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Abstract— When legged robots impact their environment,
they undergo large changes in their velocities in a small amount
of time. Measuring and applying feedback to these velocities is
challenging, and is further complicated due to uncertainty in the
impact model and impact timing. This work proposes a general
framework for adapting feedback control during impact by
projecting the control objectives to a subspace that is invariant
to the impact event. The resultant controller is robust to
uncertainties in the impact event while maintaining maximum
control authority over the impact invariant subspace. We
demonstrate the utility of the projection on a walking controller
for a planar five-link-biped and on a jumping controller for a
compliant 3D bipedal robot, Cassie. The effectiveness of our
method is shown to translate well on hardware.

I. INTRODUCTION

Handling the making and breaking of contact lies at
the core of controllers for legged robots. Its role becomes
increasingly important as the the field demands that our
legged robots be capable of more agile motions. However,
current controllers for legged robots are incredibly sensitive
to these impact events. When a robot’s foot makes contact
with the world, the foot is brought instantaneously to a stop
by a large contact impulse. The presence of large contact
forces and rapidly changing velocities hinders accurate state
estimation. Coupled with the poor predictive performance
of our contact models [1] [2] [3], this combination of large
state uncertainty and poor models makes control especially
difficult.

Roboticists have attempted to improve the robustness of
legged robots to these impact events by addressing the
reference trajectories as well as the controllers that track
those trajectories. For example, the open-loop swing-leg
retraction policy has been shown to have inherent stability
to varying terrain heights [4]. Qualitatively similar motions
were also found independently through robust trajectory
optimization [5] [6]. While designing more robust trajectories
shows promise, the challenge of designing controllers to
track these often discontinuous trajectories still remains.

Tracking a discontinuous trajectory is problematic due to
the unavoidable difference between the reference trajectory
and actual system caused by even minuscule differences
in impact timing. These differences cause feedback control
efforts to spike, leading to instabilities. While these controller
spikes can be reduced through strategies such as blending
controller gains and contact constraints around the impact
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Fig. 1. When legged robots such as Cassie execute agile high-impact
motions like jumping, shown above, the joint velocities undergo rapid
changes at the impact event. Attempting to apply feedback control on these
velocities, using a reference trajectory that may be discontinuous due the
rigid contact model assumption, is a difficult task. Often, the controller will
actually introduce disturbances. This paper proposes a method to project
both the robot velocities and the reference trajectory to a subspace that is
invariant under impacts.

event [7], [8], these heuristic methods do not address the
fundamental challenge of tracking discontinuous trajectories.
A strategy that does attempt to directly addresses this chal-
lenge is termed reference spreading control [9]. This method
leverages contact detection and extending the reference tra-
jectories to ensure that a valid reference trajectory exists
despite mismatches in impact timing. However, during the
transition between contact modes when the impact is still
resolving, tracking even the extended reference trajectories
can be detrimental.

Alternate methods, we note, focus instead on avoiding
impact events altogether. While impacts do not exist for
frequently used templates such as the linear inverted pendu-
lum (LIP) and the spring-loaded inverted pendulum (SLIP),
impacts will manifest when embedding these templates onto
physical robots with non-negligible mass in the legs. Fur-
thermore, it is neither possible nor desirable to avoid impacts
for more agile motions such as running or jumping. Thus,
handling non-trivial impacts in a robust manner is essential
to the development of more agile legged robots.

In this work, we propose a method for tracking discontin-
uous trajectories across impacts that directly avoids jumps
in tracking error. We achieve this by projecting the tracking
objectives down to a subspace where they are invariant to
the impact event. Gong and Grizzle [10] made an important
insight about angular momentum about the contact point,
noting that it is invariant to impacts at that contact point.
Inspired by this, we generalize this property and extend it
to include the entire invariant subspace, which we term the
impact invariant subspace. The primary contribution of this
paper is the identification of this subspace for the purposes of
improving controller robustness to uncertainty in the impact
event. We develop a method for adapting controller feedback
to be applied only on this subspace of velocities that are



invariant to any contact impulses. The subspace is easily
defined for any legged robot at any given configuration, and
the projection to that subspace can be applied to any tracking
objective that is purely a function of the robot’s state. A key
benefit of the impact invariant projection is that it enables
controllers to be robust to uncertainty in the impact event,
while minimally sacrificing control authority .

