locomotion. The

algorithms were implemented in MATLAB within the Drake planning and control toolbox

[133]. Trajectory optimizations were solved with the SNOPT toolbox [39]. Depending on

complexity, the trajectory optimization and LQR components were solved offline on a desktop

computer within ten minutes to two hours. The QP controller was solved at real-time rates

during simulation. Highlights from the experiments here are shown in figures below.

5.4.1 Underactuated planar biped

We first demonstrate the approach on underactuated planar biped, where each leg has a

degree of freedom in the hip, knee, and ankle. The hips and knees are actuated, but the

ankle consists solely of a passive spring and damper. With a back joint and the planar

floating base, this model has an 20-dimensional state space. Contact points are modeled at

the toe and heel of each foot. The mass properties are similar to those of the Atlas robot [62],

and the ankle spring and damping coefficients are 10 Nm/rad and 2 Nms/rad. To produce

limit cycle walking, a hybrid trajectory optimization was executed with a contact sequence
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Figure 5-4: Joint angle and body pitch tracking error along four steps of the underactuated
walker. The nominal trajectory is shown in the dashed lines and the executions are in the
solid lines. Tracking error is worst shortly following the impacts (where the trajectories are
not differentiable).

containing both single and double support phases. The objective was to minimize effort,

a quadratic penalty on control input 𝑢𝑇𝑢. Linear constraints were imposed on 𝑥1 and 𝑥𝑁

to produce a periodic motion and a minimum average walking speed. A small penalty was

added to acceleration, 10−4
∑︀

𝑘 ||𝑓(𝑥𝑘, 𝑢𝑘, 𝜆𝑘)||2, to encourage smoothness in the solution.

Additional constraints on the foot position enforced some amount of swing clearance. For

the LQR component, simple, diagonal matrices were used for both 𝑄 and 𝑅. Elements of 𝑄

were 100 and 1 for the generalized positions and velocities respectively, while the diagonal

𝑅 was uniformly 0.01.

Figure 5-4 shows body pitch and joint angle tracking over four steps. Overall, the con-

troller is able to closely track the nominal motion, with deviations most noticeable shortly

after impacts with the ground. One of the aims of this trajectory optimization is to cre-

ate motions that are both dynamic and efficient. Mechanical cost of transport (COT)

serves as a useful metric for locomotion efficiency: if 𝑀 is the mass and 𝑑 is the total

distance traveled, we integrate the total joint work done and the unitless cost of transport

is COT = 1
𝑀𝑔𝑑

∫︀
|work|𝑑𝑡. While we did not explicitly minimize COT, minimizing effort

produced an efficient nominal gait with a COT of 0.139. Execution of the trajectory should
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Figure 5-5: A sequence of states from the executed trajectory as the robot uses its arm to
help climb up onto the step in less than 3 seconds.

increase this cost, as the controller must expend energy to eliminate error. However, as an

indication of the accuracy of the nominal motion, the executed COT over the four steps in

the figure was only 0.143, a marginal increase.

5.4.2 Multi-contact climbing

We examine a planar humanoid model where the biped from the previous example has been

augmented with a two degree of freedom arm (shoulder and elbow joints), also based off the

Atlas. Note that the previously used back joint has been eliminated for simplicity and the

ankle joints are actuated, giving the plant a 22-dimensional state space. A single contact

point is included at the end of the arm, for a total of five possible contacts. The restrictive

joint limits of the physical Atlas robot have been relaxed to allow greater flexibility for this

motion. The trajectory optimization was constrained to use both the hand and feet to climb

a 0.3 meter step and then reach a stable position using a sequence of five different contact

modes. As before, constraints were used to enforce swing clearance and the objective was to

minimize effort. The costs used for LQR are identical in nature to those from the walking

example. The duration of the resulting trajectory was less than 3 seconds, so the robot must

move quickly and dynamically to execute it successfully. Figure 5-5 shows a set of illustrative

key-frames from the motion.
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Figure 5-6: A sequence of states as the robot walks and then executes a sudden halting ma-
neuver. The leftmost two images illustrate phases of the walking motion and the rightmost
image shows the final state after the rapid stop.

5.4.3 3D biped

The final example is a biped walking in three dimensions along flat terrain. Also based

upon the Atlas robot, we use a model with six degrees of freedom in each leg: three at the

hip, one at the knee, and two at the ankle. Including the floating base, the model has a

36-dimensional state space with eight total contact points at the corners of the feet. As

with the underactuated biped, we synthesize limit cycle walking with both single and double

support phases. The objective was to minimize effort, and linear constraints enforced a

periodic motion while walking at a human-like speed of over 1 m/s. Locomotion at this

speed requires continuous, dynamic motion and the planned motion utilizes push-off from

the ankle during double support.

To illustrate the capability to produce and execute rapid, aperiodic motions, we further

synthesized a trajectory that brought the robot to a complete halt within a half a stride

(starting from mid-swing). To stop this quickly, the robot must quickly propel its swing leg

forward before coming to rest with its forward foot and rear toe in contact with the ground.

For the LQR component, simple, diagonal matrices were again used for both 𝑄 and 𝑅.

Components of 𝑄 were 200 and 1.5 for the generalized positions and velocities respectively,

while the diagonal 𝑅 was uniformly 0.01.

We note that, when executed in simulation, the periodic gait was not stabilized over an

infinite horizon as small tracking errors in the footfall locations and timings caused eventual

72



instability. Over shorter distances, however, the controller produces efficient walking at

human speeds. Key-frames of the stopping maneuver are shown in Figure 5-6. As evidence

of the accuracy of the nominal trajectory and the efficiency of the feedback policy, the

calculated COT of the executed trajectory was 0.399, only slightly larger than the COT of

the nominal motion, 0.382.

To examine the response of the closed-loop controller to disturbances, randomly oriented

10𝑁 ·𝑠 impulses were applied, mid-stance, at the pelvis of the robot and a single walking step

was simulated. The impulse causes a roughly 10% deviation in the center of mass velocity

and substantial joint velocity errors. The LQR cost-to-go after the disturbance and after one

step was used as a measure of robustness. After the disturbance, the median cost-to-go from

300 trials was 0.39 and, after a single step, the controller had reduced the median cost-to-go

to 0.07. Some of the random disturbances did cause falls or other instabilities. In total, the

controller was able to reduce the cost-to-go in 96% of the trials, empirically demonstrating

some level of robustness.

5.5 Discussion

The most common trajectory optimization approaches utilize tools from general nonlinear

optimization and are therefore sensitive to the choice of the initial, or seed, value for the

unknown parameters. As an indication of the robustness of the DIRCON method, all of the

optimizations in Section 5.4 were initialized with exceedingly simple trajectories: a constant,

nominal pose for the states and white noise for the control inputs. Even without carefully

chosen seed values, the optimizations consistently converged to high quality solutions for

problems of significant size.

While we are able to execute motions over finite horizons, the walking trajectories dis-

cussed above are not stable over an infinite sequence of steps. Perturbations around around

the moment of impact cause slight mismatches in footfall timing and location, eventually

leading to a fall. One potential solution to this issue is to eliminate the explicit dependence

of the controller on time, either via use of transverse coordinates [81] or through a zero

dynamics manifold [122].
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In this chapter, we have presented a general purpose, end-to-end approach for synthesis

and stabilization of optimal trajectories for robotic systems in contact with their environ-

ment. These contacts restrict motion of the robot to manifolds of feasible states, which can

have complex geometries in multi-contact scenarios. By explicitly addressing the nature of

these constraints, we design methods that seamlessly handle both non-minimal coordinates

and underactuated dynamics, both of which present problems for many existing algorithms.

The DIRCON algorithm is efficient, robust to initial seeds, and exhibits cubic integration

accuracy. Use of lower order methods complicates the task of stabilization and can result

in trajectories that do not accurately represent the true cost. As evidenced by the exam-

ples above, the combined LQR and QP control is capable of closely tracking these dynamic

motions in terms of both state and control effort.
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Chapter 6

Stability Verification and Control Design

In this chapter, we present a method, published in [99, 102], for applying sums-of-squares

verification to rigid bodies with Coulomb friction undergoing discontinuous, inelastic impact

events. While methods based on sums of squares for numerical computation of Lyapunov cer-

tificates are a powerful tool for analyzing the stability of continuous nonlinear systems, prior

methods do not scale to systems with multiple potential contacts. The proposed algorithm

scales tractably in the number of contacts and explicitly generates Lyapunov certificates for

stability, positive invariance, and safety over admissible (non-penetrating) states and contact

forces. Building off the measure differential inclusion formulation of contact, described in

3.2.3, we naturally generate semialgebraic constraints that define this admissible region. The

presented algorithms can additionally be used to automatically synthesize stabilizing feed-

back controllers through contact events. The approach is demonstrated on multiple robotics

examples, including simple models of a walking robot, a perching aircraft, and control design

of a balancing robot.

6.1 Definitions

We introduce some background definitions related to measure differential inclusions and to

stability analysis. Recall the definition of the admissible set 𝒜 in (3.6). First, we will focus

on MDIs which are consistent (see [71], Ch. 4).

Definition 6.1. A measure differential inclusion is consistent if every solution defined for
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𝑡0 is defined for almost all 𝑡 ≥ 𝑡0, all such solutions remain within 𝒜, and for each 𝑥0 ∈ 𝒜

there exists at least one solution passing through 𝑥0.

An equilibrium point for such a system is defined as any point 𝑥0 ∈ 𝒜 such that 𝑥(𝑡) = 𝑥0

is a solution. As is typical for models with dry friction, we do not expect to have unique

solutions from the systems covered by this work [13, 127]. However, for systems governed by

MDIs, there are natural extensions to the notions of stability and positive invariance ([71]

Ch. 6).

Definition 6.2. An equilibrium point 𝑥0 ∈ 𝒜 of a consistent MDI is stable in the sense of

Lyapunov if, for each 𝜖 > 0, there exists a 𝛿 > 0 such that every solution 𝑥(𝑡) satisfying

|𝑥0 − 𝑥(𝑡0)| < 𝛿 satisfies |𝑥0 − 𝑥(𝑡)| < 𝜖 for almost all 𝑡 ≥ 𝑡0.

Definition 6.3. A set 𝐵 ⊂ 𝒜 is positively invariant if each solution 𝑥(𝑡) satisfying 𝑥−(𝑡0) ∈

𝐵 satisfies 𝑥(𝑡) ∈ 𝐵 for almost all 𝑡 ≥ 𝑡0.

In order to apply Lyapunov analysis to MDIs, we make note of the following fact (see

[71], Proposition 6.3): if a function 𝑉 : 𝐷 → R is a continuously differentiable function on a

compact set 𝐷 ⊂ R2𝑛, and 𝑥(𝑡) is of locally bounded variation (LBV), then 𝑉 (𝑥(𝑡)) is also

LBV and

𝑉 (𝑥+(𝑡))− 𝑉 (𝑥−(𝑡0)) =

∫︁ 𝑡

𝑡0

𝜕𝑉

𝜕𝑥
𝑥̇(𝜏)𝑑𝜏 +

∫︁ 𝑡

𝑡0

𝑉 (𝑥+(𝜏))− 𝑉 (𝑥−(𝜏))𝑑𝜂(𝜏), (6.1)

where 𝑥̇(𝑡) = [𝑣(𝑡)𝑇 𝑣̇(𝑡)𝑇 ]𝑇 , as in (3.4) and (3.5). For the remainder of this paper, when we

write d𝑉 (𝑥) ≤ 0 for certain 𝑥 ∈ 𝐴 we mean that, for any solution satisfying 𝑥−(𝑡) = 𝑥, we

have 𝜕𝑉
𝜕𝑥
𝑥̇(𝑡) ≤ 0 and 𝑉 (𝑥+(𝑡))− 𝑉 (𝑥−(𝑡)) ≤ 0.

6.2 Conditions for Stability

The highly-structured nature of rigid-body dynamics and the complementarity formulation

of contact allow us to construct semialgebraic conditions for stability in the sense of Lyapunov

and positive invariance.
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6.2.1 Lyapunov Conditions for MDIs

We begin by describing sufficient conditions for stability in the sense of Lyapunov and positive

invariance, stated in terms of Lyapunov functions. Recall that a function 𝛼 : [0,∞)→ [0,∞)

belongs to class 𝒦 if it is strictly increasing and 𝛼(0) = 0. The following theorem is adapted

from [71], Theorem 6.23, and is stated without proof.

Theorem 6.4. Let 𝑥0 be an equilibrium point for a consistent MDI and let 𝑉 : R2𝑛 → R be

a continuously differentiable function. If there exists a neighborhood 𝑈 of 𝑥0 and a class 𝒦

function 𝛼 such that 𝑥 ∈ 𝑈 ∩𝒜 implies d𝑉 ≤ 0 and 𝑉 (𝑥) ≥ 𝛼(‖𝑥− 𝑥0‖) then 𝑥0 is stable in

the sense of Lyapunov.

Given a candidate Lyapunov function 𝑉 (𝑞, 𝑣), define the 𝑐-sublevel set

Ω𝑐 = {(𝑞, 𝑣) ∈ R2𝑛 | 𝑉 (𝑞, 𝑣) < 𝑐}.

For a system whose solutions are continuous functions of time, d𝑉 ≤ 0 on Ω𝑐 ∩ 𝒜 would be

sufficient to show that each connected component of Ω𝑐∩𝒜 is positively invariant. However,

where 𝑣(𝑡) is discontinuous, the pre- and post-impact states may lie in disjoint connected

components. Furthermore, for systems where some region of state space is inadmissable

with 𝜑(𝑞) < 0, we do not necessarily expect regionally valid Lyapunov functions to be

globally convex. An example of such a Lyapunov function is later illustrated in Figure 6-

2b. This necessitates the focus on individual connected components of Ω𝑐. The following

theorem provides stronger conditions which guarantee positive invariance of such a connected

component.

