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Abstract—To achieve general-purpose dexterous manipulation,
robots must rapidly devise and execute contact-rich behaviors.
Existing model-based controllers are incapable of globally op-
timizing in real-time over the exponential number of possible
contact sequences. Instead, recent progress in contact-implicit
control has leveraged simpler models that, while still hybrid,
make local approximations. However, the use of local models
inherently limits the controller to only exploit nearby interac-
tions, potentially requiring intervention to richly explore the
space of possible contacts. We present a novel approach which
leverages the strengths of local complementarity-based control
in combination with low-dimensional, but global, sampling of
possible end-effector locations. Our key insight is to consider
a contact-free stage preceding a contact-rich stage at every
control loop. Our algorithm, in parallel, samples end effector
locations to which the contact-free stage can move the robot,
then considers the cost predicted by contact-rich MPC local to
each sampled location. The result is a globally-informed, contact-
implicit controller capable of real-time dexterous manipulation.
We demonstrate our controller on precise, non-prehensile manip-
ulation of non-convex objects using a Franka Panda arm. Project
page: https://approximating-global-ci-mpc.github.io

Index Terms—Contact-rich manipulation, model predictive
control, model-based, contact-implicit.

I. INTRODUCTION

For multi-purpose robots to successfully deploy into the
home and workplace, they will need to be capable of dexterous
manipulation of complex objects. Progress towards this goal
has been made on a number of fronts, including imitation
learning from human demonstrations [1] and offline model-
based planning [2], [3]. However, these approaches both re-
quire advanced knowledge of the task and can fail to generalize
to even minor permutations, such as new goal configurations.

An alternative approach that has made recent strides is
contact-implicit model predictive control (CI-MPC). Contact-
implicit methods attempt to optimize for state and/or input
trajectories and a corresponding sequence of contact modes.
In the face of hybrid, nonlinear contact dynamics, CI-MPC
approaches have to compromise to reach real-time rates, such
as by picking the best plan out of many sampled trajectories
[4], [5], or by using simplified dynamics. One such simplified
model that still captures the hybrid aspect of contact-rich
dynamics is a linear complementarity system (LCS) [6], a
piecewise linear representation. However like many simplified
models, LCS dynamics are limited in accuracy to a local
neighborhood of the true underlying system (Figure 2).
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Fig. 1. Our real-time CI-MPC combines a global, explorative contact-free
stage with a local contact-rich stage. At every control loop, our algorithm
chooses contact-rich actions to make goal progress, or contact-free actions to
pursue more amenable starting locations for future contact-rich actions.

We present a novel CI-MPC approach that inherits the local
efficacy of complementarity-based control in combination with
the global efficacy of sampling-based strategies, only requiring
low-dimensional sampling of individual end effector locations.
Our key insight is that all contact-rich control can be split into
a contact-free stage in which the robot moves in a collision-
free path (easier to compute than contact-rich trajectories),
followed by a contact-rich stage in which the robot is able
to make and break contact as it pleases (Figure 1). Existing
CI-MPC methods utilizing local dynamics can be effective in
the contact-rich stage, if the local neighborhood is amenable
to progressing to the goal. Sampling is a natural solution:
we sample end effector locations where the contact-free to
contact-rich transition can occur. We quantify which location
is the most advantageous to pursue by comparing their local
CI-MPC optimization costs. In closed loop with cost-based and
progress-based switching logic, our controller autonomously
switches between contact-free and contact-rich stages, trading
off future investment with immediate progress, respectively.

In this paper, we contribute:

• A novel combination of global sampling with local con-
trol for online multi-contact manipulation. This unique
combination is capable of tasks that the local control
alone essentially would always fail to accomplish.

• Hardware results applying our algorithm to achieve high-
precision pose goals with non-convex objects with a
Franka Panda robotic arm.