To demonstrate the directional robustness to uncertainty
in the impact event, we apply the projection to a walking
gait for a planar five link biped. Additionally we showcase
the performance of the projection on an Operational Space
Controller (OSC) tracking a jumping motion in simulation
and on hardware for the bipedal robot Cassie.

II. BACKGROUND

A. Rigid Body Dynamics

We use both the planar biped Rabbit [11] and the 3D
complaint bipedal robot Cassie to demonstrate the benefits
of the idea of impact invariance. Both legged robots are
modeled using conventional floating-base Lagrangian rigid
body dynamics. Cassie has passive springs on its heel and
knee joints; for the purposes of modeling and control we
treat these springs as rigid. However, when evaluating our
results in simulation, we do include these terms.

The robot’s state x ∈ R2n = [q; q̇], described by its
positions q ∈ Rn and velocities q̇ ∈ Rn, is expressed
in generalized floating-base coordinates1. The dynamics are
derived using the Euler-Langrange equation and expressed
in the form of the general manipulator equation:

M(q)q̈ + C(q, q̇) + g(q) = Bu+ Jλ(q)
Tλ, (1)

where M is the mass matrix, C and g are the Coriolis and
gravitational forces respectively, B is the actuator matrix, u is
the vector of actuator inputs, and Jλ and λ are the Jacobian
of the holonomic constraints and corresponding constraint
forces respectively.

B. Rigid Body Impacts

In this paper, we model the complex deformations and
surface forces when a legged robot makes contact with
a surface using a rigid body contact model. This contact
model does not allow deformations; instead, impacts are re-
solved instantaneously. Therefore, the configuration remains
constant over the impact event and the velocities change
instantaneously according to the contact impulse Λ:

M(q̇+ − q̇−) = JT
λ Λ, (2)

where q̇+ and q̇− are the pre- and post-impact velocities, and
Λ is the impulse sustained over the impact event. With the
addition of a standard constraint that the new stance foot does
not move once in contact with the ground (no-slip condition):

Jλq̇
+ = 0, (3)

1For notational simplicity, we assume q̇ = v, where v are the velocities.
For 3D orientation, as is the case for Cassie, this requires a straight-forward
extension to use quaternions.

Fig. 2. Illustration of a reference trajectory with a discontinuity due to an
impact and a system that seeks to track that discontinuous trajectory. The
velocity error will spike unless the actual and nominal impact time match
up perfectly.

Λ can be solved for explicitly, determining the post-impact
state x+ purely as a function of the pre-impact state x−:

q+ = q−, (4)

q̇+ = (I −M−1JT
λ (JλM

−1JT
λ )−1Jλ)q̇

−. (5)

This reset map is conventionally enforced as a constraint
between hybrid modes separated by an impact event for
trajectory optimization of legged robots.

III. IMPACT INVARIANCE

To motivate the concept of the impact invariant subspace,
we begin by highlighting and describing the difficulties of
applying feedback control during an impact event. For the
sake of simplicity, we consider a feedback controller with
constant feedback gains that controls an output y : Rn → Rd

to track a time-varying trajectory ydes(t) : [0,∞) → Rd by
driving the tracking error ỹ(t) = ydes(t) − y(t) to zero.
This is commonly accomplished with a standard control law
u = uff+ufb where uff is the feedforward controller effort
required to follow the reference acceleration ÿdes and the ufb

is the PD feedback component given by:

ufb(t) = Kpỹ(t) +Kd
˙̃y(t). (6)

The reference trajectory ẏdes(t) for systems that make
contact with their environment has discontinuities at the
impact events in order to be dynamically consistent with
(5). Therefore, in a short time window around an impact
event, there will be a discontinuity in the reference trajectory
ẏdes(t) at the nominal impact time and another discontinuity
when the actual system ẏ(t) makes contact with the ground
as shown in Fig. 2. Because the robot configuration is
approximately constant over the impact event, the change in
controller effort is governed by the change in velocity error:

Δu ≈ KdΔẏ, (7)

thus any mismatches in impact timings will unavoidably
result in spikes in the feedback error and therefore control
effort as similarly noted in [9].