Theorem 6.5. Let 𝑉 : R2𝑛 → R be a continuously differentiable function, and 𝒞 be a

connected component of Ω𝑐 ∩ 𝒜 with d𝑉 ≤ 0 on 𝒞. Then 𝒞 is positively invariant if, for

every solution (𝑞(𝑡), 𝑣(𝑡)) with (𝑞(𝑡), 𝑣−(𝑡)) ∈ 𝒞, there exists a path 𝑣 : 𝐼 → R𝑛 for some

interval 𝐼 ⊂ R from 𝑣−(𝑡) to 𝑣+(𝑡), such that 𝑉 (𝑞(𝑡), 𝑣(𝑠)) is a non-increasing function of 𝑠.

Proof. Fix a solution 𝑥(𝑡) = (𝑞(𝑡), 𝑣(𝑡)) with 𝑥−(𝑡0) ∈ 𝒞. Let

𝜏 = sup{𝜏 ∈ R : 𝑥−(𝑡) ∈ 𝒞 ∀𝑡 ∈ [𝑡0, 𝜏 ]}.

77



Suppose, for contradiction, that 𝜏 is finite. We have 𝑥−(𝜏) ∈ 𝒞 as it is the limit of a sequence

in a connected component. The function 𝑠 ↦→ (𝑞(𝜏), 𝑣(𝑠)) provides a path from 𝑥−(𝜏) to

𝑥+(𝜏). This path lies in Ω𝑐 as d𝑉 ≤ 0 on 𝒞 implies 𝑉 (𝑥−(𝜏)) ≤ 𝑉 (𝑥−(𝑡0)) < 𝑐 and, by

assumption, 𝑉 (𝑞(𝜏), 𝑣(𝑠)) is a non-increasing function of 𝑠. The path lies in 𝒜 as only the

generalized velocities vary (recall our definition of 𝒜 in (3.6)). Thus 𝑥+(𝜏) belongs to 𝒞. As

𝑉 (𝑥+(𝜏)) < 𝑐 and 𝑉 is continuous, there exists an 𝑟 > 0 such that:

𝑈𝑟 = {𝑥 ∈ R2𝑛 : ‖𝑥− 𝑥+(𝜏)‖∞ < 𝑟}

is contained in Ω𝑐 (where ‖ · ‖∞ is the maximum norm). As 𝑥+(𝜏) is a right limit, there

exists an 𝜖 > 0 such that 𝑥(𝑡) ∈ 𝑈𝑟 for 𝑡 ∈ (𝜏 , 𝜏 + 𝜖).

We now show that 𝑥(𝑡) ∈ 𝒞 for almost all 𝑡 ∈ (𝜏 , 𝜏 + 𝜖), contradicting the definition of 𝜏 .

Fix 𝑡 such that 𝑣(𝑡) is defined and examine the following functions:

𝜎1 ↦→(𝑞(𝜎1), 𝑣+(𝜏)),

𝜎2 ↦→(𝑞(𝑡), 𝜎2𝑣(𝑡) + (1− 𝜎2)𝑣+(𝜏)),

the first defined for 𝜎1 ∈ [𝜏 , 𝑡] and the second for 𝜎2 ∈ [0, 1]. Since 𝑞(·) is continuous, both

functions are also continuous. We see the range of both maps lie in 𝒜 as {𝑞(𝑡)} × R𝑛 ⊂ 𝒜

for all 𝑡 ≥ 𝑡0. We see the ranges of the functions also lie in 𝑈𝑟: the first lies in 𝑈𝑟 as

(𝑞1, 𝑣1), (𝑞2, 𝑣2) ∈ 𝑈𝑟 implies (𝑞2, 𝑣1) ∈ 𝑈𝑟 and the second as 𝑈𝑟 is convex. Together, these

functions provide a path from 𝑥+(𝜏) to 𝑥(𝑡) that lies in Ω𝑐 ∩ 𝒜, thus 𝑥(𝑡) ∈ 𝒞.

Theorem 6.5 holds for general Lyapunov functions and systems where the unilateral

constraints are defined by the generalized positions 𝑞. While we are most often interested

in systems with friction, we briefly consider the special structure implied by rigid-body

dynamics and frictionless, inelastic collisions. The following proposition shows that for such

systems, and if 𝑉 is a convex function in 𝑣 for each fixed 𝑞, the above sufficient condition

for positive invariance is also necessary. In particular, no additional conservatism is added

by requiring 𝑣 to be the chord connecting 𝑣−(𝑡) to 𝑣+(𝑡).

Proposition 6.6. For a rigid-body system undergoing frictionless, inelastic impacts, let
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𝑉 : R2𝑛 → R be a continuously differentiable function, and 𝒞 be a connected component of

Ω𝑐 ∩ 𝒜 such that d𝑉 ≤ 0 on 𝒞. If 𝑉 is convex in 𝑣 for each fixed 𝑞, then the following

conditions are equivalent:

(i) 𝒞 is positively invariant.

(ii) For each solution (𝑞(𝑡), 𝑣(𝑡)), when (𝑞(𝑡), 𝑣−(𝑡)) ∈ 𝒞, 𝑉 (𝑞(𝑡), 𝑣(𝑠)) is non-increasing

along the path 𝑣(𝑠) = 𝑠𝑣+(𝑡) + (1− 𝑠)𝑣−(𝑡) for 𝑠 ∈ [0, 1]

Proof. That (ii) implies (i) is the content of Theorem 6.5. Now assume (i) holds and fix

a solution (𝑞(𝑡), 𝑣(𝑡)) with (𝑞(𝑡), 𝑣−(𝑡)) ∈ 𝒞. For convenience, let 𝑞,𝑣+, and 𝑣− denote

𝑞(𝑡), 𝑣+(𝑡), 𝑣−(𝑡). Take the path 𝑣(𝑠) = 𝑠𝑣+ + (1− 𝑠)𝑣−. Since 𝑉 is convex in 𝑣 and d𝑉 ≤ 0,

we know

𝑉 (𝑞, 𝑣−) ≥ (1− 𝑠)𝑉 (𝑞, 𝑣−) + 𝑠𝑉 (𝑞, 𝑣+) ≥ 𝑉 (𝑞, 𝑣(𝑠)),

so that the chord (𝑞, 𝑣(𝑠)) lies in Ω𝑐, and clearly lies in 𝒜.

We show that d𝑉 (𝑞,𝑣(𝑠))
d𝑠

≤ 0. Observe that {(𝑞, 𝑣(𝑠) : 𝑠 ∈ [0, 1)} are all possible pre-

impact states since 𝜑(𝑞) = 0 and the impact conditions 𝐽𝑁𝑣− < 0 and 𝐽𝑁𝑣+ = 0 imply that

𝐽𝑁𝑣(𝑠) < 0. Let Λ𝑁 be a feasible impulse such that 𝑣+ = 𝑣− +𝐻−1𝐽𝑇
𝑁Λ𝑁 . Substituting into

the definition of 𝑣(𝑠),

𝑣(𝑠) = 𝑣− + 𝑠𝐻−1𝐽𝑇
𝑁Λ𝑁 .

Since the constraints on Λ𝑁 are linear, we know that the impulse (1− 𝑠)Λ𝑁 > 0 will also be

feasible. Applying this impulse to (𝑞, 𝑣(𝑠)), we get the post-impact velocity

𝑣+(𝑠) = 𝑣(𝑠) + (1− 𝑠)𝐻−1𝐽𝑇
𝑁Λ𝑁 = 𝑣+.

And so 𝑣+ is a possible post-impact velocity from an impact at any point along the chord.

Since d𝑉 ≤ 0, we then know 𝑉 (𝑞, 𝑣(𝑠)) ≥ 𝑉 (𝑞, 𝑣+). This implies that the minimum of 𝑉

along the chord is achieved at (𝑞, 𝑣+) and, since 𝑉 is convex, the derivative along the chord

must be non-positive.

Remark 6.7. Note that the proof above for (i) implying (ii) fails for contacts with friction.
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The Routh path from pre- to post-impact states is no longer a single line segment, and so

the set of pre-impact states along the chord do not all have the same post-impact state.

The frictionless assumption does, however, cover a class of interesting problems including

collisions due to impacting hard joint limits.

6.2.2 Conditions For Complementarity Systems

We now focus on Lagrangian mechanical systems with impacts and friction described by

complementarity conditions. This section contains sufficient conditions for demonstrating

d𝑉 ≤ 0 and the additional constraint on jump discontinuities in the statement of Theo-

rem 6.5. We partition the admissible set 𝒜 into three disjoint sets: ℱ , ℐ, and 𝒰 .

ℱ = {(𝑞, 𝑣) ∈ 𝒜 : 𝜑𝑖(𝑞) = 0⇒ 𝐽𝑁,𝑖(𝑞)𝑣 > 0 ∀𝑖 ∈ {1, . . . ,𝑚}}

ℐ = {(𝑞, 𝑣) ∈ 𝒜 : ∃𝑖 ∈ {1, ...,𝑚} 𝜑𝑖(𝑞) = 0, 𝐽𝑁,𝑖(𝑞)𝑣 < 0}

𝒰 = {(𝑞, 𝑣) ∈ 𝒜 ∖ ℐ : ∃𝑖 ∈ {1, ...,𝑚} 𝜑𝑖(𝑞) = 0, 𝐽𝑁,𝑖(𝑞)𝑣 = 0}

Intuitively, ℱ is the region where there is no contact or all contacts are being broken, so

all the contact forces must vanish. On ℱ , we know that 𝜆 = Λ = 0 and so that d𝑉 ≤ 0 is

equivalent to

∇𝑉 (𝑞, 𝑣)𝑇

⎡⎣ 𝑣

−𝐻−1𝐶

⎤⎦ ≤ 0. (6.2)

On 𝒰 , there may be forces due to contact, and the condition on continuous evolution is

∇𝑉 (𝑞, 𝑣)𝑇

⎡⎣ 𝑣

𝐻−1(−𝐶 + 𝐽𝑇
𝑁𝜆𝑁 + 𝐽𝑇

𝑇 𝜆𝑇 )

⎤⎦ ≤ 0. (6.3)

On ℐ, there must be a collision for a trajectory to remain within𝒜 . Additionally, consistency

may also require collisions on 𝒰 (for a detailed explanation of this, see the discussion of

Painlevé’s paradox in [127]). We now provide conditions on 𝑉 and a path, implicitly defined,

for each jump discontinuity such that the requirements of Theorem 6.5 are satisfied. In the

frictionless case, this path corresponds directly to the path in Proposition 6.6. Recall that
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the Routh method of 3.2.1 constructs a path through the space of contact impulses. We

take 𝑣(𝑠) to be the velocities defined by the Routh method, where 𝑠 is the path parameter

varying the impulses. As 𝑣 depends linearly on the forces, we can find the derivative of 𝑣

with respect to 𝑠, defined almost everywhere along each path segment:

d𝑣(𝑠)

d𝑠
= 𝐻−1(𝐽𝑇

𝑁,𝑖Λ
′
𝑁,𝑖 + 𝐽𝑇

𝑇,𝑖Λ
′
𝑇,𝑖),

where Λ′
𝑁,𝑖 and Λ′

𝑇,𝑖 satisfy the Coulomb friction conditions. To show 𝑉 is non-increasing

along the path, we require

𝜕𝑉 (𝑞, 𝑣)

𝜕𝑣

⃒⃒⃒⃒
(𝑞,𝑣(𝑠))

𝐻−1(𝐽𝑇
𝑁,𝑖Λ

′
𝑁,𝑖 + 𝐽𝑇

𝑇,𝑖Λ
′
𝑇,𝑖) ≤ 0. (6.4)

Since the Routh method for resolving impacts is memoryless, any point (𝑞, 𝑣(𝑠)) is also a

possible pre-impact state. So, the set of all possible (𝑞, 𝑣(𝑠)) is precisely equivalent to 𝒜∖ℱ

and it is equivalent to enforce (6.4) for all (𝑞, 𝑣) ∈ 𝒜 ∖ ℱ instead of along potential paths.

This constraint must hold for all 𝑖, so we construct a single condition that encompasses all

contact points:

𝜕𝑉 (𝑞, 𝑣)

𝜕𝑣
𝐻−1(𝐽𝑇

𝑁Λ′
𝑁 + 𝐽𝑇

𝑇 Λ′
𝑇 ) ≤ 0. (6.5)

Both (6.3) and (6.5) are defined in terms of permissible contact forces 𝜆 and slopes of the

impulse path Λ′ when resolving collisions. Conditions can be used to describe the set of

feasible contact normal forces [13, 127, 71]:

0 ≤ 𝜑𝑖 ⊥ 𝜆𝑁,𝑖 ≥ 0, (6.6)

(𝐽𝑁,𝑖𝑣)𝜆𝑁,𝑖 ≤ 0. (6.7)

These constraints prohibit contact at a distance and ensure that the contact normal is a

compressive and dissipative force. Note that (6.6-6.7) apply not only to the continuous force

𝜆, but they also describe the set of feasible impulse slopes Λ′. Observing that the friction
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constraints on both are also identical, we write the additional set of constraints:

(𝐽𝑇,𝑖𝑣)𝜆𝑇,𝑖 ≤ 0, (6.8)

𝜇2𝜆2𝑁,𝑖 − 𝜆2𝑇,𝑖 ≥ 0, (6.9)

(𝜇2𝜆2𝑁,𝑖 − 𝜆2𝑇,𝑖)(𝐽𝑇,𝑖𝑣) = 0. (6.10)

Here, we describe the proper nonlinear friction cone and slightly diverge from the standard

linear complementarity description of Coulomb friction. However, for any (𝑞, 𝑣), this full set

of conditions is exactly equivalent to our formulations of both frictional, inelastic collisions

and Coulomb friction.

6.2.3 Separability of Contacts

We now have three separate positivity conditions for stability. We require (6.2) to hold

on ℱ , (6.3) on 𝒰 , and (6.5) on 𝒰 ∪ ℐ, with the contact forces and impulses subject to

(6.6) – (6.10). One issue with this formulation is that the 𝒪(𝑚) contact force terms, when

appearing together, will significantly increase the size of verification programs we formulate

in Section 6.3, detailed in Section 6.3.5. However, the structure in the problem leads to

a significant reduction in complexity. For this, we require an additional assumption: that

the contact surfaces themselves are distinguishable from one another. This rather benign

assumption is satisfied by most rigid-body systems of interest, even including situations

where “jamming” contact may occur.