• A direct comparison in simulation to MuJoCo MPC
(MJPC) [5], another non-local CI-MPC method our ap-
proach outperforms while being safer and more reliable.

https://approximating-global-ci-mpc.github.io
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II. RELATED WORK

A. Offline Trajectory Optimization
While solving a global nonlinear control problem can be

too time intensive to compute online, offline contact-implicit
trajectory optimization can be effective in manipulation and
locomotion [7], [8]. The non-smooth dynamics of contact-rich
scenarios can lead to challenging loss landscapes for trajectory
optimization. Mitigations for this include artificially smoothing
gradients [3], [9], solving for contact mode sequences via
graph search [2], sampling contact mode sequences [10] and/or
control inputs [11], or restricting applications to simpler 2D
problems [12]. While offline trajectory optimization is a means
of discovering and optimizing complex trajectories for contact-
rich motion, we seek strategies that can improvise in real time.

B. Contact-Implicit MPC
Alternative to offline methods, recent progress has been

made by reformulating global tasks into more tractable online
MPC problems. One approach uses local complementarity-
based approximations to the global system [13], [14], encour-
aging consensus between local non-smooth rigid body contact
constraints and local dynamics, while exploring contact modes
via small-scale mixed integer optimization. Other approaches,
in a distinct but similar fashion, use artificially smoothed
contact dynamics during online trajectory optimization. This
smooths the optimization landscape, allowing differentiable
algorithms to explore different contact modes [15]–[18]. All
of these methods, however, leverage local approximations and
thus may fundamentally struggle to escape local minima and
initiate distant, but beneficial, contact without intervention.

C. The Role of Sampling for Planning and Control
While the non-smooth dynamics of contact-rich scenarios

pose serious challenges to techniques based in differentiable
optimization, gradient-free methods like random sampling
have shown promise. Many methods in the literature include
sampling in the spaces of input trajectories [5], [19], contact
mode sequences [10], [20], or both [11]. In our work, we
explore a lower-dimensional form of sampling: sampling end
effector configurations, using these as global seeds for the local
contact-implicit controller from [14]. This does not require
sampling full trajectories nor full system states, but retains
the primary benefit of sampling as a way out of local minima.

III. BACKGROUND

First, we review contact dynamics and its modeling choices
in §III-A. We then introduce an optimal control problem
that relies on contact dynamics as a constraint in §III-B.
§III-C details C3 [14], an existing real-time, contact-implicit
algorithm for a local approximation of the control problem.

A. Contact Dynamics
For a contact-rich system with state x and inputs u subject

to contact forces λ, its dynamics can be generally written as

xk+1 = g (xk, uk, λk) , (1a)
0 ≤ λk ⊥ π (xk, uk, λk) ≥ 0, (1b)

where the discrete-time dynamics g depend on the contact
forces λk, which are the solution to a nonlinear complemen-
tarity problem (NCP) [21] in (1b). The NCP elegantly embeds
the multi-modal nature of contact-rich systems.

In our context, the vector λk represents contact forces, and
the complementarity constraint (1b) enforces the hybrid (or
non-smooth) aspects of the dynamics; for example, it can
encode the constraint that forces must only occur when in
contact, and can enforce the stick-slip effects of Coulomb
friction. For simulation, the solved contact forces are found
to satisfy contact dynamics encoded by the NCP in (1b) and
affect the system dynamics as in (1a).

A local approximation to (1) that still preserves the multi-
modality of contact is a linear complementarity system (LCS)
[6]. An LCS describes the state and contact force trajectories
for an input sequence starting from x0 such that

xk+1 = Axk +Buk +Dλk + d, (2a)
0 ≤ λk ⊥ Exk + Fλk +Huk + c ≥ 0. (2b)

where xk ∈ Rnx , λk ∈ Rnλ , uk ∈ Rnu , A ∈ Rnx×nx , B ∈
Rnx×nu , D ∈ Rnx×nλ , d ∈ Rnx , E ∈ Rnλ×nx , F ∈ Rnλ×nλ ,
H ∈ Rnλ×nu , and c ∈ Rnλ .

In computing the LCS representation of a given system,
we consider a nominal xnom, unom and the resulting λnom from
solving (1b). The LCS dynamics (2) approximate the non-
linear hybrid dynamics (1) by linearizing g and π.

Once the LCS is constructed, for a given xk and uk,
the corresponding complementarity variable λk is found by
solving (2b). Similarly, xk+1 can be computed using (2a) when
xk, uk, and λk are known. Given an input uk and state xk,
the next state is xk+1 = LCS(xk, uk) defined by (2).