Remark 1: We make an assumption that the jump in the
reference trajectory is time-based. Although it is possible



to formulate trajectories with event-triggered jumps, these
methods require detection, which for state-of-the-art methods
still have delays of 4-5ms [12]. Moreover, in reality, impacts
are not resolved instantaneously but rather over several
milliseconds. In this time span, it is not clear which reference
trajectory to use as using either trajectory will output a large
tracking error.

Note that a large tracking error, shown in Fig. 2, re-
sults from only a small difference in impact timing, yet
the controller will respond to the large velocity error and
introduce controller-induced disturbances. This sensitivity to
the impact event is amplified by the large contact forces
that impair state estimation and inaccuracies in our contact
models [2], meaning that the velocities post-impact may not
match up with the reference trajectory. Detecting the “true”
error for discontinuous functions is a difficult problem and
has been explored in [13].

The key insight in resolving this problem is inspired
by [10], in which Gong and Grizzle delineate desirable
properties of angular momentum about the contact point,
denoted as L. They highlight that L is invariant over impacts
on flat ground, meaning that it is continuous over the impact
event despite it being a function of velocity.

The concept of an impact invariant subspace is a gener-
alization of this property. We observe that there is a space
of velocities that, like L, are continuous through impacts for
any contact impulse. By switching to track these outputs
in a small time window around anticipated impacts, we
avoid controller-induced disturbances from uncertainty in the
impact event. Note that while L ∈ R3 or R2 for planar
systems such as Rabbit, the impact invariant subspace ∈
Rn−c, where n is the dimension of generalized velocities
and c is the number of independent constraints of the impact
event. For Rabbit, this space is ∈ R7−2. For Cassie, each foot
provides 5 holonomic constraints and the four bar linkage
on each leg provides 2 additional holonomic constraints that
are always active. Therefore the impact invariant subspace is
∈ R18−7 for impacts with a single foot (walking, running)
and ∈ R18−12 for impacts with both feet (jumping). A direct
benefit of this higher dimensional space is the higher degree
of possible control, which enables more agile or energetically
efficient motions.

The impact invariant subspace is defined as the nullspace
of M−1JT

λ , which is the matrix that maps contact impulses
to generalized velocities. Thus a basis P (q) ∈ R(n−c)×n for
this nullspace is such that:

P (q̇ − q̇−) = 0 = PM−1JT
λ Λ. (8)

This creates the intended effect, that is, for any contact
impulse Λ, the impact invariant velocities will be unchanged.
Alternatively, to project the generalized velocities down to
the impact invariant subspace, we can simply create a low-
rank Rn×n projection matrix Q(q) = PTP .

To illustrate the benefit on a physical robot, we apply the
impact invariant projection to the joint velocities for Cassie
executing a jumping motion right when it lands as shown

Fig. 3. Demonstration of the impact invariant projection on joint velocity
data from a successful jumping experiment on the physical Cassie robot.
Joint velocities (top) during the landing event change rapidly which is
difficult to perform feedback control on. By projecting the same joint
velocities to the impact invariant subspace (bottom), the values are more
consistent and more amenable for feedback control. Note, the change in
joint velocities primarily occurs within a time span of only 10 ms. The L
and R subscripts indicate the left and right leg respectively.

in Fig. 3. Observe that the projected joint velocities are
significantly smoother than the original joint velocities.

A. Application to Joint Space Tracking

Many joint space controllers have been formulated for
the control of bipedal robots. These include controller such
as Hybrid LQR [7], joint PD control [14] [15], as well as
inverse dynamics controllers that primarily track joint space
outputs [16]. Utilizing the impact invariant projection on
these controllers is straightforward. In a small time window
around the anticipated impact, simply replace the original
control law

u = uff +Kpq̃ +Kd
˙̃q,

with the new projected joint velocity error, which results in

u∗ = uff +Kpq̃ +KdQ(q) ˙̃q. (9)