Assumption 6.8. For all 𝑖 ∈ {1, ..,𝑚} and for any (𝑞, 𝑣) where 𝜑𝑖(𝑞) = 0 and 𝐽𝑁,𝑖𝑣 ≤ 0,

there exists a sequence (𝑞𝑘, 𝑣𝑘)→ (𝑞, 𝑣) where

1. 𝜑𝑖(𝑞𝑘) = 0 and 𝐽𝑁,𝑖𝑣𝑘 ≤ 0 and

2. 𝜑𝑗(𝑞𝑘) > 0 or 𝐽𝑁,𝑗𝑣𝑘 > 0 for all 𝑗 ̸= 𝑖.
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Theorem 6.9. Given Assumption 6.8, d𝑉 ≤ 0 is equivalent to requiring (6.2) to hold on

ℱ , and

𝜕𝑉 (𝑞, 𝑣)

𝜕𝑣
𝐻−1(𝐽𝑇

𝑁,𝑖 + 𝐽𝑇
𝑇,𝑖𝜆𝑇,𝑖) ≤ 0, ∀𝑖 = 1, ...,𝑚 (6.11)

whenever the following conditions hold:

𝜑𝑖 = 0, (6.12)

𝐽𝑁,𝑖𝑣 ≤ 0, (6.13)

(𝐽𝑇,𝑖𝑣)𝜆𝑇,𝑖 ≤ 0, (6.14)

𝜇2 − 𝜆2𝑇,𝑖 ≥ 0, (6.15)

(𝜇2 − 𝜆2𝑇,𝑖)(𝐽𝑇,𝑖𝑣) = 0, (6.16)

𝜑𝑗 ≥ 0, ∀𝑗 ̸= 𝑖. (6.17)

Proof. First, observe that the original conditions on 𝜆 and Λ are identical, and they appear

in distinct conditions and constraints, so we may combine them and treat the two simply

as 𝜆. To show that these conditions are sufficient is straightforward, and does not require

Assumption 6.8. Since (6.6) – (6.10) and (6.5) are homogeneous in (𝜆𝑁,𝑖, 𝜆𝑇,𝑖), we may fix

𝜆𝑁,𝑖 = 1, so (6.12) – (6.17) is equivalent to (6.6) – (6.10). Summing (6.11) for all 𝑖 shows

that (6.11) is a sufficient condition for (6.5). By continuity, since (6.2) holds on ℱ , it also

holds on 𝒰 . By summing (6.2) with (6.11), we have also have sufficient conditions for (6.3)

on 𝒰 .

(6.11) – (6.17) may seem stricter than the original formulation when multiple contacts

are active. However, by Assumption 6.8, if (6.5) holds in any state (𝑞, 𝑣), then for each

active contact, (6.11) must hold on some sequence converging to (𝑞, 𝑣) and, by continuity,

must also hold at (𝑞, 𝑣).

Remark 6.10. Theorem 6.9 provides a reduced set of conditions where each condition de-

pends on at most one contact force indeterminate, 𝜆𝑇,𝑖. These concise conditions will be

used throughout the remainder of this chapter to generate stability certificates. Furthermore,

(6.12) – (6.17) restrict 𝜆𝑇,𝑖 to be within a compact region, whereas, by the original constraints,
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the forces are unbounded since 𝜆𝑁 could be scaled arbitrarily. Not only is it practically useful

that the feasible set be compact, with respect to numerical tolerances, but compactness also

has theoretical consequences for SOS-based methods like the Positivstellensatz [109].

6.2.4 Extension to Three Dimensions

For clarity of presentation, we have focused this discussion on the planar case. While the

examples in this work treat two dimensions, the extension to the full three dimensional case,

where 𝜆𝑇,𝑖 ∈ R2 and 𝐽𝑇,𝑖 ∈ R2×𝑛, is straightforward and is presented here without proof.

Replace conditions (6.14) – (6.16) with

(𝐽𝑇,𝑖𝑣) ∘ 𝜆𝑇,𝑖 ≤ 0, (6.18)

𝜇2 − ||𝜆𝑇,𝑖||2 ≥ 0, (6.19)

(𝜇2 − ||𝜆𝑇,𝑖||2)(𝐽𝑇,𝑖𝑣) = 0, (6.20)

[𝜆𝑇,𝑖]1[𝐽𝑇,𝑖𝑣]2 − [𝜆𝑇,𝑖]2[𝐽𝑇,𝑖𝑣]1 = 0, (6.21)

where we take ∘ to represent the Hadamard product and [𝑥]𝑖 is the 𝑖th element of vector 𝑥.

The first and third of these constraints are vector-valued and are treated elementwise. Note

that the fourth constraint is new to the three dimensional case, and is used to ensure that

the frictional force exactly opposes the direction of motion.

6.2.5 Semialgebraic Representation

To apply tools from algebraic geometry, like SOS programming, it is important that the con-

straints above be expressible as polynomials. While Taylor approximation of the preceding

conditions can always be used, rigid-body dynamics and the manipulator equations offer a

great deal of structure that we can exploit to make the problems of control and verification

especially amenable to algebraic methods. For many rigid-body systems, especially those

of interest in robotics, trigonometric substitutions can reduce the task of kinematics to an

algebraic problem [141]. Concretely, for rotational joints, substituting new indeterminates

𝑐𝑖 and 𝑠𝑖 for cos(𝑞𝑖) and sin(𝑞𝑖) respectively, with the constraint that 𝑠2𝑖 + 𝑐2𝑖 = 1, will of-
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ten result in polynomial kinematics in 𝑐𝑖 and 𝑠𝑖. Prismatic (or translational) joints, require

no such substitution and naturally result on polynomial kinematics. Most common robotic

joints can be represented as a sequence of such rotational and prismatic transformations

(see [120], Sec. 1.4), and so this polynomial representation can be easily formed. Helical

joints, however, are a notable exception, since a single helical joint creates both rotational

and translational motion. For simple contact surfaces, such as between a point contact and

the ground, the gap function and Jacobians 𝜑, 𝐽𝑁 , and 𝐽𝑇 are kinematic functions, and thus

polynomial in 𝑐𝑖, 𝑠𝑖 and the remaining translational coordinates of 𝑞.

Similarly, the various terms of the manipulator equations and constraints (𝐻,𝐶, and 𝐵)

are also polynomial in the same position coordinates and the standard velocity vector 𝑣 (see

[120], Ch. 2). Several methods can be used to accommodate the appearance of 𝐻(𝑞)−1 in the

conditions of the previous section. First we note that by explicitly introducing an additional

indeterminate variable 𝑣̇ ∈ R𝑛, the condition (3.1) is algebraic in 𝑣̇, 𝑣, 𝜆, the translational

components of 𝑞 and any introduced trigonometric variables. Alternatively, as 𝐻(𝑞) is posi-

tive definite and polynomial, its inverse is a rational function, where the denominator is the

det(𝐻), and thus strictly positive. Therefore, we can find equivalent conditions by multiply-

ing by the denominator. These facts imply that semialgebraic conditions can be posed that

are equivalent to those in 6.2.2.

6.3 Verification Algorithms

For our systems of interest, the Lyapunov conditions in 6.2 amount to non-negativity con-

straints on polynomials over basic semialgebraic sets. This formulation is amenable to the

SOS-based techniques introduced in 3.4, which provide certificates that a polynomial can be

written as a sum of squares of polynomials. Searching over polynomials which satisfy these

sufficient conditions can be cast as an SDP, allowing for the application of modern convex

optimization tools. For the examples in this chapter, we use the YALMIP [74, 75] and SPOT

[83] toolboxes to generate programs for the semidefinite solvers SeDuMi [130] and MOSEK

[90]. For a portion of our approach, we exploit the bilinear alternations described in 3.4.3.

Note that in 7.3.1.1, we improve upon the alternation scheme used in this chapter.
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6.3.1 Global Verification

For some dynamic systems, we can verify the Lyapunov conditions over the entire admissible

set. Define 𝒟𝑖 to be the set of all (𝑞, 𝑣, 𝜆𝑖) that satisfy conditions (6.12) – (6.17). Note that

this also implies (𝑞, 𝑣) ∈ 𝒜. If (0, 0) is an equilibrium of the system, we can then pose the

global feasibility SOS program:

find 𝑉 (𝑞, 𝑣) (6.22)

subj. to 𝑉 (0, 0) = 0,

𝑉 (𝑞, 𝑣) ≥ 𝛼(||𝑞||+ ||𝑣||) for (𝑞, 𝑣) ∈ 𝒜,

∇𝑉 𝑇

⎡⎣𝑣
𝑣̇

⎤⎦ ≤ 0 for (𝑞, 𝑣) ∈ 𝒜,

𝜕𝑉

𝜕𝑣
𝐻−1(𝐽𝑇

𝑁,𝑖 + 𝐽𝑇
𝑇,𝑖𝜆𝑇,𝑖) ≤ 0 for (𝑞, 𝑣, 𝜆𝑖) ∈ 𝒟𝑖,

with given 𝛼(·) in class 𝒦. SOS allows us to search over a family of polynomial Lyapunov

functions via SDP, thus verifying that every sublevel set of 𝑉 is positively invariant and that

the origin is stable in the sense of Lyapunov. This certificate of a nested set of invariant

regions is weaker than asymptotic stability but stronger than invariance of a single set.

6.3.2 Regional Verification

For many problems of interest, we would like to maximize the verified region about an

equilibrium. Specifically, we aim to find a Lyapunov function that maximizes the volume of

a connected component 𝒞 ⊆ Ω1 ∩ 𝒜, which is positively invariant and, for all 𝜌 ≤ 1, 𝒞 ∩ Ω𝜌
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is also positively invariant. This leads to the following optimization problem:

max
𝑉

Volume(𝒞) (6.23)

subj. to 𝑉 (0, 0) = 0,

𝑉 (𝑞, 𝑣) ≥ 𝛼(||𝑞||+ ||𝑣||) for (𝑞, 𝑣) ∈ 𝒞,

∇𝑉 𝑇

⎡⎣𝑣
𝑣̇

⎤⎦ ≤ 0 for (𝑞, 𝑣) ∈ 𝒞,

𝜕𝑉

𝜕𝑣
𝐻−1(𝐽𝑇

𝑁,𝑖 + 𝐽𝑇
𝑇,𝑖𝜆𝑇,𝑖) ≤ 0 for (𝑞, 𝑣, 𝜆𝑖) ∈ 𝒟𝑖 and (𝑞, 𝑣) ∈ 𝒞.

As currently posed, this problem is not amenable to convex optimization techniques. It is

difficult to directly measure the volume of 𝒞 and, as 𝒞 is only one connected component of

Ω1 ∩ 𝒜, it is not naturally described as a semialgebraic set. We approximate these regions

by finding polynomials 𝑔𝐼(𝑞, 𝑣) and 𝑔𝑂(𝑞, 𝑣) such that their one sublevel sets (𝒢𝐼 and 𝒢𝑂
respectively) are inner and outer approximations of 𝒞, i.e.

(𝒢𝐼 ∩ 𝒜) ⊆ 𝒞 ⊆ (𝒢𝑂 ∩ 𝒜). (6.24)

By containing 𝒞 within the semialgebraic set 𝒢𝑂 and verifying the Lyapunov conditions on

𝒢𝑂, we provide sufficient conditions on 𝒞. The inner approximation 𝒢𝐼 is used to estimate

the volume of the verified region. In practice, we parameterize 𝑔𝐼 and 𝑔𝑂 as quadratic forms.

For 𝑔𝐼(𝑞, 𝑣) =
[︁
𝑞𝑇 𝑣𝑇

]︁
𝐺𝐼

[︁
𝑞𝑇 𝑣𝑇

]︁𝑇
, we will use −Trace(𝐺𝐼) as a proxy for the volume of
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𝒞. Given this, we pose the following problem:

min
𝑉,𝐺𝐼 ,𝐺𝑂

Trace(𝐺𝐼) (6.25)

subj. to 𝑉 (0, 0) = 0

𝐺𝐼 , 𝐺𝑂 ⪰ 0,

𝑉 (𝑞, 𝑣) ≥ 𝛼(||𝑞||+ ||𝑣||) for(𝑞, 𝑣) ∈ 𝒜 ∩ 𝒢𝑂,

∇𝑉 𝑇

⎡⎣𝑣
𝑣̇

⎤⎦ ≤ 0 for(𝑞, 𝑣) ∈ 𝒜 ∩ 𝒢𝑂,

𝜕𝑉

𝜕𝑣
𝐻−1(𝐽𝑇

𝑁,𝑖 + 𝐽𝑇
𝑇,𝑖𝜆𝑇,𝑖) ≤ 0 for(𝑞, 𝑣, 𝜆𝑖) ∈ 𝒟𝑖 and (𝑞, 𝑣) ∈ 𝒢𝑂,

𝑉 (𝑞, 𝑣) ≥ 1 for(𝑞, 𝑣) ∈ 𝒜 and 𝑔𝑂(𝑞, 𝑣) = 1,

𝑔𝐼(𝑞, 𝑣) ≥ 1 for(𝑞, 𝑣) ∈ 𝒜 ∖ Ω1.

This problem verifies the Lyapunov conditions on the outer approximation 𝒢𝑂 and en-

sures the containment in (6.24). It is now posed in the familiar form of an optimization over

polynomials that are positive on a basic semialgebraic set. As described in 3.4.3, we use a

bilinear alternation technique to solve this problem. One of the potentially difficult aspects

of this alternation is that we must typically supply an initial feasible Lyapunov candidate.

Previous sums-of-squares-based methods have used local linearizations of the dynamics to

find initial candidates [137, 134], but this approach fails when the dynamics are discontin-

uous. Instead, we have used two potential methods for determining an initial Lyapunov

function. The simplest strategy is to use the observation that the passive rigid-body dynam-

ics and inelastic collisions are energetically conservative, and that taking 𝑉 to be the total

energy provides a viable starting point for most mechanical systems. Alternatively, bilinear

alternations can be initiated by choosing candidates for 𝐺𝐼 and 𝐺𝑂, such as ellipsoids with

𝒢𝐼 small and 𝒢𝑂 relatively large. In the examples in this work, we will generally take the

later approach, to avoid initializing the alternations at a particular Lyapunov candidate, and

thus avoiding explicit bias towards energy as a solution.