B. Optimal Control through Contact

We are interested in solving the nonlinear MPC problem
first posed in [8] for contact-rich systems whose dynamics are
well-described by an NCP,

min
xk,uk,λk

N−1∑
k=0

(xT
kQkxk + uT

kRkuk) + xT
NQNxN (3a)

s.t. xk+1 = g (xk, uk, λk) , (3b)
0 ≤ λk ⊥ π (xk, uk, λk) ≥ 0, (3c)
x0 = xinit, (3d)
(xk, uk) ∈ C, (3e)
for k ∈ {0, . . . , N}. (3f)

This optimization problem solves for state x0:N , control input
u0:N−1, and contact force λ0:N−1 trajectories that satisfy
the system’s dynamics (3b), contact constraints (3c), initial
condition (3d), and other constraints (3e), e.g. input limits,
safety constraints, or goal conditions.

Solving this MPC problem for even simple multi-contact
systems is intractable at real-time rates due to the compli-
cated nature of the discontinuous contact dynamics (3c) and
their impact on system dynamics (3b). An alternative is to
approximate them with expressions that are faster to evaluate.
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Fig. 2. Left: A spherical end effector approaches a spherical object on a flat table. Loosely speaking, the LCS approximates object geometry as a set of
hyperplanes coincident with and tangent to their witness points with respect to other geometries of interest. The hyperplane for ground-object contact is in
red, while the robot-object contact hyperplane is in blue. Each initial condition has its associated MPC cost. In this example, the rightmost sample’s LCS
approximation allows the robot to most effectively foresee progressing the object toward the goal and correspondingly has the lowest sample cost. Right: These
LCS approximations are well-defined even for more complicated geometries, only requiring witness points between the object and other collision geometry.

C. Consensus Complementarity Control (C3)

To simplify (3), we pose the control problem with the
dynamics expressed as an LCS (substituting (2) for (3b) and
(3c)) using xinit (and some nominal u0, λ0) as the LCS
linearization point. The optimization problem becomes

min
xk,uk,λk

N−1∑
k=0

(xT
kQkxk + uT

kRkuk) + xT
NQNxN (4a)

s.t. xk+1 = Axk +Buk +Dλk + d, (4b)
0 ≤ λk ⊥ Exk + Fλk +Huk + c ≥ 0, (4c)
x0 = xinit, (4d)
(xk, uk) ∈ C, (4e)
for k ∈ {0, . . . , N}. (4f)

This is still computationally intensive because of the com-
plementarity constraint (4c). The method Consensus Comple-
mentarity Control (C3) [14] converges to this optimization
problem’s minimum. C3 uses the alternating direction of mul-
tipliers (ADMM) to iteratively solve the optimization problem
while satisfying only the dynamics (4b) then only the contact
constraints (4c). This first stage is a quadratic program (QP)
with linear equality and inequality constraints. The second
stage can crucially be parallelized across all time steps, since
the contact constraints (4c) depend only on step k. Thus, the
second stage can be formulated as a small-scale mixed-integer
QP (MIQP), sufficiently fast when parallelized across time
steps. With extra cost terms to encourage consensus between
these two stages, C3 will converge to the solution to (4). In
practice, using a suboptimal solution at a faster rate is more
performant than a more optimal solution at a slower rate, so
it is beneficial to terminate C3 after a few ADMM iterations.

IV. METHODS

In this work, we extend the capabilities of C3 [14] by
injecting global insights into the local problem. While using
an LCS model enables C3’s real-time performance, this has
negative consequences that motivate our approach (§IV-A).
The key is to split the problem into an initial contact-free mode
and a subsequent contact-rich mode (§IV-B). The contact-free
mode explores globally, setting up the contact-rich mode in
a region tractably handled by C3. To approximate the new

bilevel optimization problem in real-time, we sample low-
dimensional end effector locations at the mode switch (§IV-C).
In closed-loop, our controller uses progress and cost metrics
to autonomously switch between modes (§IV-D).

