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Abstract—When legged robots impact their environment, they
undergo large changes in their velocities in a short amount of
time. Measuring and applying feedback to these velocities is chal-
lenging, further complicated by uncertainty in the impact model
and impact timing. This work proposes a general framework
for adapting feedback control during impact by projecting the
control objectives to a subspace that is invariant to the impact
event. The resultant controller is robust to uncertainties in the
impact event while maintaining maximum control authority over
the impact-invariant subspace. We demonstrate the improved
performance of the projection over other commonly used heuris-
tics on a walking controller for a planar five-link-biped. The
projection is also applied to jumping, box jumping on to a
platform 0.4 m tall, and running controllers for the compliant
3D bipedal robot, Cassie. The modification is easily applied to
these various controllers and is a critical component to deploying
on the physical robot. The supplementary video is available at
this link.

I. INTRODUCTION

Handling the making and breaking of contact lies at the
core of controllers for legged robots. Recent advances in
the modeling and planning of these contacts have enabled
legged robots to walk reliably in select environments [1]. This
progress directs the focus of the field toward developing legged
robots capable of increasingly agile motions. However, these
agile motions often require interacting with the environment
with non-negligible impact events, something our current
controllers are incredibly sensitive to. When a robot’s foot
makes contact with the world, the foot is brought quickly to
a stop by a large contact impulse. Large contact forces and
rapidly changing velocities hinders accurate state estimation.
Coupled with the relatively poor predictive performance of
our contact models [2] [3] [4], this combination of large state
uncertainty and poor models makes control especially difficult.

Roboticists have attempted to improve the robustness of
legged locomotion to these impact events by addressing the
reference trajectories as well as the controllers that track those
trajectories. For example, the open-loop swing-leg retraction
policy has been shown to have inherent stability to varying
terrain heights [5]. Qualitatively similar motions were also
found independently through robust trajectory optimization
[6] [7] [8]. While designing more robust trajectories shows
promise, the challenge of designing controllers to track these
often discontinuous trajectories still remains.
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Fig. 1: Cassie is able to execute agile motions with non-
negligible impacts like jumping (top), box jumping (bottom-
left), and running (bottom-right) using impact-invariant con-
trol.

Tracking a discontinuous trajectory is problematic due to the
unavoidable difference between the reference trajectory and
actual system caused by even minuscule differences in impact
timing. These differences cause feedback control efforts to
spike and optimization constraints to be violated [9], leading
to instabilities.

While these controller spikes can be reduced through strate-
gies such as reducing controller gains and contact constraints
around the impact event [10] [11], these heuristic methods
do not address the fundamental challenge of tracking discon-
tinuous trajectories. A strategy that does attempt to directly
address this challenge is termed reference spreading control
[12] [13]. This method leverages contact detection and extend-
ing the reference trajectories to ensure that a valid reference
trajectory exists despite mismatches in impact timing. An
extension to reference spreading control [14] eliminates the
time-dependency through vector fields. However, all of these
methods rely on turning off all velocity feedback while the
impact is still resolving.

Another impact-aware control formulation is [9], which
incorporates anticipated impacts into a robust control for-


https://www.youtube.com/watch?v=_v_CKU47znQ

mulation. When evaluating velocity constraints near impacts,
the authors consider both the pre- and post-impact velocities.
By doing so, they are able to avoid infeasibilities due to
mismatches in impact timing. The primary distinction is that
[9] assumes impacts resolve instantaneously, but impacts on
real systems can take tens of milliseconds to resolve [15]. Our
proposed method makes no assumptions on the magnitude or
duration of impact forces, which allows our method to handle
when the impact is still resolving.

Alternative solutions focus instead on avoiding impact
events altogether. While impacts do not exist for frequently
used templates such as the linear inverted pendulum (LIP)
and the spring-loaded inverted pendulum (SLIP), impacts will
manifest when embedding these templates onto physical robots
with non-negligible mass in the legs. Furthermore, it is neither
possible nor desirable to avoid impacts for more agile motions
such as running or jumping. Thus, handling non-trivial impacts
in a robust manner is essential to the development of more
agile legged robots.

In this work, we propose a method for tracking discon-
tinuous trajectories across impacts that directly avoids jumps
in tracking error. We achieve this by projecting the tracking
objectives down to a subspace where they are invariant to
the impact event. Gong and Grizzle [16] shared an important
insight about angular momentum about the contact point,
noting that it is invariant to impacts at that contact point.
Inspired by this, we generalize this property and extend it
to include the entire invariant subspace, which we term the
impact-invariant subspace. A preliminary version of this article
was presented at the International Conference on Intelligent
Robots and System 2021 [17]. This work makes the following
contributions, where extensions from the preliminary version
are noted:

o The primary contribution of this paper is the identification
and understanding of a subspace of velocities that are
invariant to contact impulses.

o Leveraging this subspace, we propose a general method to
adapt controller feedback to only regulate that subspace,
which improves robustness to impact uncertainty.

« We demonstrate our impact-invariant controller across a
range of walking, running and jumping motions, greatly
expanded from the previous conference version. Included
in these examples, shown on the physical bipedal Cassie
robot, are a 40 cm jump up onto a box and bipedal
running. To the best of our knowledge, this is the first
example of a model-based running controller for Cassie.