Solutions to (6.25) are guaranteed to be feasible Lyapunov functions to the original

problem (6.23), although they will generally be suboptimal. This method, however, provides
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a tractable technique to synthesize useful regional certificates through contact discontinuities.

A similar approach to bilinear alternations is to fix 𝒢𝑂 and to fix the form of 𝒢𝐼 (within a

scalar factor) and pose (6.25) as a feasibility problem. The optimal scaling of 𝒢𝐼 can then

be found by binary search. Though it only searches over a subset of the solutions to the first

formulation, this SDP may be better conditioned numerically for some applications.

6.3.3 Verifying Safety

The algorithm above for verifying stability and invariance can be easily adapted to address

questions of dynamic safety. For instance, we might wish to determine the largest set of

initial conditions such that the infinite horizon reachable set does not intersect some unsafe

semialgebraic set 𝒳𝑢. We pose this problem in a manner similar (6.25), although here we do

not require that 𝑉 be positive definite:

min
𝑉,𝐺𝐼 ,𝒢𝑂

Trace(𝐺𝐼) (6.26)

subj. to 𝐺𝐼 ,𝒢𝑂 ⪰ 0,

∇𝑉 𝑇

⎡⎣𝑣
𝑣̇

⎤⎦ ≤ 0 for (𝑞, 𝑣) ∈ 𝒜 ∩ 𝒢𝑂,

𝜕𝑉

𝜕𝑣
𝐻−1(𝐽𝑇

𝑁,𝑖 + 𝐽𝑇
𝑇,𝑖𝜆𝑇,𝑖) ≤ 0 for (𝑞, 𝑣, 𝜆𝑖) ∈ 𝒟𝑖 and (𝑞, 𝑣) ∈ 𝒢𝑂,

𝑉 (𝑞, 𝑣) ≥ 1 for (𝑞, 𝑣) ∈ 𝒜 and 𝑔𝑂(𝑞, 𝑣) = 1,

𝑉 (𝑞, 𝑣) ≤ 1 for (𝑞, 𝑣) ∈ 𝒜 ∩ 𝒢𝐼 ,

𝑉 (𝑞, 𝑣) > 1 for (𝑞, 𝑣) ∈ 𝒜 ∩ 𝒳𝑢.

The optimization program in (6.26) verifies that 𝒞 is positively invariant and that 𝒞∩𝒳𝑢 = ∅,

so no trajectory that originates in 𝒞 can leave the safe region.

6.3.4 Control Design

This approach to Lyapunov analysis of autonomous systems can be naturally extended to the

design of feedback control laws, as detailed in [49]. The method was later extended to verify
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stability along trajectories and then experimentally tested in [78]. Traditionally applied to

continuous systems, here we consider the problem of designing a polynomial feedback law

𝑢(𝑞, 𝑣) that is smoothly dependent on state. The use of such a control law would provide

robustness to disturbances that may induce unexpected impacts and to uncertainties in

sensing the contact state. Design of a hybrid or switching controller would additionally

suffer from the same combinatorial mode enumeration issues faced by verification of such

models. When controlling a robotic system near to multiple contact surfaces, a stable,

mode-invariant feedback law would be both robust and simple to implement.

For control input 𝑢, the continuous dynamics are given in the standard controlled ma-

nipulator form (3.1). The task of feedback design can then be expressed as finding control

law 𝑢(𝑞, 𝑣) such that the conditions in Theorem 6.9 holds. This amounts to a modification

of (6.2) to be

∇𝑉 (𝑞, 𝑣)𝑇

⎡⎣ 𝑣

𝐻−1(𝐵𝑢(𝑞, 𝑣)− 𝐶)

⎤⎦ ≤ 0. (6.27)

Since both 𝑉 (𝑞, 𝑣) and 𝑢(𝑞, 𝑣) are optimization parameters, this constraint is bilinear in 𝑉

and 𝑢, and so, here too we employ an alternating method. When merged with the regional

verification of Section 6.3.2, the problem remains bilinear, and so a two-step alternation

approach suffices.

The full process detailing initialization and iterations for control design and regional

verification is detailed in Algorithm 6.1. In IterationA, we fix 𝐺𝐼 and the Lyapunov

function, up to a scale factor, and we search for the scale factor, the control policy 𝑢(𝑞, 𝑣),

and 𝐺𝑂. Conversely, in IterationB, we fix 𝐺𝑂 and the control policy, and we search for

the Lyapunov function and 𝐺𝐼 . By splitting the decision parameters in this manner, each

alternation is convex and can be represented by a SDP. Furthermore, the previously described

versions for global analysis and safety are straightforward to implement in practice.
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Algorithm 6.1 Control Design Alternations

Require: Initial locally stabilizing controller 𝑢(𝑞, 𝑣) and 𝐺𝑂 and 𝐺𝐼

Require: Termination criteria 𝜖
1: 𝑖← 1
2: 𝑐𝑜𝑠𝑡0 ←∞
3: Initialize

4: do

5: IterationA

6: IterationB

7: 𝑐𝑜𝑠𝑡𝑖 ← −𝑇𝑟𝑎𝑐𝑒(𝐺𝐼)
8: 𝑖← 𝑖+ 1
9: while 𝑐𝑜𝑠𝑡𝑖 − 𝑐𝑜𝑠𝑡𝑖−1 > 𝜖 𝑐𝑜𝑠𝑡𝑖

10: function Initialize

11: Fix 𝑢(𝑞, 𝑣), 𝐺𝑂, 𝐺𝐼

12: Solve a modified form of SOS program (6.25) with two changes:

1. Remove the cost, so the program is a question of feasibility only

2. Since 𝑉 is unknown and 𝐺𝐼 is fixed, replace the final condition 𝑔𝐼(𝑞, 𝑣) ≥ 1 with

𝑉 ≤ 1 for (𝑞, 𝑣) ∈ 𝒜 ∩ 𝒢𝐼

13: From solution, extract 𝑉 (𝑞, 𝑣) and S-procedure multiplier for 𝒢𝑂.
14: function IterationA

15: 𝑉 (𝑞, 𝑣)← 𝛾𝑉 (𝑞, 𝑣)
16: Fix 𝐺𝐼 and S-procedure multipliers related to 𝒢𝑂
17: Solve a modified form of SOS program (6.25), where the objective is to maximize 𝛾
18: From solution, extract 𝑢(𝑞, 𝑣), 𝐺𝑂, and S-procedure multiplier for Ω1.

19: function IterationB

20: Fix 𝑢(𝑞, 𝑣), 𝐺𝑂, and S-procedure multiplier for Ω1

21: Solve SOS program (6.25)
22: From solution, extract 𝑉 (𝑞, 𝑣), 𝐺𝐼 , and S-procedure multiplier for 𝒢𝑂.
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6.3.5 Complexity

To numerical precision, SDPs can be efficiently solved in practice and theoretically solved

in polynomial time [139]. The difficulty of these problems is dependent on the number of

variables and semidefinite constraints. Let 𝑛 be the dimension of the system state space, 𝑚

the number of potential contacts, and 𝑑 the total degree of the polynomial representation

used. Then, the approaches presented in this section construct SOS programs with 𝒪(𝑚)

non-negativity constraints to verify that d𝑉 ≤ 0. The inequality (6.17) results in the gen-

eration of 𝒪(𝑚) S-procedure multipliers per such constraint, each of which is transformed

into a semidefinite constraint of size 𝒪((𝑛 + 1)𝑑) in the SDP. Therefore, there are 𝒪(𝑚2)

semidefinite constraints, and 𝒪(𝑚2(𝑛 + 1)𝑑) variables in the SDP. Note that had we not

used the formulation from Theorem 6.9 and decoupled the contact constraints, the SDP size

would be 𝒪(𝑚(𝑛 + 𝑚)𝑑). By comparison, hybrid formulations that enumerate each mode

and transition will necessarily introduce variables and constraints that scale exponentially

in 𝑚.

6.4 Example Applications

6.4.1 Bean Bag Toss

We first examine the simple problem of a bean bag, modeled as a planar point mass, colliding

inelastically with the ground. This example serves to demonstrate the method on a system

simple enough where the calculations can be easily verified by hand. With 𝑞 =
[︁
𝑦 𝑧

]︁𝑇
and

𝑣 =
[︁
𝑦̇ 𝑧̇

]︁𝑇
, we define 𝜑(𝑞) = 𝑧. The dynamics are given by

𝑀𝑦 = 𝜆𝑇 ,

𝑀𝑧 = −𝑀𝑔 + 𝜆𝑁 .

For this simple system, the dynamics are invariant under 𝑦, so we consider the equilibrium

set where the mass rests on the ground, {(𝑦, 𝑧) ∈ R2 : 𝑧 = 0}. Choosing our Lyapunov

function candidate be equal to the total energy of the system, we will show stability in the
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sense of Lyapunov and invariance of a series of nested sets. That is, each sublevel set of

energy is positively invariant. Substituting 𝑉 (𝑞, 𝑣) = 𝐸 = 1
2
𝑀𝑦̇2 + 1

2
𝑀𝑧̇2 + 𝑀𝑔𝑧 and the

dynamics into (6.22), we have the two conditions:

−∇𝑉 𝑇

⎡⎣𝑣
𝑣̇

⎤⎦ = −𝑀𝑔𝑧̇ +𝑀𝑔𝑧̇ ≥ 0 for (𝑞, 𝑣, 𝜆) ∈ 𝒟, (6.28)

−𝜕𝑉
𝜕𝑣

𝐻(𝑞)−1(𝐽𝑁(𝑞)𝑇𝜆𝑁 + 𝐽𝑇 (𝑞)𝑇𝜆𝑇 ) = −𝑦̇𝜆𝑇 − 𝑧̇𝜆𝑁 ≥ 0 for (𝑞, 𝑣, 𝜆) ∈ 𝒟. (6.29)

The first condition is trivially true. Observing that 𝐽𝑣 = 𝑧̇ and 𝐽𝑇𝑣 = 𝑦̇, we use S-procedure

type multipliers to verify the second condition. Generating sums-of-squares multipliers

𝜎𝑖(𝑞, 𝑣, 𝜆) for the relevant unilateral constraints (6.7) and (6.8), replace (6.29) with

−𝑦̇𝜆𝑇 − 𝑧̇𝜆𝑁 + 𝜎1𝑦̇𝜆𝑇 + 𝜎2𝑧̇𝜆𝑁 is SOS. (6.30)

Choosing 𝜎1 = 𝜎2 = 1, the equation above vanishes and is trivially non-negative. Thus,

we have used our methods to demonstrate the rather obvious fact that every sublevel set of

energy will be positively invariant. Note that the quartic Lyapunov function

𝑉 = 𝐸 + 𝐸2 +
1

2
𝑧̇3 +

1

2
𝑧𝑧̇

satisfies (6.22) but where we can additionally verify that 𝑉̇ < −𝛼(𝑧 + 𝑦̇2 + 𝑧̇2) for some

class 𝒦 function 𝛼. Combined with the condition that d𝑉 ≤ 0, this is sufficient to verify

asymptotic stability of the equilibrium set, though we do not prove this here. In general, it

is difficult to find such Lyapunov functions for discontinuous mechanical systems.

6.4.2 Rimless Wheel

The rimless-wheel model is a single rigid body composed of a number of equally-spaced

spokes about a simple mass. This simple model has been used extensively as a proxy for a

passive-dynamic walking robot [22]. Though previous works have primarily been interested

in analyzing the limit-cycle behavior of the rimless wheel, here we focus on the stability of
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Figure 6-1: The rimless wheel shown in an equilibrium state, with two feet on the ground.
Verified trajectories pass through four possible contact states (no contact, double-support,
and both single-support phases).

a single, static configuration of the system. We allow for frictional contacts between two of

the spokes and the ground, highlighted in Figure 6-1, and we consider the equilibrium set

where both of these spokes rest on a flat ground. We differentiate between resting on these

two particular spokes and any other equilibrium state. Trajectories of the rimless wheel that

come to rest in the equilibrium set may undergo an infinite number of collisions rocking back

and forth between the two feet, in an example of Zeno phenomena.

Remark 6.11. Not only does this simple example exhibit Zeno phenomena, but it also admits

non-unique solutions from some initial conditions. For example, take 𝑞 =
[︁
0 𝑧 0

]︁𝑇
and all

velocities to be zero. The rimless wheel will simultaneously strike the ground with two legs,

and feasible resolutions to this multi-impact problem lead to a set of post-impact states. The

rimless wheel can come instantly to rest, or it can rock in either direction.

The planar floating base model of the rimless wheel has three degrees of freedom, 𝑞 =[︁
𝑥 𝑧 𝜃

]︁𝑇
and 𝑣 =

[︁
𝑥̇ 𝑧̇ 𝜃

]︁𝑇
. With the trigonometric substitutions 𝑠 = sin(𝜃) and

𝑐 = cos(𝜃), the dynamics of the rimless wheel and the contact related elements 𝜑𝑖(𝑞), 𝐽𝑁,𝑖(𝑞),
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a The red region indicates the inadmissible set, where at least
one of the contact points is penetrating the ground. Two states
are highlighted: the stable equilibrium in double-support and
an unstable equilibrium in single-support. The blue region
below the dashed line is the connected component 𝒞 ⊆ Ω1∩𝒜
that contains the equilibrium (the verified region).

b Two additional curves are shown. The black curve is the
boundary of 𝒢𝐼 , tight to Ω1∩𝒜, which we use to approximate
the volume of the verified region. The magenta curve outlines
𝒢𝑂 ⊇ 𝒞. 𝒢𝑂 is parameterized as an ellipsoid in the redundant
state variables, including 𝑠 and (1− 𝑐), which is why it is not
ellipsoidal when plotted against 𝜃. The hatched region, while
a subset of Ω1 ∩ 𝒜, is not connected to 𝒞 and is not verified.