A. Limitations of LCS as an MPC Modeling Choice

The LCS approximation of a system creates hyperplanes in
(x, u, λ) space with respect to every contact pair of interest.
While not completely accurate, one can conceptualize these
hyperplanes as approximating the non-linear geometry of a
scene via planes tangent to the object geometry at the witness
points. Thus we can gain insights from cartoons like Figure
2 depicting R3 hyperplanes.1 With these visuals in mind, it is
evident the half-space boundaries can easily lock the robot into
regions where it cannot apply positive normal force to move
the object towards its goal (e.g. the third from the left example
in Figure 2). The contact constraints in the C3 MPC problem
(4) prevent planning negative normal forces, so the robot will
plan to do nothing rather than make negative progress.

Thus, C3 is fundamentally local. Past C3 demonstrations
[13], [14] required careful experimental design and/or ad-
ditional heuristics to encourage or force the end effector
out of regions where the local LCS view is antagonistically
simplified. These heuristics depend on the system and the goal,
and bake in prior knowledge for what regions better enable
C3 to make task progress. We seek a simple way to instill
the global knowledge C3 lacks into a controller that performs
contact-rich manipulation at which C3 locally excels.

B. Separate Contact-Free and Contact-Rich Modes

First, consider that any optimal multi-contact control prob-
lem can be decomposed into an initial contact-free mode and
a subsequent contact-rich mode. The contact-free mode has no
collisions between the robot and manipulated objects, and the

1Precisely, the linearization of the gap function ϕ is a combination of the
hyperplanes in the figure, with additional terms derived from the linearizations
of the single-step dynamics.
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Fig. 3. The algorithm for one control loop of our sampling-based contact-implicit controller. The third step that solves a local contact-implicit MPC problem
for each sample can be parallelized, since each plan is independent. In this example, the top sample’s CI-MPC plan makes little progress to the object goal,
and thus is associated with high cost. The second sample’s CI-MPC plan shows more progress, and thus is lower cost.

contact-rich mode can make and break contact as it pleases.
This suggests a new bilevel optimization problem2 given by

min
K,xswitch

min
xk,uk

K∑
k=0

cfree(xk, uk)

s.t. xK = xswitch

+
min
xk,uk

N∑
k=K

crich(xk, uk)

s.t. xK = xswitch

 ,

(5)

whose outer problem selects a time step K and system state
xswitch for when and where the mode switches from contact-
free to contact-rich, and whose inner problem minimizes the
contact-free and contact-rich costs (cfree and crich, respectively)
given the intermediate state xswitch. This loses no generality
from the original contact-rich control problem (3). To enable
computational efficiency, we approximate in (5):

1) the contact-free mode as end effector repositioning
(kinematic path planning);

2) the contact-rich mode via local CI-MPC (C3 [14]).
The first approximation can be justified for quasi-static sys-
tems, where the object remains stationary during contact-
free motion. While no tasks are truly quasi-static, this is a
common assumption in manipulation [22]–[24]. As we will
see in §V, even for more dynamic tasks, this is not particularly
limiting. This means the effective output of the first stage
is a new position for the end effector, making the search
space of the outer optimization problem low dimensional.
Specifically, if a full system state x contains [qee, qobj, v], we
impose xswitch = [qee,switch, qobj,init, vinit] where only qee,switch
differs from xinit. Additionally, the cost of the contact-free
stage can be penalized by a simple end effector travel cost.

The second simplification is based on the efficacy of C3 for
the more challenging portion of the problem, with LCS dy-
namics local to the starting state with xswitch. By making global
decisions via contact-free path planning and sequencing with
contact-rich motions, we are able to mitigate the limitations
inherent in the locality of C3’s contact-implicit control.