II. BACKGROUND

We briefly introduce preliminary material and notation from
both multibody dynamics and optimization-based control.

A. Rigid Body Dynamics

We use both the planar biped Rabbit [18] and the 3D
compliant bipedal robot Cassie. Both legged robots are mod-
eled using conventional floating-base Lagrangian rigid-body
dynamics. Cassie has physical springs on its heel and knee
joints; for the purposes of modeling and control we treat these

springs as rigid. However, we do model the springs when
evaluating our results in simulation.

The robot’s state * € R?"¢ = [g;¢], described by its
positions ¢ € R™ and velocities ¢ € R"¢, is expressed
in generalized floating-base coordinates'. The dynamics are
derived using the Euler-Langrange equation and expressed in
the form of the general manipulator equation:

M(q)i+ C(q,q) = g(a) + Bu+ Jx(9)" A, (1)

where M € R"¢*" is the mass matrix, C € R™ and
g € R™a are the Coriolis and gravitational forces respectively,
B € R™*™u jg the actuator matrix, © € R™ is the vector
of actuator inputs, and Jy, € R™*" and A\ € R" are the
Jacobian of the active contact and holonomic constraints and
the corresponding constraint forces respectively.

B. Rigid Body Impacts

In this paper, we model the complex deformations and sur-
face forces that occur when a legged robot makes contact with
a surface using a rigid-body contact model. This contact model
does not allow deformations; instead, impacts are resolved
instantaneously. Therefore, the configuration remains constant
over the impact event and the velocities change instantaneously
according to the contact impulse A:

MGt —q) = J{A, 2)

where ¢ and ¢~ are the pre- and post-impact velocities, J is
the Jacobian for the active constraints of the new contact mode,
and A is the impulse sustained over the impact event. If we
include the standard constraint that the new stance foot does
not move once in contact with the ground (purely inelastic
collision and no-slip condition):

Jng™ =0, 3)

A can be solved for explicitly, determining the post-impact
state z+ purely as a function of the pre-impact state z~:

" =q, 4)
gt =TI -M TN (LM TN )6 (5)

This reset map is conventionally enforced as a constraint
between hybrid modes separated by an impact event for
trajectory optimization of legged robots.

C. Operational Space Control

We use an operational space controller (OSC) to track and
stabilize the reference trajectories for the various motions
explored in this paper. An OSC is a model-based inverse
dynamics controller that tracks a general set of task or output
space accelerations by solving for dynamically consistent
inputs, ground reaction forces, and generalized accelerations
[19] [20]. For an output position y(¢) = ¢(q) and corre-
sponding output velocity § = Jy,(g)g, where J,(q) = g—‘s, the

IFor notational simplicity, we assume ¢ = v, where v are the velocities.
For 3D orientation, as is the case for Cassie, this requires a straight-forward
extension to use quaternions.



commanded output accelerations ¢, ¢ are calculated from the
feedforward reference accelerations /4.5 with PD feedback:

- y) + Kd(ydes - y) (6)

The objective of the OSC is then to produce dynamically
feasible output accelerations ¢ given by:

ycmd = ydes + Kp(ydes

j=Jyq+Jyd

such that the instantaneous output accelerations of the robot
are as close to the commanded output accelerations as pos-
sible. This controller objective can be nicely formulated as a
quadratic program (QP):

N
min > GIWa+ ully o+l + N @)
s.t. Mi+C =g+ Bu+ JI\ (®)
Jai+Jrg=0 9)
X > [Ny (10)
A > |)‘y| (1)
An >0, (12)

where ¢ denotes the particular output being tracked (e.g., center
of mass or foot position) and W; are corresponding weights
on the tracking objectives. The QP seeks to minimize the ac-
celeration tracking error, §j = ij; — Yi..q» fOr the weighted sum
across all tracking objectives. Additional regularization costs
can be added to avoid non-unique solutions if the problem is
underspecified. Eq. (8) is the dynamics constraint, where .Jy
is the Jacobian for the active constraints for the current mode,
and A are the corresponding constraint forces. Eq. (9) enforces
the holonomic constraints, and a linear approximation of the
friction cone constraint is given by Eq. (10), Eq. (11), and
Eq. (12). Here, A, is the normal component of the contact
force and A;, A, are the tangential components expressed in
the robot frame. The QP can be solved quickly (>1000 Hz),
even for complex robots such as Cassie.

III. IMPACT INVARIANCE

In this section, we present the key ideas of this work. In
Section III-A, we explain the common challenges that arise
when applying feedback during impacts. We then propose a
solution in Section III-B, which also introduces the concept
of the impact-invariant subspace. Finally, in Section III-C
and Section III-D, we explain the practical details of how to
implement the subspace in the context of an operational space
controller.