Figure 6-2: Verified regions for a slice of state space where all velocities are zero.
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and 𝐽𝑇,𝑖(𝑞) are all polynomial functions of the redundant state variables (𝑥, 𝑧, 𝑠, 𝑐, 𝑥̇, 𝑧̇, 𝜃) and

the contact forces (𝜆𝑁,𝑖, 𝜆𝑇,𝑖). As with the point mass example, the dynamics are invariant

under 𝑥, and so the equilibrium set is defined as {(𝑥, 𝑧, 𝜃) ∈ R3 : 𝑧 = 0, 𝜃 = 0}.

Fixing 𝑔𝑖 and 𝑔𝑜, we find an initial candidate Lyapunov function as in Algorithm 6.1. We

then use iterations search for a solution to (6.25) to find a nested set of invariant regions and

verify stability in the sense of Lyapunov. When we parameterize 𝑉 as a quartic polynomial,

we verify a significant region of state space about the origin. A slice of this region is shown

in Figure 6-2a where the verified region is the connected component of Ω1 ∩ 𝒜 containing

the origin. Figure 6-2b illustrates the use of 𝒢𝐼 and 𝒢𝑂 to provide inner and outer bounds

on 𝒞.

It is interesting to note that if we parameterize 𝑉 as a quadratic polynomial, the al-

ternations quickly converge to verify a region that is identical to the maximal sublevel set

of energy that does not contain any additional equilibrium points. Similarly, we recover a

scaled version of energy as our Lyapunov candidate. The quartic parameterization, however,

verifies a larger region with a Lyapunov function significantly different from energy.

Note that the true region of attraction of this model is unbounded. For instance, for

any 𝑥, 𝑧, take 𝑞 = 0 and 𝑣 =
[︁
𝑥̇ 0 0

]︁𝑇
. A trajectory starting from any such state will

slide along the ground and eventually come to rest. By our parameterizations of 𝒢𝐼 and 𝒢𝑂,

our regional approach is limited to ellipsoidal volumes, and so will not recover the entire

region of attraction. We do find a significant volume about the equilibrium set that would

be relevant to planning or control applications.

6.4.3 Perching Glider

We also examine the problem of verifying a safe set of initial conditions for a glider perching

against a wall, by adapting a model first presented in [24] and [30]. We consider the instant

after the glider feet, which have adhesive microspines, have first impacted the wall, and so

we treat this contact as a pin joint. The glider is then modeled as a two-link body, with a

spring damper connecting the bodies as shown in Figure 6-3. We allow the tail of the glider

to impact the surface of the wall and slide along it. The specific problem of verification was

earlier addressed by Glassman et al. [41], although the authors there used a model with a
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Figure 6-3: A simple model of a perching aircraft using two rigid links. The foot of the
aircraft is pinned to the wall surface and there is a contact point at the tail that can collide
with and slide along the wall. A torsional spring damper connects the main body of the
aircraft to the foot.

single joint and fixed the tail of the glider to slide along the wall, disallowing collisions. In

this work, we verify a significantly larger region than in [41], though a direct comparison is

impossible since our model is higher dimension and uses Coulomb friction instead of viscous

damping at the tail contact.

There are two relevant failure modes for the perching behavior of the glider, described

in more detail in [41]. In one, the nose of the glider impacts the wall, which would be a

potentially damaging event. In the other, the force limit of the feet microspines is exceeded

and the glider falls from the wall. The force at the feet is a rational function of the state

variables, and so the force limit can be easily expressed as a semialgebraic constraint.

This is a two degree of freedom model, with 𝑞 =
[︁
𝜃1 𝜃2

]︁𝑇
, and we again use a trigonomet-

ric substitution for both angles. We also change coordinates so that (0, 0) is an equilibrium

point with the tail resting against the wall, substituting 𝜃1 = 𝜃1−0.2604 and 𝜃2 = 𝜃2+0.5207.

With the rimless wheel, 𝐻(𝑞) was a constant matrix and so 𝐻−1(𝑞) was also constant. Here,

𝐻(𝑞)−1 is rational and so, for our dynamical constraints, we clear the denominator to ensure

that our conditions are algebraic.
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a A slice of the glider state space where the tail is restricted
to the surface of the wall. The shaded blue region within
the dashed line indicates the verified region 𝒞∩𝒜 for a quartic
Lyapunov function and the solid black ellipse outlines 𝒢𝐼 . The
green ellipse indicates the maximal sublevel set of energy that
does not intersect the unsafe region, shown in gray.

b A second slice of state space where the joint velocities are
zero is also shown. In this slice, the general quartic Lyapunov
function vastly outperforms energy and 𝒢𝐼 is tight to 𝒞.

Figure 6-4: Verified regions for two different slices of the glider state space.
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Figure 6-5: A simple balancing robot with a rigid base and actuated torso. Two feet can
make contact with the ground, in a manner similar to the rimless wheel.

We search for a solution to (6.26), to maximize the set of initial conditions of trajectories

that do not violate either constraint. Letting 𝒢𝑂 be all of R2𝑛, define

𝒢𝐼(𝜌) = {(𝑞, 𝑣) : 2(1− 𝑐1) + 2(1− 𝑐2) + 0.1||𝑣||2 < 𝜌}.

We seek to maximize 𝜌 through a binary search, observing that 2(1−𝑐𝑖) well approximates 𝜃2𝑖

near 𝜃𝑖 = 0. As with the rimless wheel, if we restrict our search to parameterizations of 𝑉 of

equal degree to energy, we recover the maximal sublevel set of energy that does not intersect

either constraint boundary. If we expand our search to include all quartic polynomials, we

find a Lyapunov function which verifies a visibly larger region. Two slices of this region are

visualized in Figure 6-4a and 6-4b. Our binary search terminates finding 𝜌 = 0.25, and we

can verify that an upper bound on the true optimal value is 𝜌 = 0.327, since there 𝒢𝐼(𝜌)

intersects the constraint boundary. Of course, the true optimal value might be lower still,

since there is no claim that any 𝒢𝐼(𝜌) is invariant. Here, we find a significant invariant region

that usefully approximates the safe set of initial conditions.
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6.4.4 Balancing Robot Control Design

Lastly, we present a control-design example that builds on the rimless wheel. The system

here is a simple balancing robot described by planar dynamics. The lower body is similar to

that of the rimless wheel, where the two legs are at a fixed angle, each with a single contact

point at the end. The upper mass is connected to the lower body by a single actuated joint.

When both feet are motionless with respect to the ground, the robot resembles an inverted

pendulum. In all other contact configurations, it has varying degrees of underactuation. As

with the rimless wheel, the dynamics are invariant in the 𝑥 direction, and so we can treat

the robot as a 7 state system. Of note, the balancing robot also undergoes Zeno phenomena

and exhibits a lack of uniqueness in some situations. Typical simulated trajectories undergo

a lengthy sequence of contact transitions, including single and double support phases as well

as sliding modes.

For this example, we use cubic Taylor expansions of the dynamics and contact constraints.

Algorithm 6.1 is initialized with a simple PD controller on 𝜑 and 𝐺𝑖 and 𝐺𝑜 such that both

locally approximate total energy. Note that because of the unilateral constraints, and the

linear dependence of gravitational potential on height, the Hessian of energy must be modified

slightly to form this approximation. For optimizing the verified region, the controller was

parameterized as a full-state feedback cubic controller. A quartic function was used to

parameterize the Lyapunov candidates, and S-procedure multiplier degrees were chosen to

balance the total degree of each sums-of-squares condition.

Using SPOT to generate the SDP and MOSEK to solve it, each iteration of Algorithm 6.1

(two SOS programs) took approximately 45 minutes. For 𝜖 = .01, convergence was reached in

30 iterations. While this total running time is substantial, the complexity is dominated by the

dimensionality of the plant, not the number of contact points. For comparison, each iteration

for rimless wheel, which has two fewer states and no actuation, runs in approximately 90

seconds on a desktop machine. As with the other examples, the algorithm is able to verify a

significant region of state space surrounding the equilibrium, slices of which are illustrated in

Figure 6-6. In a 7 dimensional state space, a true experimental evaluation of the stabilized

region is intractable. Similar to the rimless wheel, the true stabilized region is unbounded in
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a A three dimensional slice of the state space, where all veloc-
ities have been set to zero. Here, the blue region is the verified
volume, although, in the figure, it extends slightly past the
contact surfaces for visualization purposes.

b A second slice is shown with respect to the angular velocities,
where positions and translational velocities set to zero. This
figure additionally illustrates the boundaries of 𝒢𝑖 and 𝒢𝑜 in
in black and magenta. With initial conditions in this slice,
trajectories were simulated by a time-stepping method ([128])
to find the experimental region of attraction. The trajectories
that converged to the equilibrium are indicated with red stars.

Figure 6-6: Verified regions for two slices of state space.
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some directions. In other slices, however, sampling the space and simulating gives a rough

indication that the verified region is a good approximation of the true stabilized region. For

example, we discretized a slice of state space and exhaustively simulated the control policy

from those initial conditions. Results are illustrated in Figure 6-6b, where the verified region

captures much of the shape and size of the true region of attraction.

6.5 Discussion

The natural structure of rigid-body dynamics and the complementarity formulation of fric-

tional impacts provide a framework for posing questions of stability and invariance as sums-

of-squares optimization problems. This chapter presents a class of algorithms for numerical

computation of Lyapunov certificates for such systems, as well as for the design of mode-

invariant stabilizing controllers. By invoking the measure differential inclusion model of

contact, we avoid directly reasoning about both the complexity of Zeno phenomena and the

combinatorial number of hybrid modes associated with the set of potential contact states.

Initial experiments in a simulated environment have found physically significant certificates

of stability and invariance for multiple problems of interest.

In this chapter, we have been primarily interested in stability in the sense of Lyapunov

and positive invariance, but we hope to extend these methods to asymptotic stability. One

challenge with this extension is that friction often leads to a connected set of equilibria,

which poses difficulties for methods based on analytic Lyapunov functions. That fact aside,

two common approaches to verifying asymptotic stability are to find a Lyapunov candidate

where 𝑉̇ is strictly negative or to apply LaSalle’s Invariance Principle. With the former

method, energy no longer provides an initial feasible candidate to begin bilinear alternation.

In [71], Theorem 6.31 gives a generalization of LaSalle to discontinuous systems with the

additional condition that the limit sets of trajectories also be positively invariant. The

algorithms presented here might be extended to meet this condition and search for certificates

of asymptotic stability.

Ongoing work in this area also centers on extending these algorithms to more complex

tasks. While the examples here are relatively low dimensional, commercial SDP solvers are
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relatively immature and are rapidly improving. Additionally, recent work on hierarchical

relaxations of SOS problems have shown promise in solving significantly larger problems

[79, 68]. In particular, we are interested in the analysis of trajectories and limit cycles

of robotics systems, where previous work has demonstrated the effectiveness of SOS-based

methods [81]. By extending to trajectory analysis, we might verify the stability of locomotion

gait primitives [43] or that of walking motions with respect to terrain variations [115]. Mode-

invariant analysis might also be applied to methods which reduce the dimensionality of

walking problems, such as the form of zero dynamics explored in [65]. Furthermore, a

natural extension of this work would be to include elastic impacts, where many models exist

which are amenable to complementarity formulations such as in [129].
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Chapter 7

Balancing and Push Recovery

A fundamental requirement for legged robots is to maintain balance and prevent potentially

damaging falls, whenever possible. As a response to outside disturbances, fall prevention

can be achieved by a combination of active balancing actions, e.g. through ankle torques

and upper-body motion, and through reactive step placement. While it is widely accepted

that stepping is required to respond to large disturbances, the limits of active motions on

balancing and step recovery are only well understood for the simplest of walking models.

Recent advances in convex optimization-based verification and control techniques enable a

more complete understanding of the limits and capabilities of more complex models. In

this chapter, we present an algorithmic approach for formal analysis of the viable-capture

basins of walking robots and design of push recovery control strategies [103]. Extending

beyond the classic Linear Inverted Pendulum Model (LIPM), we analyze a series of centroidal

momentum based planar walking models, examining the effects of center of mass height,

angular momentum, and impact dynamics during stepping on capturability.

The LIPM makes a number of key assumptions to simplify the dynamical equations

of motion: (1) planar center-of-mass (COM) motion (often constant height), (2) constant

angular momentum, (3) minimum step time (independent of step length), and (4) zero-

impact stepping. Note that the first constraint necessarily requires the fourth, since impulsive

forces when stepping would cause changes in the vertical velocity. Typical control approaches

based on the LIPM plan and execute motions that satisfy these four conditions, therefore

the LIPM assumptions can be seen as model simplifications or, alternatively, as restrictions
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on control policies.

As detailed in 2.3, recent robotics research has examined some of these assumptions,

typically in isolation. Here, we introduce a more unified approach to this analysis, based

on sums-of-squares programming. As discussed previously, SOS methods for formal anal-

ysis, like those used in Chapter 6 or those discussed in 2.2 and 3.4, do not yet scale to

high-dimensional models. However, centroidal-momentum based models nicely capture the

dynamics relevant to push recovery and balancing and are relatively low-dimensional, making

this an ideal setting for formal dynamical analysis.

Below, we present SOS algorithms for estimating the 𝑁 -step viable-capture basins of

walking robots. We compute both inner and outer approximations to the viable-capture

basins, along with control policies that provably stabilize all states within the inner approx-

imations. These algorithms are demonstrated on a series of centroidal models, evaluating

the effects of vertical acceleration, angular momentum, and impact dynamics on the viable-

capture basins.

7.1 Preliminaries

This chapter builds upon the previously introduced notions of barrier functions in 3.4. Below,

we include some additional necessary background material. We define the class of walking

and balancing models, discuss the concept of 𝑁 -step capturability, and introduce a closely

related approach to reachability analysis.