C. Sample Switching States

Even with simple travel cost and C3 approximations to the
contact-free and contact-rich modes, respectively, the bilevel
optimization problem is intractable to solve in real time

2Ignoring other constraints for brevity, including dynamics, contact dynam-
ics, initial condition, input limits, etc.

because it would require solving (expensive) C3 for every
candidate xswitch. Instead, we select a small set of xswitch
samples, which crucially can be evaluated in parallel. This
sample set always includes the current system state, i.e. our
hierarchical controller always knows the contact-rich plan and
can enter or remain in the contact-rich mode whenever it
wants. At every control loop, our controller computes the C3
costs for the xswitch candidates, adding the contact-free travel
costs appropriately. To sample xswitch candidates, we assume
access to a sampling strategy SampleEE(xinit, xswitch,prev, ns)
which draws ns samples for potential end effector locations.
The first sample is always qee,init, and the second is qee,switch,prev,
if there is one (precisely, the controller’s last loop was in
contact-free mode and was pursuing xswitch,prev). To evaluate
costs, we assume access to the C3 algorithm and the function
C3Cost(xsample, xgoal), which returns the C3 cost from (4).
This sampling and evaluation step is detailed by Algorithm 1.

Algorithm 1 Sample and Evaluate
Require: xinit, xgoal, xswitch,prev if there was one, number of

samples ns, sampling strategy SampleEE, travel cost
weight wtravel, C3 algorithm and associated cost C3Cost

1: qsample,ee,1:ns
← SampleEE(xinit, xswitch,prev, ns)

Parallelizing samples, solve C3 and impose travel cost.

2: for i ∈ {1, . . . , ns} do
3: ctravel ← wtravel ∥qee,init − qee,sample,i∥
4: xsample,i ← [qee,sample,i, qobj,init, vinit]
5: csample,i ← C3Cost(xsample,i, xgoal) + ctravel
6: end for
7: return (xsample, csample)1:ns

D. Switch Modes Based on Costs and Progress

Given a set of xswitch candidates and associated inner costs
csample, we must pursue one. If we pick the current state,
our controller executes the actions computed during the C3
solve. If we pick a different state, our controller commands
a collision-free path to the new end effector location. A
natural selection algorithm might be to choose the sample
with the lowest associated cost. However, we find this results
in indecisive behavior. We attribute this primarily to C3



5

variability, as C3 is a local algorithm with no convergence
guarantees. Specifically, we notice two challenges when tuning
the controller:

1) Inefficiency: The controller switches from contact-rich
to contact-free mode, even when the robot is already
poised to manipulate the object towards the goal.

2) Ineffectiveness: The controller remains in the contact-
rich mode, even though the robot is not poised to
manipulate the object towards the goal.

First, we impose hysteresis on cost comparisons to make
switching between modes (and between xswitch targets within
the contact-free mode) more decisive, defining hysteresis val-
ues hfree-to-rich, hrich-to-free, hfree-to-free (where hfree-to-free encour-
ages decisiveness for where to relocate within the contact-free
mode). In particular, to avoid the inefficiency issue, we choose
hrich-to-free to be large. However, this alone risks exacerbating
ineffectiveness. To address this, we force a transition to the
contact-free mode if the manipulated object fails, over a
specified period of time, to make progress toward the goal.
After the contact-rich mode makes no progress for more than
this time threshold, the controller pursues the sampled xswitch
with the lowest cost.

To increase the likelihood of pursuing a high-quality xswitch
sample after leaving contact-rich mode, we maintain a buffer
of relevant sampled end effector positions and their associated
costs. The sample buffer is pruned of samples whose associ-
ated object locations at the time of computing cost are too far
from the current object location. At every control loop, we:

1) Update xinit from sensing.
2) Generate and evaluate samples via Algorithm 1.
3) Maintain the sample buffer: remove outdated samples

based on object movement and add new ones.
4) Consider mode switching based on cost-based (with hys-

teresis hrich-to-free, hfree-to-rich) and progress-based logic.
If within contact-free mode, consider switching pursued
end effector locations (with hysteresis hfree-to-free). If
transitioning from contact-rich to contact-free, choose
the lowest cost sample in the buffer.

5) Execute a plan based on the current mode. If in contact-
rich mode, execute the plan from solving C3 with xinit.
If in contact-free mode, follow a collision-free path from
xinit to the pursued sample.

We repeat this in receding horizon fashion, which enables
the control to adapt and adjust to observed system dynamics
as well as to consider more samples with every control loop.
One control loop of our approach is depicted in Figure 3.