B. Application to Task Space Tracking

1) Operational Space Controller: When the tracking ob-
jectives are instead more general functions of the robot’s



state, this style of controller is commonly referred to as
operational space control (OSC). An OSC is an inverse
dynamics controller that tracks a set of task or output space
accelerations by solving for dynamically consistent inputs,
ground reaction forces, and generalized accelerations [17]
[18]. For an output position y(q) = φ(q) and corresponding
output velocity ẏ = Jy(q)q̇, where Jy(q) = ∂φ

∂q , the com-
manded output accelerations ÿcmd are calculated from the
feedforward reference accelerations ÿdes with PD feedback:

ÿcmd = ÿdes +Kp(ydes − y)−Kd(ẏdes − ẏ) (10)

The objective of the OSC is then to produce dynamically
feasible output accelerations ÿ given by:

ÿ = J̇y q̇ + Jy q̈,

such that the instantaneous output accelerations of the robot
are as close to the commanded output accelerations as
possible. This controller objective can be nicely formulated
as a quadratic program:

min
u,λ,q̈

N�

i

(ÿi − ÿicmd
)TWi(ÿi − ÿicmd

) (11)

subject to: Dynamic Constraints (12)
Holonomic Constraints (13)

Friction Cone Constraints. (14)

i denotes the particular output being tracked (e.g., center of
mass or foot position) and Wi are corresponding weights on
the tracking objectives.

2) Projecting Outputs to the Impact Invariant Subspace:
The desired and actual positional outputs ydes and y are
trivially continuous over impacts. Thus, the impact invariant
projection is applied only to the output velocities ẏ and
ẏdes. However, due to the lack of a one-to-one mapping
between output velocities ẏ and generalized velocities q̇,
the projection in (8) cannot be naively applied. Still, it is
possible to project the output velocity to a subspace so that it
is invariant to any unknown contact impulse. In practice, this
can be accomplished for a single output with the following
optimization problem:

min
λ

��ẏdes − Jy(q̇ +M−1JT
λ λ)

��
2
. (15)

This applies a correction to the generalized velocities q̇ that
minimizes the tracking error in the output velocities, under
the condition that the correction lies within the set of feasible
velocities that could result from a contact impulse λ. In the
absence of constraints on λ, this can be formulated as a
least squares problem and the optimal λ can be solved for
implicitly with the Moore-Penrose pseudo-inverse denoted
by (·)†. The projected output velocity error, ẏproj , can then
be found as:

ẏproj = ẏdes − Jy q̇ − Jy q̇λ, (16)

where the correction q̇λ is given by:

q̇λ = M−1JT
λ (JyM

−1JT
λ )†(ẏdes − Jy q̇). (17)

This projected error ẏproj is then used in place of the original
output velocity error ẏdes − ẏ in (10). This can have two
interpretations. One interpretation, which is more literal, is
that we apply a correction in the space of λ that minimizes
the velocity tracking error in the output space. The other
interpretation, is that the correction projects the velocity
tracking error to the impact invariant subspace by eliminating
the sensitivity of the error on λ. In either interpretation,
it is easy to see that ẏproj is invariant to any unknown
contact impulse. Note, the solution to the least squares
problem, λ, is not intended to be most physically plausible
contact impulse, but instead the impulse that minimizes the
tracking error. In both interpretations, the projection assumes
an optimistic correction in the λ space. Related work has also
explored incorporating potential impacts into robust control
formulations [19]. A primary distinction is that [19] seeks to
be robust to impulsive impacts from a known model but at
unexpected times, where our approach makes no assumptions
on the magnitude or duration of impact forces.

Remark 2: q̇λ, defined in (17), can easily be constructed
when there are multiple tracking objectives by simply stack-
ing the output space Jacobians and velocity errors. The
derivative gains and weighting matrices defined in (10) (11)
can similarly be included, but in practice we did not find a
noticeable effect from including them.

For output spaces like the position of impacting foot, ẏproj
is exactly zero. This can be seen because Jy is identical
to Jλ, and thus (16) equals 0 for all states. Intuitively, this
makes sense because the foot undergoes large changes in
its velocity when it rapidly comes to rest when it makes
contact with the ground, and thus we should not attempt
to control the foot velocity during impact. Therefore, for
some outputs, the projection behaves similar to applying no
derivative feedback.