7.1.1 Model Classes

In this chapter, we consider a number of different planar models for walking robots, each

based on the centroidal dynamics. As a result, we make a departure here from the second-

order, rigid-body model used in the previous chapters. We will also focus on a simple,

time-driven model of stepping events, and will therefore leverage the classical terminology

from hybrid systems. Specifics of each model will be given in Section 7.4, but all will obey

a particular structure. We restrict to systems governed by control-affine dynamics with
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box-constrained control inputs,

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢,

with 𝑥 ∈ R𝑛 and 𝑢 ∈ 𝒰 . For simplicity, and without further loss of generality, we take

𝒰 = [−1, 1]𝑚. Stepping events will be assumed to occur after a fixed period, 𝑇 , and result

in a discrete event with the post-step state given by a reset map 𝑥+ = 𝑟(𝑥−, 𝑠,Λ) for the

foot location 𝑠 ∈ [−1, 1] and impact impulse Λ ∈ R. Note that some models will follow the

traditional LIPM approach and assume zero impulse during stepping, and others will include

impulsive impact forces transmitted through a massless leg. While, for models with impacts,

it might be possible to explicitly define the impulse Λ, we instead will exploit an implicit

definition of inelastic impacts to reduce overall problem complexity. In this formulation,

valid impulses must satisfy an implicit constraint of the form

ℎ(𝑥−, 𝑠,Λ) = 0. (7.1)

Lastly, for each model class considered, 𝑟(𝑥−, 𝑠,Λ) will be affine in 𝑠.

7.1.2 Capturability

We briefly introduce the concept of 𝑁 -step capturability from [58]. A state 𝑥0 is said to be

𝑁 -step capturable if there exists a dynamically feasible trajectory 𝑥 : R+ → R𝑛 of at most

𝑁 steps, with 𝑥(0) = 𝑥0, such that 𝑥(𝑡) /∈ 𝒳𝑓 for all 𝑡 and 𝒳𝑓 ⊂ R𝑛 a defined set of failed

states. The set of all such states is called the 𝑁 -step viable-capture basin. Therefore, the

0-step viable-capture region defines the set of states which can avoid the set of failed states

by balancing actions alone (without stepping).

A useful property of 𝑁 -step capturability is that it enables a recursive analysis. A state

𝑥0 is 𝑁 -step capturable if there exists a dynamically feasible trajectory 𝑥(𝑡) with 𝑥(0) = 𝑥0

such that one of two conditions hold:

1. The trajectory contains zero steps and is forever disjoint from 𝒳𝑓 .

2. The trajectory is disjoint from 𝒳𝑓 until time 𝑇 , when a stepping event occurs such

that the reset map brings the state to the (𝑁 − 1)-step viable-capture basin.
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Note that this property, which we will exploit below, is identical to the classical concept of

a viability kernel with target from Quincampoix and Veliov [110], Aubin et al. [6],

7.2 Reachability via occupation measures

An approach to polynomial optimization, based in semidefinite programming, derives from

the work of Lasserre’s moment relaxations [67], and is known to be the dual to sums-of-

squares. This formulation has led to a number of applications in nonlinear control (e.g [46,

80, 60]), with a general hybrid formulation given by Shia et al. [118]. Here, we will make use

of the work of Henrion and Korda [46] to find outer approximations of dynamically reachable

sets. This method was originally introduced in terms of occupation measures, enabling proofs

of convergence found in [46]. For notational consistency and clarity of presentation, we briefly

discuss the dual formulation over SOS polynomials.

Given a compact region of state space (e.g. a ball of some radius) 𝒳 ⊂ R𝑛 and goal set

𝒳𝑔𝑜𝑎𝑙 ⊂ 𝒳 , this approach synthesizes an outer approximation to the backwards reachable

set of the goal region. Failed states, 𝒳𝑓 , are assumed to be those outside 𝒳 . In other

words, if the goal region is the balancing equilibrium, it computes an outer approximation

to the viable-capture basin. Similar to the method of Lyapunov and barrier functions, this

approach synthesizes functions which prove that some set of states cannot ever be stabilized.

If functions 𝑉 : R+ × R𝑛 → R and 𝑝 : R+ × R𝑛 → R𝑚 can be found, such that

𝑥 ∈ 𝒳 and 𝑡 ∈ [0, 𝑇 ]⇒ −𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
𝑓(𝑥)− 1𝑇𝑝(𝑡, 𝑥)− 𝜕𝑉 (𝑡, 𝑥)

𝜕𝑡
> 0, (7.2)

𝑥 ∈ 𝒳 and 𝑡 ∈ [0, 𝑇 ]⇒ 𝑝𝑖(𝑥) ≥
⃒⃒⃒⃒
𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
𝑔𝑖(𝑥)

⃒⃒⃒⃒
for 𝑖 = 1, ..,𝑚, (7.3)

𝑥 ∈ 𝒳𝑔𝑜𝑎𝑙 ⇒ 𝑉 (𝑇, 𝑥) > 0, (7.4)

then the 0-superlevel set of 𝑉 is an outer approximation of the viable-capture basin. In-

tuitively, these constraints ensure that 𝑉̇ < 0 for all possible control inputs, with 𝑝 as a

bound on the influence of the control actions. Given this, trajectories starting from 𝑥 with

𝑉 (𝑡, 𝑥) < 0 cannot ever reach the goal region, where 𝑉 > 0, without leaving 𝒳 .

Objective functions are chosen to minimize the size of this outer approximation. In
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Figure 7-1: The viable-capture basins will be iteratively built, starting by finding the 0-
step or balancing basin. Stepping events connect the goal for subsequent iterations to the
previous basin.

particular, by introducing 𝑊 : R𝑛 → R, with

𝑥 ∈ 𝒳 ⇒ 𝑊 (𝑥) ≥ 0, (7.5)

𝑥 ∈ 𝒳 ⇒ 𝑊 (𝑥) ≥ 1 + 𝑉 (0, 𝑥), (7.6)

then minimizing
∫︀
𝒳 𝑊 (𝑥)d𝑥, “pushes down” on the 0-superlevel set of 𝑉 , and approximates

the volume of the viable-capture basin. For many common descriptions of 𝒳 , including

ellipsoidal regions, this integral can be easily computed, and is linear in the coefficients of

𝑊 , as in [36].

7.3 Approach

Here, we present sums-of-squares based algorithms for computing inner and outer approxima-

tions to the 𝑁 -step viable-capture basins for walking robots. Sums-of-squares formulations

are presented in detail to improve clarity and reproducibility. Both approaches will follow

this simple iterative outline, cartooned in Figure 7-1, separating the continuous dynamics

from the discrete events (stepping):

1. 0-step: Approximate the infinite-horizon set of states from which a balancing controller
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can stabilize the origin

2. 𝑁-step: Set the goal region to be the set from which a stepping event leads to the

(𝑁 − 1)-step viable-capture basin. Approximate the backwards reachable set of this

goal region over a finite time interval.

7.3.1 Bilinear inner approximation

The approach to generate inner approximations of the viability kernel requires finding

Lyapunov-like barrier functions (recall 3.4.1) and a corresponding control policy. Since, first

and foremost, we are interested in fall prevention from the widest set of initial conditions,

we choose to parameterize a bang-bang control policy. As a result of Pontryagin’s Minimum

Principle, we expect bang-bang to be optimal for nonsingular problems [9]. Accordingly, de-

fine this policy in terms of switching surfaces 𝑆 : R+×R𝑛 → R𝑚 with 𝑢𝑖(𝑡, 𝑥) = sgn(𝑆𝑖(𝑡, 𝑥)).

This leads to 2𝑚 barrier conditions, defined over (potentially not connected) domains of con-

stant control input specified by 𝐼 ∈ {−1, 1}𝑚,

𝐷𝐼 = {(𝑡, 𝑥) : 𝑡 ∈ [0, 𝑇 ], 𝐼𝑖𝑆𝑖(𝑡, 𝑥) ≥ 0 for 𝑖 = 1, ...,𝑚},

Additionally, we wish to guarantee that the robot state never enters given unsafe or unde-

sirable regions. For instance, the height and orientation of the robot should be constrained

to stay within reasonable bounds. Let the unsafe region be described by 𝒳𝑢 = {𝑥 : 𝜁𝑖(𝑥) ≥

0, 𝑖 = 1, ..., 𝑘}. Therefore, the barrier function must separate the unsafe region from the

viable-capture basins. The safety constraints and the bang-bang controller generate the

polynomial optimization program:

minimize

∫︁
𝐵𝑅

𝑉 (0, 𝑥)d𝑥 (I)

s.t. (𝑡, 𝑥) ∈ 𝐷𝐼 , 𝑉 (𝑡, 𝑥) = 𝜌(𝑡), 𝐼 ∈ {−1, 1}𝑚 ⇒ ...

d𝜌(𝑡)

d𝑡
− 𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
(𝑓(𝑥) + 𝑔(𝑥)𝐼)− 𝜕𝑉 (𝑡, 𝑥)

𝜕𝑡
> 0,

𝑥 ∈ 𝒳𝑢, 𝑡 ∈ [0, 𝑇 ]⇒ 𝑉 (𝑡, 𝑥) > 𝜌(𝑡).
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As a proxy for volume of the 𝜌-sublevel set, we use the integral of 𝑉 over a prescribed ball

of state space. Note that other options exist, such as in Henrion et al. [47] or Chapter 6,

but this approach was used here for simplicity and effectiveness. As mentioned above, this

integral can be computed in closed form and is linear in the coefficients of 𝑉 , and therefore

is nicely compatible with SOS optimization. However, the above optimization program is

bilinear in the unknown polynomials. To solve it, we adopt a two-stage technique based on

bilinear alternations, similar to the approaches used in [137, 78, 102]. While these approaches

offer no guarantee of optimality, they are practically effective and relatively straightforward

to implement.

7.3.1.1 Strict Feasibility for Alternations

Solving a sequence of SOS programs can be computationally challenging. Solutions to these

programs often lie on the boundary of the feasible set, and small numerical tolerances can

lead to infeasibilities in subsequent programs. Adapting the work of Josz and Henrion [52],

we improve upon the bilinear approach in 3.4.3 by writing the alternations in a manner that

guarantees that (1) the feasible set always has a non-empty interior and (2) that alternating

solutions lie on the interior. These simple steps greatly enhance the numerical stability of

bilinear alternations. To accomplish this, we must add one additional ball constraint, that

𝑥𝑇𝑥 ≤ 𝑅2 for given 𝑅, and corresponding S-procedure multiplier. Since we are already

restricted to the 𝜌-sublevel set of 𝑉 , we simply choose a sufficiently large value for 𝑅 and

this does not result in any additional conservatism.

The approach, specified in Algorithm 7.1, is described here in detail. In the first stage,

𝑉, 𝜌 and 𝑆 are fixed polynomials, and we solve

minimize
𝛾,𝑞𝐼 ,𝜎*

𝛾 (A)

s.t. 𝛾 +
d𝜌

d𝑡
− 𝜕𝑉

𝜕𝑥
(𝑓 + 𝑔𝐼)− 𝜕𝑉

𝜕𝑡
− 𝜎𝐼,𝑅(𝑅2 − 𝑥𝑇𝑥) + ...

− 𝑞𝐼(𝜌− 𝑉 )− 𝜎𝐼,𝑇 (𝑇𝑡− 𝑡2)−
𝑚∑︁
𝑖=1

𝜎𝐼,𝑖𝐼𝑖𝑆𝑖 is SOS,

𝜎𝐼,𝑅, 𝜎𝐼,𝑇 , 𝜎𝐼,1, .., .𝜎𝐼,𝑚 are SOS, ∀𝐼 ∈ {−1, 1}𝑚,
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where 𝛾 ∈ R is a slack parameter. A solution with 𝛾 < 0 is feasible for (I). As shown in

[52], the feasible set of this program is guaranteed to contain a non-empty interior. In the

second stage, the multipliers 𝑞𝐼 and 𝜎𝐼,𝑖 are held constant and we solve the program

minimize
𝛾,𝑉,𝑆,𝜌,𝜎𝐼,𝑅,𝜎𝐼,𝑇

𝛾 (B)

s.t. 𝛾 +
d𝜌

d𝑡
− 𝜕𝑉

𝜕𝑥
(𝑓 + 𝑔𝐼)− 𝜕𝑉

𝜕𝑡
− 𝜎𝐼,𝑅(𝑅2 − 𝑥𝑇𝑥) + ...

− 𝑞𝐼(𝜌− 𝑉 )− 𝜎𝐼,𝑇 (𝑇𝑡− 𝑡2)−
𝑚∑︁
𝑖=1

𝜎𝐼,𝑖𝐼𝑖𝑆𝑖 is SOS ∀𝐼

𝜎𝐼,𝑅, 𝜎𝐼,𝑇 are SOS, ∀𝐼 ∈ {−1, 1}𝑚,

𝑉 − 𝜌− 𝜎𝜁,𝑖𝜁𝑖 − 𝜎𝑖,𝑇 (𝑇𝑡− 𝑡2) is SOS,

𝜎𝜁,𝑖, 𝜎𝑖,𝑇 are SOS for 𝑖 = 1, ..., 𝑘∫︁
𝐵𝑅

𝑉 (𝑥)d𝑥 ≤ 𝑐*.

where 𝑐* represents the optimal cost, found via binary search. Observe that the second stage

additionally incorporates the safety constraints described above. As with the first stage,

𝛾 < 0 is used to verify feasibility.