V. EXPERIMENTS

A. Task, State Representation, and Contact Modeling

To validate our controller, we test on multiple examples with
a Franka Panda arm equipped with a spherical end effector to
manipulate an object to a pose goal. When the object goal
is reached within position and rotation tolerances, a new pose
goal is randomly generated, demonstrating generalization over
initial and goal poses. We test on two hardware examples (3D
jack and planar T, both shown in Figure 4) and additionally
show 3D jack results in simulation for more direct comparison

Fig. 4. We demonstrate our controller on two manipulation examples: 3D
pose goals with a jack (left), and 2D planar pose goals with a T (right). The
inset renderings in the bottom corners depict a view of the object’s goal pose
relative to the current pose estimate.

to a baseline (more detail in §V-E). Our controller operates
on LCS dynamics where x ∈ R19 (representing end effector
position, object position, object orientation, and their veloci-
ties), u ∈ R3 (representing cartesian forces applied to the end
effector), and λ ∈ R16 (representing 4 contact pairs with a
4-sided polyhedral friction cone approximation [25]).

Our approach requires manual enumeration of contact ge-
ometries, but uses collision detection between them to identify
possible contact points at every control loop. These points
automatically change with motion, and the approach can ac-
commodate any geometries handled by the collision detection
algorithm. For both examples, one contact pair uses the closest
witness point on the object to the end effector, and the
remaining 3 contact pairs are for object-ground contacts. For
the jack, we obtain the closest point per capsule to the ground.
A visualization of all the jack contact points for a particular
configuration is illustrated in Figure 5. For the T, we define
small spheres at the 3 distal ends as witnesses to the ground.
For this planar example, we use the full 3D states of the end
effector and T but add a constraint in the contact-rich stage
(C3) to enforce the end effector maintains a pre-defined height.

B. Implementation

Our controller is implemented in C++ within the Drake
systems framework [26]. We take the approach in [13] and
connect our controller to an operational space controller (OSC)
[27], which tracks task-space commands specified by our
policy at 8-12 Hz, via joint-level control at 1 KHz. We addi-
tionally integrate with Franka hardware and state estimators as
in the control diagram in Figure 6. Object state estimation uses
FoundationPose [28] running at 30Hz with a D455 RealSense
RGBD camera. Our setup uses two computers: a computer
with a 13th generation Intel Core i9-13900KF with 32 threads
(for our sampling-based CI-MPC) and an NVIDIA GeForce
RTX 4090 GPU (for FoundationPose), and an Intel i7-8700K
processor (for our OSC and robot drivers) equipped with a
real-time kernel for communicating with the Franka. Inter-
computer communication occurs over LCM [29].

C. Sampling Parameters

We consider three samples (including the end effector’s
current location) in parallel with every control loop. We solve
C3’s QP with OSQP [30] and MIQP with Gurobi [31]. Our
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Fig. 5. Illustration of contact points considered for the jack object.

Fig. 6. A block diagram depicts our hierarchical controller (top left block),
which performs real-time CI-MPC globally by sampling potential end effector
locations for switching from contact-free to contact-rich mode.

samples and the C3 MIQP both utilize parallelization, so
we use the maximum number of threads in our hardware
setup. Because of this, additional samples slow down the
control rate and decrease performance. With this setup, our
controller runs at 8-12 Hz for all experiments. We randomly
sample end effector locations on a sphere around the jack
and on an enlarged planar perimeter for the T. While more
sophisticated sampling is compatible with our approach, these
simple distributions are notably effective.

D. Cost Parameters

To avoid overly aggressive behavior from high costs, we
truncate the final goal’s displacement from the current object
location (15cm in position and 2 radians in orientation). This
bounds the errors encountered by the optimization problem
and mitigates indecision when orientation error approaches π
radians, at which any rotation direction is equally effective.
This orientation truncation requires hysteresis on the rotation
axis to ensure stability of the direction of rotation.