3) Constraints on the Projection: Due to the lack of
constraints on λ, the projection impulse is not guaranteed to
be physically possible. λ could be constrained to lie within
the friction cone FC. However, upon further examination,
inclusion of these constraints may be undesirable. This is
because sensitivity to the impact event can result from the
absence of expected impacts as well - consider the case
when the robot makes contact after the nominal impact time.
Constraining λ ∈ FC ∪ −FC is not practical as this set
is non-convex. Although it is possible to formulate this as
a binary mixed integer program, solving this problem was
considered to require too many assumptions to justify the
additional complexity.

IV. EVALUATION

To showcase the advantages of using the impact invariant
subspace, we apply the aforementioned projection on two
examples in simulation: a walking controller for the planar
five-link biped Rabbit [11] and a jumping controller for
the 3D bipedal robot Cassie. We then adapt the jumping
controller to the physical robot Cassie and show that the we
can achieve similar effects on hardware.



A. Controller Details

1) Finite State Machine: We use a time-based finite state
machine (FSM) to transition between the tracking objectives
and the active contact mode of the OSC. In a small time
window of duration T before and after the nominal impact
time, we blend in the correction q̇λ using a continuous scalar
function α(t) to avoid introducing additional discontinuities.
The scalar function is given by:

α(t) = 1− exp(
−(t− tswitch + T )

τ
), (18)

where tswitch is the nominal impact time given by the
reference trajectory, and τ is the time constant. We then use
α(t) to modify (16) to be:

ẏproj = ẏdes − Jy q̇ − Jy(α(t)q̇λ).

Note our choice for the blending function α(t) is arbitrary;
any monotonic continuous function with a range ∈ [0, 1] can
accomplish a similar purpose.

2) Reference Trajectories: The target walking and jump-
ing trajectories were solved for offline by solving a con-
strained trajectory optimization problem on the respective
full order models. The problems were transcribed using
DIRCON [20] and solved using SNOPT [21]. The jumping
trajectory was constrained to have the robot pelvis reach an
apex height of 15cm above its initial starting height and to
have both feet have 15cm of clearance from the ground at
the apex. The same jumping trajectory was used in both
simulation and on the physical robot.

B. Joint Space Controller for Rabbit Walking

1) Experimental Setup: To demonstrate the directional
nature of the impact invariant projection, we apply the pro-
jection to a joint space inverse dynamics walking controller
for the planar biped Rabbit in simulation with the hip and
knee joint angles in both legs as the outputs. We generate
a periodic walking trajectory using trajectory optimization
and perturb the swing foot vertical velocity by 0.1 m/s at
the start of the trajectory so that the robot makes contact
away from the nominal impact time. To evaluate robustness,
we compare the post-impact velocity error in the joints of
both the swing and stance leg for three variations of the joint
space controller:

• No adjustment: this is a standard joint space controller
that makes no special considerations with regards to the
impact event other than switching contact modes at the
nominal impact time.

• No derivative feedback (Kd = 0) applied in a window
25ms before and after the nominal impact time.

• Impact invariant projection applied in a window 25ms
before and after the nominal impact time.

We add the additional comparison to a controller with no
derivative feedback to demonstrate the structure of the impact
invariant subspace. While both applying no derivative feed-
back and using the projection seek to reduce the sensitivity
to large velocity errors at the impact event, the projection
solves this problem in a more principled fashion that leads to

better tracking performance. Note, no direct comparison can
be made to [10]. Although we could regulate L alone, in [10]
the walking controller regulates L through footstep planning,
which occurs at a much slower frequency than regulation
using motor torque inputs.

2) Results: Shown in Fig. 4, the controller using the
impact invariant projection is able to achieve the best tracking
performance out of the three controllers for both legs. It has
better tracking performance than the default controller for the
joint velocities of the impacting leg by not overreacting to the
impact event as shown by the controller efforts. At the same
time, it has better tracking performance than the controller
with no derivative feedback for the joint velocities of the
non-impacting leg by appropriately regulating the velocities
in those joints.