7.3.1.2 Balancing

Algorithm 7.1 Inner Approximation

Require: Termination criteria 𝜖
Require: LQR costs 𝑄𝑙𝑞𝑟, 𝑅𝑙𝑞𝑟 for initialization
1: 𝑖← 1, 𝑐𝑜𝑠𝑡0 ←∞
2: Initialize

3: do

4: (𝑞𝐼 , 𝜎𝐼,𝑖) =IterationA ◁ Solve (A) for multipliers
5: (𝑉, 𝑆, 𝜌, 𝑐*) =IterationB ◁ Solve (B) via binary search
6: 𝑐𝑜𝑠𝑡𝑖 ← 𝑐*, 𝑖← 𝑖+ 1
7: while 𝑐𝑜𝑠𝑡𝑖−1 − 𝑐𝑜𝑠𝑡𝑖 > 𝜖 𝑐𝑜𝑠𝑡𝑖−1

8: function Initialize

9: 𝑉 (𝑥)← LQR(
𝜕𝑓

𝜕𝑥

⃒⃒⃒⃒
𝑥=0

, 𝑔(0), 𝑄𝑙𝑞𝑟, 𝑅𝑙𝑞𝑟)

10: 𝐵(𝑥)← −𝜕𝑉
𝜕𝑋

𝑔(0)
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Algorithm 7.1 provides the framework for computing the 𝑁 -step viable-capture basins of

legged robots. As a first step, we compute the 0-step (balancing) region. For balancing, we

pose the infinite-horizon problem, and eliminate explicit dependence on time 𝑡. Additionally,

we specify the barrier function to take the form 𝑉0(𝑥) = 𝑥𝑇𝑄𝑥 with 𝑄 ≻ 0, and the control

switching function 𝑆0(𝑥) to also be quadratic in 𝑥. This condition enters as a semidefinite

constraint in (B), and ensures that the origin is contained within the barrier function.

7.3.1.3 𝑁-step

To compute the 𝑁 -step viable-capture basin, we must properly encode the condition that

the 𝑁 -step region leads to the (𝑁 − 1)-step region:

𝑉𝑁(𝑇, 𝑥) < 𝜌𝑁(𝑇 )⇒ ∃𝑠 ∈ [−1, 1] s.t. 𝑉𝑁−1(0, 𝑟(𝑥, 𝑠,Λ)) < 𝜌𝑁−1(0) (7.7)

For models with impacts, we first eliminate the force variable by solving the optimization

program

minimize
𝑊,𝑞𝑉 ,𝑞ℎ,𝜎𝑅

∫︁
𝐵𝑅×[−1,1]

𝑊 (𝑥, 𝑠)d𝑥d𝑠 (R)

s.t. 𝑞𝑤(𝑊 − 1) + 𝑞𝑉 (𝑉𝑁−1(0, 𝑟)− 𝜌𝑁−1(0))− 𝑞ℎℎ− 𝜎𝑅(𝑅2 − 𝑥𝑇𝑥) is SOS,

𝜎𝑅 is SOS,

where 𝑞𝑉 , 𝑞ℎ, and 𝜎𝑅 are S-procedure multiplier polynomials, ℎ is the implicit constraint

from (7.1), and 𝑞𝑤 is a given multiplier, typically 𝑞𝑤 = (1 + 𝑥𝑇𝑥 + 𝑠2)𝑑 as in Parrilo [94].

The 1-sublevel set of 𝑊 , therefore, contains the pairing of states and step locations that,

through the reset map, lead to the (𝑁 − 1)-step region. In the zero-impact setting, simply

take𝑊 (𝑥, 𝑠) = 𝑉𝑁−1(0, 𝑟(𝑥, 𝑠, 0)). Condition (7.7) can then be effectively encoded as a set of

SOS constraints in (B), with details in Appendix 7.A. We parameterize 𝑉𝑁(𝑡, 𝑥) and 𝑆𝑛(𝑡, 𝑥)

as quadratic in both state and time (with quartic cross terms), to express time-varying

quadratic functions, and follow the approach of Algorithm 7.1.

Algorithm 7.1 provides a formulaic procedure for computing an inner approximation to

the 𝑁 -step viable-capture regions of a given model and a bang-bang control policy that
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provably achieves the discovered region. The problem of control synthesis and verification

is, however, nonconvex, and so no guarantees of convergence can be made. In practice, ini-

tialization with an LQR-based controller and barrier function leads to good results–although

local minima do exist.

7.3.2 Outer approximations

The approach for computing outer approximations follows a similar technique as the inner

approximations, utilizing the underlying method of Henrion and Korda [46]. Unlike with the

inner approximations, the SOS programs are natively linear and do not require alternations.

7.3.2.1 Balancing

As in 7.3.1, we pose an infinite horizon problem, based in (7.2)-(7.6):

minimize
𝑉,𝑊,𝑝,𝜎𝑅

∫︁
𝐵𝑅

𝑊d𝑥 (O1)

s.t. − 𝜕𝑉

𝜕𝑥
𝑓 − 1𝑇𝑝− 𝜎𝑅(𝑅2 − 𝑥𝑇𝑥) is SOS,

𝑉 |𝑥=0 > 0,

𝑝𝑖 −
𝜕𝑉

𝜕𝑥
𝑔𝑖 − 𝜎𝑝,𝑖(𝑅2 − 𝑥𝑇𝑥) is SOS for 𝑖 = 1, ..,𝑚,

𝑝𝑖 +
𝜕𝑉

𝜕𝑥
𝑔𝑖 − 𝜎𝑛,𝑖(𝑅2 − 𝑥𝑇𝑥) is SOS for 𝑖 = 1, ..,𝑚

𝑊 is SOS,

𝑊 − 𝑉 − 1 is SOS,

where 𝑉 : R𝑛 → R, 𝑝 : R𝑛 → R𝑚, and the 𝜎’s are S-procedure multipliers. We take the

set of failed states to be those outside the 𝑅 radius ball around the origin. Given a solution

to (O1), the 0-superlevel set of 𝑉 , {𝑥 : 𝑉 (𝑥) > 0}, provides an outer approximation to the

0-step viable-capture basin.
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7.3.2.2 𝑁-Step

As with the inner approximations, we must also include constraints which link the 𝑁 and

(𝑁−1)-step regions. To compute an outer approximation, we express the sentiment that the

goal region (𝑡 = 𝑇 ) for the 𝑁 -step calculation must include all states which can be brought

to the beginning 𝑁 − 1 capture basin (𝑡 = 0). Defining

ℋ := {(𝑥, 𝑠,Λ) :𝑠 ∈ [−1, 1], ℎ(𝑥, 𝑠,Λ) = 0, 𝑉𝑁−1(0, 𝑟(𝑥, 𝑠,Λ)) ≥ 0},

then this condition can be written

(𝑥, 𝑠,Λ) ∈ ℋ ⇒ 𝑉𝑁(𝑇, 𝑥) ≥ 0. (7.8)

Unlike with the inner approximations, no secondary step is required, and this constraint

can be directly incorporated in a single stage. To compute the 𝑁 -step outer approximation,

solve the SOS program described by (7.2)-(7.6) and (7.8):

minimize
𝑉𝑁 ,𝑊,𝑝,𝑞ℎ,𝜎*

∫︁
𝐵𝑅

𝑊d𝑥 (O2)

s.t. − 𝜕𝑉

𝜕𝑥
𝑓 − 𝜕𝑉

𝜕𝑡
− 1𝑇𝑝− 𝜎𝑅(𝑅2 − 𝑥𝑇𝑥)− 𝜎𝑇 (𝑇𝑡− 𝑡2) is SOS,

𝑉𝑁(𝑇, 𝑥)− 𝜎𝑉 𝑉𝑁−1(0, 𝑟(𝑥, 𝑠,Λ))− 𝜎𝑠(1− 𝑠2)− 𝑞ℎℎ is SOS,

𝑝𝑖 −
𝜕𝑉𝑁
𝜕𝑥

𝑔𝑖 − 𝜎𝑅𝑝,𝑖(𝑅
2 − 𝑥𝑇𝑥)− 𝜎𝑇𝑝,𝑖(𝑇𝑡− 𝑡2) is SOS for 𝑖 = 1, ..,𝑚,

𝑝𝑖 +
𝜕𝑉𝑁
𝜕𝑥

𝑔𝑖 − 𝜎𝑅𝑛,𝑖(𝑅
2 − 𝑥𝑇𝑥)− 𝜎𝑇𝑛,𝑖(𝑇𝑡− 𝑡2)is SOS for 𝑖 = 1, ..,𝑚,

𝑊 is SOS,

𝑊 − 𝑉𝑁(0, 𝑥)− 1 is SOS,

𝜎𝑅, 𝜎𝑇 , 𝜎𝑉 , 𝜎𝑠, 𝜎𝑅𝑝,𝑖, 𝜎𝑅𝑛,𝑖, 𝜎𝑇𝑝,𝑖, 𝜎𝑇𝑛,𝑖 are SOS,

where 𝑞ℎ and the 𝜎’s are multipliers. Solutions to (O2) provide an outer approximation of

the 𝑁 -step viable-capture basin as the 0-superlevel set of 𝑉 (0, 𝑥). Tightness of these approx-

imations is governed by the total polynomial degree used for 𝑉 and 𝑊 , with convergence

results found in [46].
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Table 7.1: Example model properties

Value Value Value
𝑇 0.3 s 𝑧𝑐𝑚 1 m 𝐽 0.125 m2

𝑟𝑠𝑡𝑒𝑝 0.7 m 𝑈𝑧,𝑚𝑎𝑥 5 m/s2 𝑈𝑥,𝑚𝑎𝑥 1 m/s2

𝑟𝑓𝑜𝑜𝑡 0.05 m 𝑧𝑚𝑎𝑥 0.5 m 𝜃𝑚𝑎𝑥 90 deg

Figure 7-2: Here, 𝑧𝑐𝑚 remains constant for the LIPM, and the ground reaction forces are
chosen to point from the center of pressure on the foot toward the center of mass.

7.4 Example Applications

The approach is demonstrated on four examples, computing inner and outer approximations

to the 0-step and 1-step basins. These examples explore the effects of three of the primary

assumptions made in the standard LIPM. Solutions are generated in MATLAB, using Spot-

less [136] to formulate SOS programs and MOSEK [90] to solve the resulting semidefinite

optimizations. Depending on model complexity, solutions were computed over a period of

minutes to hours on a desktop computer. Comparisons across models for the balancing

regions are also illustrated at the end of the section in Figure 7-9. Model properties were

chosen to emulate those of a prototypical walking robot and are listed in Table 7.1. Sam-

pling and numerical simulations, not depicted, have also been used as evidence that the true

viable-capture basins lie between the inner and outer approximations.
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7.4.1 LIPM

For validation, we present approximations for the basic planar LIPM (constant center of mass

height, 𝑧𝑐𝑚), where the true viable-capture basins are explicitly known. The ground reaction

forces (GRF) of the LIPM are constrained so that 𝑧𝑐𝑚 = 0, and the angular momentum is

also constant. A cartoon illustration of the model is seen in Figure 7-2. A single control

input, 𝑢1, governs the location of the center of pressure with respect to the robot’s foot, and

is bounded by the foot radius 𝑟𝑓𝑜𝑜𝑡. The model has one degree of freedom, 𝑥 =

⎡⎣𝑥𝑐𝑚
𝑥̇𝑐𝑚

⎤⎦, with
dynamics.

𝑥̈𝑐𝑚 =
𝑔

𝑧𝑐𝑚
(𝑥𝑐𝑚 + 𝑟𝑓𝑜𝑜𝑡𝑢1.) (7.9)

Stepping, up to distance 𝑟𝑠𝑡𝑒𝑝, occurs without impact, and so the reset map is given by

𝑟(𝑥−, 𝑠) =

⎡⎣𝑥𝑐𝑚− − 𝑟𝑠𝑡𝑒𝑝𝑠

𝑥̇𝑐𝑚−

⎤⎦ . (7.10)

Results are illustrated in Figure 7-3, where the balancing and 1-step approximations are

nearly identical to the explicit calculations from Koolen et al. [58]. For this simple model,

both inner and outer approximations do an excellent job of capturing the true viable-capture

basins with minimal gap.

7.4.2 Variable Height

As a first extension, we relax the assumption that 𝑧𝑐𝑚 = 0, replacing it with the control

authority to generate bounded vertical accelerations. The resulting model has two degrees

of freedom, 𝑥𝑐𝑚 and 𝑧𝑐𝑚, along with a second control input that determines the vertical

acceleration. The equations of motion are:

𝑥̈𝑐𝑚 =
𝑔 + 𝑈𝑧,𝑚𝑎𝑥𝑢2

𝑧𝑐𝑚
(𝑥𝑐𝑚 + 𝑟𝑓𝑜𝑜𝑡𝑢1), (7.11)

𝑧𝑐𝑚 = 𝑈𝑧,𝑚𝑎𝑥𝑢2 (7.12)
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Figure 7-3: There is a minimal gap between inner and outer approximations for the LIPM.
Additionally, the explicitly known viable-capture basins are visually indistinguishable from
the outer regions, and so are not plotted here.

Note that (7.11) is not natively polynomial in 𝑥 and control affine, and so we approximate

using a quadratic Taylor expansion of 𝑧−1
𝑐𝑚 about the nominal height (𝑧𝑐𝑚) and linear expan-

sion in the control input variables (eliminating the comparatively small second-order term

𝑢1𝑢2). Additionally, we enforce the physical constraint that the variation in height satisfy

|𝑧𝑐𝑚− 𝑧𝑐𝑚| ≤ 𝑧𝑚𝑎𝑥, defining a corresponding unsafe region. As with the LIPM, this is a zero

impact model, and so the reset dynamics remain unchanged from (7.10), with the addition

that 𝑧𝑐𝑚+ = 𝑧𝑐𝑚− and 𝑧̇𝑐𝑚+ = 𝑧̇𝑐𝑚−.

Figure 7-4 illustrates a slice of the the viable-capture regions for this model, where 𝑧𝑐𝑚 =

𝑧𝑐𝑚 and 𝑧̇𝑐𝑚 = 0, demonstrating the marginal improvement in control authority gained by

this additional control authority. Koolen et al. [59] also analyzed a variable height model,

for balancing only, although there are a few key differences between that work and this.

The approach there was able to exactly calculate the 0-step viable-capture basin, without

approximation. However, their model was significantly more permissive in both input and

state constraints, using the bounds 𝑧𝑐𝑚 ≥ 0 and 𝑧𝑐𝑚 ≥ 0 with no upper bounds. The ability

to include non-zero limitations on inputs and states largely accounts for the more limited
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Figure 7-4: The ability to vary the vertical COM acceleration has a small effect on the
viable-capture basins, though the gap between inner and outer approximations is larger for
the higher dimensional model.

benefits to variable height that are demonstrated here.

7.4.3 Incorporating Impact Dynamics

As presented in Section 7.3, we are also able to include impact dynamics in our models.