For the Q cost matrix, a typical diagonal structure is
sufficient for position and velocity errors in our experiments.
However, orientation presents some challenges. The true ori-
entation error we desire to minimize is θ2error, where θerror is
the scalar angle of the relative rotation between the current
and goal orientations. From quaternions, this is calculated as

θerror =

(
arctan

(∥∥q2rel,x + q2rel,y + q2rel,z

∥∥
qrel,w

))2

, (6a)

where qrel = q−1
quat,curr ⊗ qquat,goal, (6b)

for ⊗ as quaternion product. The arctan indicates a problem-
atic region where its argument is zero – this occurs precisely

3D Jack Hardware Goals Achieved within Time Limit

Fig. 7. Cumulative distribution for time to goal, using sets of tight and loose
position and orientation tolerances.

when qquat,curr = qquat,goal. The landscape is not strictly convex
at this point and is locally non-convex. Thus, the naive 2-norm
error between the elements of qquat,curr and qquat,goal,

θ̃2error = ∥qquat,curr − qquat,goal∥2 . (7)

poorly captures the true θerror when it is small. To address this,
we set the 4x4 object quaternion portion of Q (throughout
the entire MPC horizon) to be the Hessian of θ2error with
respect to the elements of the current quaternion, about the
qquat,curr, qquat,goal operating point. We regularize this Hessian,
adding |γ| · I4×4, where γ is its most negative eigenvalue to
ensure positive-semi definiteness. Implementing this portion of
Q is a critical step to effectively and reliably track orientation.

E. Comparisons

Due to the inability to escape geometric local minima, C3
fails essentially 100% of the time on our tasks and thus is
not compared. We compare with MuJoCo MPC (MJPC) with
predictive sampling [5] on the 3D jack task in simulation.
As with our controller, we use MJPC as an online planner
operating on a reduced model, abstracting the end effector
as controlled in xyz only, whose motion is tracked via our
joint-level OSC simulated in Drake. Unlike our controller, the
MJPC planner models the nonlinear dynamics of the floating
end effector moving in 3D with the jack and environment.
Any comparison is sensitive to tuning, and we put forth a
best-faith effort to tune MJPC. We found tighter control input
limits to be helpful in preventing wild motions, selected a
noise parameter of 0.295 to balance sample exploration and
previous plan exploitation, and tuned state and input costs.
MJPC performed best with control input splines of 5 knot
points over a predictive horizon of 0.8 seconds, reasonably
longer than our policy’s 0.25 seconds, since we effectively get
longer-term insight via our contact-free sampling.

VI. RESULTS

We refer readers to our supplementary video for extended
results. We evaluate performance under two sets of success
thresholds: the stricter set requires under 2cm and 0.1 radians
(5.7 degrees) of error, while the coarse set requires under 5cm
and 0.4 radians (22.9 degrees) of error. Related works (e.g. [4],
[32]) often utilize this coarse threshold. For all experiments,
we execute the controller until the tight threshold is realized,
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Fig. 8. Our approach outperforms MJPC in 3D jack manipulation in
simulation with high precision tolerances (2cm and 0.1 radians pose error).
Our controller achieves goals faster than MJPC (top) while also avoiding
hardware limit violations (bottom) such as joint velocity, joint torque, and
workspace limits. The MJPC lines are annotated with the values of the end
effector velocity cost weight, showing decreased performance but ineffective
ability to reduce hardware violations at higher end effector velocity costs.

Mean ±σ Time to Goal (s) within Pose Tolerances
[Min, Max] Tight: 2cm, 0.1rad Loose: 5cm, 0.4rad

HW 3D Jack (ours) 109.20± 64.24 84.86± 60.54
67 trials [17.40, 292.07] [5.20, 257.74]

Sim 3D Jack (ours) 49.31± 30.35 33.84± 26.39
26 trials [9.71, 124.70] [7.97, 97.82]

Sim 3D Jack (MJPC) 107.91± 112.38, 68.00± 83.50
34 trials [3.30, 567.69] [1.51, 343.79]

HW Planar Push-T (ours) 30.45± 13.11 17.43± 7.59
106 trials [7.50, 79.43] [3.86, 42.00]

TABLE I
PERFORMANCE METRICS OF HARDWARE (HW) AND SIMULATION (SIM)
EXPERIMENTS UNDER TIGHT AND LOOSE TOLERANCES. MJPC RESULTS

USE HIGHEST-PERFORMING END EFFECTOR VELOCITY COST OF 0.09.

then switch to the next goal pose. In post-processing, we back-
compute the time-to-goal under the coarse success thresholds
on the same experiments, presented in Table I.