C. Operational Space Jumping Controller

1) Experimental Setup: Next, we evaluate the perfor-
mance of the impact invariant projection on a jumping
controller for Cassie. We chose to look at jumping due to
the richness of the impact event: the robot cannot accurately
estimate its state when it is in the air and must make impact
with the ground with non-zero velocity. We set the target
outputs of the OSC to be the position and orientation of the
pelvis during the initial crouching phase. We then switch to
track the feet positions in flight due to the uncontrollability
of the center of mass. At the nominal landing time, we switch
back to tracking the position and orientation of the pelvis.
Similar outputs are used in another jumping controller for
Cassie [22].

To measure the robustness to uncertainty in the impact
event, we perturb the system in the Drake [23] simulator
by introducing a platform of differing heights [0cm, 5cm] at
the final landing location and by adjusting the penetration
allowance parameter ∈ {10−5, 10−4, 10−3, 5 ∗ 10−3} of the
contact model used by the simulator. Note, the penetration
allowance parameter is roughly equal to the maximum in-
terpenetration between the foot and the ground in meters;
though for high-impact motions such as jumping, the max-
imum penetration can be 2-3 times that. The terrain height
effectively changes the impact time while the penetration
allowance adjusts the stiffness of the ground and therefore
the ground reaction forces during impact. For details on the
contact model used in the time-stepping Drake simulator,
consult [24]. Additionally, we adjust the duration of the
projection window to evaluate the sensitivity of the controller
performance to that parameter. We evaluate the controller
performance on two metrics, the control effort and the
acceleration error at the end of the impact event.

• Control Effort: We quantify the control effort used to
stabilize the robot upon landing using the objective:

Jmot =

� tf

t0

u2dt,

where t0 and tf are the start and end of the projection
window respectively. We use the projection window with



Fig. 4. The joint velocity tracking errors are shown for the swing
(impacting) leg (top) and the stance (non-impacting) leg (middle) for all
three control strategies. The controller that utilizes the impact invariant
projection is shown to be robust to the mismatch in impact timing as
evidenced by lower tracking error compared to the default controller. The
impact invariant controller is also able to maintain full control authority over
the joints in the non-impacting leg compared to the controller that applies
no derivative feedback in the same window. Note, the better performance of
the impact invariant controller is because it is successfully ignores velocity
errors due to the impact event, which is evident from the applied controller
efforts (bottom). We omit the controller efforts from the no derivative
feedback controller to reduce clutter.

the maximum duration of 50ms to ensure a fair com-
parison; this is because all the controllers are identical
outside of this time window. We choose this as a measure
for how hard the actuators are working, with the idea
that minimal control effort is desirable, especially when
applying feedback control when the state is so uncertain.

• Acceleration Error: We used the weighted acceleration
error in the output space to measure the tracking error
after impact:

ÿerr = Kp(ydes − y)−Kd(ẏdes − ẏ),

Jacc =

N�

i=0

ÿTi,errWiÿi,err,

where N = 2 because during the landing phase we track
only the pelvis position and orientation. We choose this
as a way to combine position and velocity error into a
single metric. We evaluate the acceleration error at end of
the longest projection window because after this point, all
the controllers are identical. To avoid bias from sampling
at a particular time step, we sample multiple points near
the desired sample time. To put the acceleration error in
context, we normalize the acceleration error so that an
acceleration error of 1.0 corresponds approximately to a
tracking error of 7cm for the vertical position of the pelvis.
2) Results: The results from the sweep over changes in

the landing platform height and ground stiffness are shown
in Fig. 5. We see a distinct reduction in the absolute control
effort across all perturbations when applying the projection
for all of the tested durations. We observe less sensitivity to
the perturbation to the platform height as well, showcasing
the improved robustness to uncertainty in the impact event.
We see a noticeable improvement in the acceleration error
for perturbations in platform height and ground stiffness as
well, although the performance of the controllers on this
metric is significantly more sensitive to the duration of the
projection. A somewhat surprising result from the sweep
across ground stiffnesses is the lower cost in control effort
for the softer ground. This reduction in control effort is
due to more gradual changes in the velocities at impact,
which results in lower peak actuator efforts - something that
is penalized in our cost function. The acceleration error is
mostly constant across ground stiffnesses and shows a similar
benefit for using the projection.

D. Experiments with the Physical Robot

Finally, we apply the impact invariant projection on the
physical robot to evaluate the robustness to actual uncertain-
ties. Implementing the jumping controller described above
onto Cassie requires some minor additions discussed here.