Using an assumption of a massless leg, an impact generates an impulsive force from the

landing foot through the center of mass, illustrated in Figure 7-5. The impulse must satisfy

the post-impact constraint that the center of mass velocity be orthogonal to the new stance

leg. The reset map and reset constraints are therefore

𝑥+ = 𝑟(𝑥−, 𝑠,Λ) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑐𝑚− − 𝑟𝑠𝑡𝑒𝑝𝑠

𝑧𝑐𝑚−

𝑥̇𝑐𝑚− + Λ(𝑥𝑐𝑚− − 𝑟𝑠𝑡𝑒𝑝𝑠)

𝑧̇𝑐𝑚− + Λ𝑧𝑐𝑚−

⎤⎥⎥⎥⎥⎥⎥⎦ , (7.13)

ℎ(𝑥−, 𝑠,Λ) = (𝑥̇𝑐𝑚+𝑥𝑐𝑚+) + (𝑧̇𝑐𝑚+𝑧𝑐𝑚+). (7.14)
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Figure 7-5: An impulsive force during footstrike causes an instantaneous change in the
horizontal and center of mass velocities.

Figure 7-6: A slice of the viable-capture basins for a variable height model with impact
dynamics.
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Figure 7-7: With variable angular momentum, the ground reaction forces are no longer
required to point directly at the COM.

As before, a slice of the viable-capture basins is shown in Figure 7-6. While one might

expect the impacts, by dissipating energy, to have a strong stabilizing effect, there appears

to only be a minimal increase in capturability.

7.4.4 Variable Height and Rotational Inertia

The final model under consideration incorporates variable rotational inertia to the variable

height model of 7.4.2. Rotational inertia is captured in a reaction wheel style model, similar

to the one studied in [58]. An additional degree of freedom, 𝜃, captures the orientation of the

reaction wheel with a third input that governs the additional lateral acceleration. Parameter

𝐽 encodes the ratio between the moment of inertia and mass. As shown in Figure 7-7, the

ground reaction force is no longer limited to point directly at the center of mass. The limit

on the third input, in Table 7.1, realistically restricts the angular acceleration to 8 rad/s2.

Safety constraints additionally enforce that |𝜃| ≤ 𝜃𝑚𝑎𝑥, to capture the fact that the robot
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Figure 7-8: The viable-capture regions for a model including variable height and inertia
illustrate significantly larger regions than with simpler approaches, particularly the 0-step
basin. However, with increased model complexity, the gap between inner and outer approx-
imations is also larger.

torso is restricted in its range of movement. The nominal equations of motion are

𝑥̈𝑐𝑚 =
𝑔 + 𝑈𝑧,𝑚𝑎𝑥𝑢2

𝑧𝑐𝑚
(𝑥𝑐𝑚 + 𝑟𝑓𝑜𝑜𝑡𝑢1) + 𝑈𝑥,𝑚𝑎𝑥𝑢3, (7.15)

𝑧𝑐𝑚 = 𝑈𝑧,𝑚𝑎𝑥𝑢2, (7.16)

𝜃 =
𝑧𝑐𝑚
𝐽
𝑈𝑥,𝑚𝑎𝑥𝑢3. (7.17)

As with (7.15), we use Taylor approximations to pose a polynomial, control-affine problem.

Figure 7-8 illustrates the viable-capture basins for this model, demonstrating a significant gap

in capturability as compared with simpler approaches (see Figure 7-9). However, even with

these additional degrees of freedom, stepping remains the only mechanism for recovering from

large disturbances. For this higher dimensional model with larger optimization problems, the

gap between inner and outer approximations is also larger. Computational considerations

limited the outer approximations to fourth degree polynomials, whereas the other examples

were carried out with polynomials of degree six and above.
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Figure 7-9: Comparisons between inner (top) and outer (bottom) approximations to the 0-
step basins are shown. While neither modification greatly expands the capture basin beyond
that of the LIPM, the effect of angular momentum is noticeably greater than that of vertical
acceleration.
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7.5 Discussion

The ability to formally analyze multiple walking models enables a deeper understanding of

the advantages and limitations of different control approaches. The results above explicitly

bound the potential benefits from leveraging center of mass height, angular momentum,

and impact dynamics, demonstrating the comparatively larger effect of angular momentum.

Furthermore, these optimization tools also offer algorithmic approaches to control synthesis.

Along with the inner approximations, we have designed bang-bang control policies with

provable guarantees of performance. The barrier functions themselves could be also be used

in a similar manner to that of control Lyapunov functions–describing a broader set of control

actions which are also provably effective. Future work will explore the effectiveness of these

policies along with alternate control implementations. The occupation measure methods for

outer approximations have also led to work on control synthesis [80, 60]. Future directions

also include analysis of additional walking models. For example, models which capture the

left-right asymmetry foot placement for lateral stability and as well as an examination of

swing-leg dynamics.

7.A Appendix

Details for expressing (7.7) as SOS constraints are given here. While not strictly necessary,

it is efficient to leverage the fact that 𝑊 (𝑥, 𝑠) is a convex quadratic in 𝑠. Observe that (7.7)

can be equivalently written as the statement

If 𝑊 (𝑥, 𝑠) = 1⇒ |𝑠| > 1, then 𝑉𝑁(𝑇, 𝑥) ≥ 𝜌𝑁(𝑇 ). (7.18)
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Rewriting 𝑊 (𝑥, 𝑠)− 1 = 𝑎𝑠2 + 𝑏(𝑥)𝑠 + 𝑐(𝑥), where 𝑎 > 0 is a scalar, we solve for 𝑠 and can

manipulate the quadratic formula to express the condition |𝑠| > 1 as

(−𝑏2 + 4𝑎𝑐 > 0) ∨ ...

((𝑏− 2𝑎 > 0) ∧ (𝑎− 𝑏+ 𝑐 > 0)) ∨ ...

((−𝑏− 2𝑎 > 0) ∧ (𝑎+ 𝑏+ 𝑐 > 0))

Defining 𝑉𝑇 (𝑥) := 𝑉𝑁(𝑥, 𝑇 ) and 𝜌𝑇 := 𝜌𝑁(𝑥, 𝑇 ), these conditions are naturally incorporated

via the S-procedure as additional SOS constraints in (B):

𝑞𝑉,1(𝑉𝑇 − 𝜌𝑇 )− 𝜎𝑟,1(4𝑎𝑐− 𝑏2) is SOS,

𝑞𝑉,2(𝑉𝑇 − 𝜌𝑇 )− 𝜎𝑟,2(−2𝑎+ 𝑏)− 𝜎𝑟,3(𝑎− 𝑏+ 𝑑) is SOS,

𝑞𝑉,3(𝑉𝑇 − 𝜌𝑇 )− 𝜎𝑟,4(−2𝑎− 𝑏)− 𝜎𝑟,5(𝑎+ 𝑏+ 𝑑) is SOS,

where 𝑞𝑉,𝑖 are fixed multipliers (like 𝑞𝑤) and the 𝜎’s are new S-procedure multipliers.
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Chapter 8

Conclusion

In this thesis, we provide computationally tractable methods for control and planning of

robotic systems making and breaking contact with the environment. To address these fun-

damentally hard problems, we leverage the natural interplay between the measure differential

inclusion models of non-smooth dynamics, nonlinear control theory, and modern optimiza-

tion algorithms. The primary challenges related to acting in contact-rich environments result

from the discontinuities induced by impact events and frictional forces. While these disconti-

nuities can be represented with the language of hybrid dynamical systems, use of this general

purpose framework risks neglecting the structure provided by mechanical systems.

In Chapters 4 and 6, we avoid the typical hybrid-systems framework, instead exploit-

ing the complementarity and algebraic structure of the MDI formalism. In Chapter 4, we

introduce a contact-implicit trajectory optimization algorithm capable of synthesizing new

trajectories, where the algorithm implicitly searches over the set of possible contact se-

quences. This method is inspired by, and appropriate for, situations with a large number

of potential contacts where a precise sequencing of contact events is an unrealistic expec-

tation. We demonstrate the contact-implicit algorithm on a number of examples, scaling

to models with dozens of joints and dozens of potential contacts. When it came to execut-

ing motions generated in this fashion, a primary obstacle lay in the first-order numerical

integration scheme embedded in the algorithm. Therefore, given a nominal motion and con-

tact sequence, we look to further refine optimal trajectories. While there is an extensive

literature of trajectory optimization algorithms for smooth or hybrid systems, standard ap-
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proaches do not address the manifold constraints that arise from closed kinematic chains

(like a four-bar linkage or double support). In Chapter 5, we introduce an extension to the

direct collocation algorithm to perform trajectory optimization constrained to a kinematic

manifold. The DIRCON approach maintains third-order accuracy while guaranteeing the

manifold constraints.

In addition to trajectory optimization, we have also investigated questions of local control

synthesis and stability analysis. In Chapter 6, we embed the algebraic structure of implicit

contact mechanics into sums-of-squares algorithms for Lyapunov analysis and control de-

sign. By doing so, we reason through contact events (including the possibility of non-unique

solutions) to optimize over control policies and generate numerical proofs of stability and

invariance. The presented algorithm avoids explicit reasoning about the combinations of

contacts, and therefore scales tractably in contact-rich settings.

Looking beyond full, rigid-body dynamical description, we lastly analyze some of the

simpler, centroidal momentum-based models that have proven to be enduring and effective

tools for control of bipedal robots. In Chapter 7, we explore the fruitful middle ground

between fully articulated models (intractable for formal, SOS analysis) and the simplified,

linear models (amenable to a variety of classical techniques). We describe SOS approaches

to compute both inner and outer approximations to the 𝑁 -step viable capture basins. This

allows formal analysis of the balancing and push recovery capabilities of control strategies

that incorporate angular momentum, center of mass height, and impact dynamics.

8.1 Challenges and Open Questions

8.1.1 Computational Challenges

As with any numerical algorithm, computational scaling is a critically important topic. While

our approaches above scale quite favorably when compared to prior art, issues like computa-

tional runtime, memory usage, and numerical stability continue to pose challenges. Both the

trajectory optimization and sums-of-squares algorithms are offline procedures, with runtimes

ranging from tens of seconds to hours. The mathematical program with complementarity
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constraint formulation used in Chapter 4 carries with it significant numerical complexity.

While mitigating approaches exist, as discussed in 4.1.2, for particularly high dimensional

problems (or long trajectories) we often struggle to converge to high quality solutions. With

the understanding that these nonlinear programs are limited to local searches, the challenge

remains to reliably identify good solutions for the larger optimization problems.

While interior point algorithms can solve semidefinite programs in polynomial time (to

numerical accuracy), both memory usage and numerical stability limit the dimensionality

and the degree of the polynomials used in SOS methods. It should be noted that SDP

remains a relatively new and active area of research, and it is reasonable to expect significant

improvement in the coming years. For example, the introduction of the commercial MOSEK

SDP solver [90] has had a significant impact since its recent release. Numerical challenges

are especially critical for bilinear alternations, where the numerical tolerance in a given

solution can lead to problems in later iterations. While we make progress in this regard,

discussed in 7.3.1.1, stable alternations are by no means guaranteed for all problems. As with

trajectory optimization, bilinear SOS problems require local solutions. Principled approaches

to choosing initial seeds that improve solution quality remains an open area of interest.

8.1.2 Reliance Upon Models

The work in this thesis falls under the class of model-based control and planning, where

we assume the existence of an accurate (and known) dynamical model. However, despite

one’s best effort to identify such a model, there will doubtless remain unmodeled phenomena

and other errors. Despite this limitation, models have played a major role in the practical

implementation of robotic control policies. As but one example, many successful teams

at the DARPA Robotics Challenge based their strategies on a rigid-body model (e.g. [33,

62, 57]). In this work, contact between rigid bodies has occurred at a finite set of points.

Toward relaxing this assumption, recent work has explored the boundary between data-

driven approaches and rigid-body models to characterize surface-surface contact [148]. This

and similar approaches might be incorporated into the algorithms presented here.

Nonetheless, an rigorous treatment of model uncertainty (both stochastic and paramet-

ric), particularly for systems in contact, remains an open problem. In the context of the

129



work presented here, the existence of Lyapunov and barrier functions provides some notion

of robustness. However, we do not explicitly address model uncertainty in this thesis. Pos-

sible extensions to our work might directly incorporate bounded uncertainty, as in Aylward

et al. [7], or stochastic models as in Steinhardt and Tedrake [124]. Similarly, planning and

trajectory optimization with uncertainty remains a challenging task, though methods based

on simple models [17, 144] and sampling [28, 29, 88, 51] have recently been developed.

8.1.3 Real-time Control

In the final chapters of this thesis, we have presented approaches for feedback policy synthesis

in a few different settings. The methods in Chapter 6 represent the most comprehensive

algorithm for control design through contact, generating policies valid in a neighborhood

of states that include all possible contact modes. However, this work currently scales only

to systems with a modest number of degrees of freedom. While the LQR and QP based

methods in Chapter 5 do address high-dimensional systems, these approaches struggle to

handle unplanned contact. Stabilization in the presence of contact uncertainty, particularly

contact modes that are not part of the original plan, remains an open problem. While the

QP controller reasons about the current contact state, the cost-to-go function from LQR

provides no useful information in directions normal to the planned manifold.

While we have made notable progress in this area, all of these methods rely upon offline

computation to design controllers for specific tasks and environments. To enable robots to

succeed at practical dynamic tasks, algorithms capable of real-time control in a previously

unknown environment are required. The QP approach is naturally extended in a contact-

implicit form, as a quadratic program with complementarity constraints (QPCC) or as a

mixed-integer quadratic program (MIQP). However, both of these formulations are com-

putationally expensive and cannot currently be solved at practically useful speeds. Model

predictive control approaches, based on smoothed approximations to the discontinuous dy-

namics, have proven successful in simulation [63, 132]. However, it remains unknown whether

these approximations result in experimentally valid solutions. An exciting direction for fu-

ture research is to develop algorithms, that scale to high-dimensional systems, capable of

making real-time decisions to make and break contact as necessary in contact-rich settings.
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