A. 3D Jack

Figure 7 combines the hardware results from four continu-
ous experiments of 21, 16, 15, and 15 successfully achieved
random pose goals. All four experiments terminated due to
the robot hitting workspace safety limits. Figure 7 shows the
cumulative distribution for time to goal, demonstrating that
while most goals are reached relatively quickly, there is a long
tail with some challenging targets requiring more time.

Figure 9 depicts two single-goal trials achieved on hardware,
annotated with contact-free and contact-rich modes. Both trials
demonstrate cost-based and progress-based mode transitions.

3D Jack Hardware Manipulation Examples

Fig. 9. Jack position and orientation errors over time, with contact-free (grey)
and contact-rich (white) modes shaded and mode switching reasons labeled.

Most often, the errors do not change during the contact-free
mode, since the object usually stays fixed while the robot
relocates. These examples show how the controller balances
position and rotation progress, occasionally sacrificing one to
make progress on the other. A common cause of significant
time spent per trial is simultaneous low position error and
higher rotation error. However, the only terminal failure condi-
tion is when the object gets pushed to the boundary of the safe
workspace, causing the robot to cross our workspace safety
limits. In all other trials, our controller’s persistence eventually
brings the object to the goal in every test we performed.

1) Sim-to-Real Gap and Comparison to MJPC: Our con-
troller, unsurprisingly, achieves pose goals faster in simulation
than on hardware (see 49.31s simulation average compared to
109.20s hardware average in Table I). This gap, common in
the literature, can be partly explained by state estimate errors,
incorrect models, and FoundationPose’s added computational
load. We reiterate our approach is not optimal; it is a real-
time CI-MPC approach that makes all its decisions on-the-fly.
While not optimal, our controller is demonstrably effective
on difficult tasks and outperforms MJPC [5] in simulation on
our 3D jack example (Table I, Figure 8). Further, our con-
troller satisfies Franka hardware limits (joint velocity/torque,
workspace limits), while MJPC nearly always violates at least
one. Given this high hardware limit violation (HWV) rate, we
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did not feel safe deploying MJPC on the real robot. While
impossible to compare against all possible MJPC weights, we
investigate the role of end effector velocity cost weight, due
to its role in the controller’s speed. Increasing this cost weight
makes MJPC less performant, yet does not prevent HWV.

B. Planar T Pushing

The statistics in Table I for the hardware planar T exper-
iments combine four continuous experiments of 56, 20, 20,
and 10 successfully achieved random planar pose goals in
a row. With an average of 30.45s to achieve high-precision
pose goals, our approach achieves a state-of-the-art time-to-
goal competitive with other works on this example. Notably,
while some prior works with this example use data-driven
approaches (e.g. pre-training with Diffusion Policy [1]) or
require offline computation (e.g. offline trajectory optimization
[33]), our approach demonstrates only the object model is
required, and generalization to different goal poses is a natural
byproduct absent from these prior works.

VII. LIMITATIONS

While we contribute a solution to the global, 3D manipula-
tion problem, our controller still took ∼1.8 minutes on average
over 67 trials to achieve precise SE(3) goals. We reiterate
the generality of our approach and acknowledge these tasks
are challenging. However, we identify addressing inefficiencies
as future work. Like all model-based methods, our controller
requires dynamics models of the robot, objects it manipulates,
and environment, preventing use in truly novel scenarios. Our
provided demonstrations used a single spherical-shaped end
effector, which we reasonably modeled as a single robot-object
contact pair. If applied to a more dexterous manipulator such
as a multi-fingered hand, both the contact pairs and state size
would increase. The difficulty of the MPC problem scales with
the number of contact pairs and the state vector size, slowing
down control rates if either/both increase.

VIII. CONCLUSION

Our model-based controller performs generalizable, precise
pose-driven tasks through multi-contact dynamics. By splitting
the control problem into contact-free and contact-rich stages,
we reap the benefits of global exploration when we sample new
end effector locations plus local efficacy when existing CI-
MPC methods take over after arriving at a desired location. In
closed loop, the result is a persistent, globally-aware controller
that can robustly reach precise pose goals without intervention.
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