• State Estimator: We use the contact-aided invariant EKF
developed in [25] to estimate the floating-base pelvis state.

• Contact Estimation: Although we do not directly use con-
tact detection in our controller, the state estimator utilizes
contact data in the measurement update. Cassie does not
have dedicated contact sensors, but contact detection can



Fig. 5. Results from the parameter sweep over unexpected landing
heights and ground stiffnesses for varying durations of the impact invariant
projection. The controllers with the impact invariant projection have a
significantly larger control effort cost compared to the default controller
across all terrain heights and stiffnesses. The projection also reduces the
weighted acceleration error, though the benefit is sensitive to the duration
of the projection.

be achieved through proprioception. We use a generalized-
momentum observer, similar to the method used in [26],
to estimate the contact force at each foot. We then set
a threshold of 60 Nm on the contact normal force to
define contact. We observe that this has a faster response
and better accuracy over detecting contact using spring
deflections.

• Output Trajectory Adjustments: Due to the lack of accu-
rate estimation of the robot’s state in the global frame,
particularly in the flight phase, we express the reference
output trajectories in robot local coordinates. The pelvis
trajectory for both the crouching and landing phases is
defined with respect to the center of the support polygon,
and the swing feet trajectories are defined with respect to
the corresponding hips.
1) Experimental Results: Experiments using the con-

troller with and without the impact invariant projection were
both consistently able to successfully complete the jump.
Snapshots of the jumping motion are shown in Fig. 1. As
seen in Fig. 3, the joint velocities change rapidly during the
impact event. By projecting the velocity error of the outputs
(position and orientation of the pelvis) to the impact invariant
subspace, we avoid overreacting to these rapid velocity
changes in a principled manner. The effects of this can be
seen in Fig. 6, where the change in knee motor efforts,
particularly at the impact event, are significantly reduced
when using the impact invariant projection. We choose to
show the knee motor efforts because they exhibit the largest
change at the impact event due to their role in absorbing
the weight of the pelvis at impact. This smoothing out of
the commanded motor efforts is similar to what we see in
simulation. The jumping motions for the controller both with
and without the impact invariant projection are also shown
in the supplementary video.

V. DISCUSSION

In this paper, we introduce a general framework that
enables controllers to be robust to uncertainties in the impact
event without sacrificing control authority over unaffected
dimensions. We achieve this by projecting the control ob-
jectives to an impact invariant subspace. Using the impact
invariant projection on the physical robot, we are able to
prevent the controller from reacting to mismatches in impact
timing and reduce undesirable spikes in the controller efforts.
We believe that this will aid in developing controllers for
legged robots that are capable of more dynamic motions such
as running.

As the parameter studies and experiments on the physical
robot show, the controller performance is slightly sensitive
to the duration of the impact invariant projection and will
therefore have to be tuned. However, tuning the duration in
practice is straightforward; applying too short of a window
may miss the impact event and applying the window for too
long hinders the overall tracking performance.

While this work focuses on discontinuous in the reference
trajectories and the robot’s state, we acknowledge that dis-
continuities in the controllers of legged robots can arise from



Fig. 6. Motor efforts on Cassie executing the jumping motion. The
combined knee motor torques commanded by the jumping controller are
shown for three different durations of the impact invariant projection. Notice
that the experiments using the controller with the projection are able to avoid
the initial spike in controller efforts at the impact event. This enables the
controller to respond instead to the velocities after the impact has resolved.

other sources as well. For example, the jumping controller
switches from tracking the feet to tracking the pelvis after
it lands. At the same time, the active contact mode changes
from no contact to double stance. It is not clear whether
these discontinuities are avoidable or even problematic; still,
a careful exploration into the entirety of controller decisions
around an impact event is warranted.

Finally, although this framework is robust to any possible
contact impulse, this may ultimately be too heavy handed. In-
stead, by restricting and identifying the uncertainties present
during an impact event, we can more carefully construct
our controllers to respond to those uncertainties rather than
ignoring them. Future work therefore includes identifying the
uncertainty parameters that are relevant to our controllers,
including the controller decisions identified above.
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