A. Challenges of Control During Impacts

To motivate the concept of the impact-invariant subspace,
we begin by highlighting and describing the difficulties of
applying feedback control during an impact event. For the sake
of simplicity, we consider a feedback controller with constant
feedback gains that controls an output y : R™ — R™ to
track a time-varying trajectory y4es(t) : [0,00) — R" by
driving the tracking error §(t) = yaes(t) — y(¢) to zero. This
is commonly accomplished with control law u = uss + usp

—— Measured Velocity

“ —— Desired Velocity
—— Velocity Error

Velocity

Time
Fig. 2: Tllustration of a system that undergoes an impact event.
The desired velocity plan correctly includes the discontinuity
as predicted by rigid body impact laws and the measured
velocity is being properly regulated to match the desired plan.
However, due to the mismatch in impact time, the velocity
error inevitably spikes during the impact event.

where uyy is the feedforward controller effort required to
follow the reference acceleration §jg.s and uyy, is the PD
feedback component given by:

upp(t) = Kpi(t) + Kaij(t).

The reference trajectory @qes(t) for systems that make
contact with their environment has discontinuities at the impact
events in order to be dynamically consistent with Eq. (5).
Therefore, in a short time window around an impact event,
there will be a discontinuity in the reference trajectory yges(t)
at the nominal impact time and a near-discontinuity in the
actual robot state when the system () makes contact with
the ground as shown in Fig. 2. Because the robot configuration
is approximately constant over the impact event, the change in
controller effort is governed by the change in velocity error:

Au =~ KyAq, (14)

13)

thus any mismatches in impact timing will unavoidably result
in spikes in the feedback error signal, which has been similarly
noted in [12].

Remark 1: The previous example assumes the jump in
the reference trajectory is time-based. Although it is possible
to formulate trajectories with event-triggered jumps, these
methods require detection, which for state-of-the-art methods
still have delays of 4-5 ms [21]. Moreover, in reality, im-
pacts are not resolved instantaneously but rather over several
milliseconds to tens of milliseconds. In this time span, it is
not clear which reference trajectory to use, as using either
trajectory will output a large tracking error.

Note that a large tracking error, shown in Fig. 2, results
from only a small difference in impact timing, yet the con-
troller will respond to the large velocity error and introduce
controller-induced disturbances. Furthermore, this sensitivity
to the impact event is amplified by the large contact forces that
impair state estimation and result in likely inaccurate velocity
measurements due to necessary filtering.

The key challenges of applying feedback during impacts
can thus be summarized as: impacts are brief moments of



high uncertainty where our references are poorly defined and
our measurements are inaccurate.

B. Impact-Invariant Subspace

The key insight in resolving the problem of control during
impacts is inspired by [16], in which Gong and Grizzle
delineate desirable properties of angular momentum about the
contact point. They highlight that it is invariant over impacts
on flat ground, meaning that it is continuous over the impact
event despite it being a function of velocity.

The concept of an impact-invariant subspace is a gener-
alization of this property. We observe that there is a space
of velocities that, like angular momentum about the contact
point, are continuous through impacts for any contact im-
pulse. By switching to track only these outputs in a small
time window around anticipated impacts, we avoid controller-
induced disturbances from uncertainty in the impact event.
While angular momentum € R3 or R? for planar systems such
as Rabbit, the impact-invariant subspace € R™¢~"<, where
ng is the dimension of generalized velocities and n. is the
dimension of the contact impulse of the impact event. For
Rabbit walking, this space is € R7-2. For Cassie, each foot
on the ground imposes a contact constraint of dimension 5 and
the four bar linkage on each leg provides a distance constraint
of dimension 1 that is always active’. Therefore the impact-
invariant subspace is € R'®~7 for impacts with a single foot
(walking, running) and € R'8~!2 for impacts with both feet
(jumping). A direct benefit of this higher dimensional space
is the higher degree of possible control, which enables more
agile or energetically efficient motions.

The impact-invariant subspace is defined as the nullspace
of (M~1JIT or left nullspace [22] of M~1J], where Jy
again is the Jacobian for the active constraints. Thus a basis
P(q) € R(™a—ne)*nq for this nullspace is such that:

PMYJ'A=0=P(¢—¢). (15)

This creates the intended effect, that is, for any contact im-
pulse A, the impact-invariant velocities will be unchanged. To
project the generalized velocities down to the impact-invariant
subspace, we can create an orthonormal projection matrix
Q(q) € R"a*"a = PT P In practice, we can compute this pro-
jection matrix as Q = [ —M ' JL (LM~ TM~ I M T,

To illustrate the benefit on a physical robot, the joint
velocities for Cassie executing a jumping motion right when
it lands are shown in Fig. 3. Details of the jumping controller
and experiments are given in Section VI. Observe that the
projected joint velocities are significantly smoother than the
original joint velocities.

C. Implementation for Task Space Tracking

The objective of impact-invariant control is to apply control
on the subspace where the changes in the velocity introduced
via the impact map, M ~1J{, do not appear. In practice, we

2Explanation of Cassie contact constraint dimension. We model Cassie’s
feet as two point contacts on the same rigid body. Each point on the ground
imposes a contact constraint of dimension 3; because the contact points are
on the same body, one dimension is redundant.
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Fig. 3: Demonstration of the impact-invariant projection on
joint velocity data from eight consecutive jumping experiments
on the physical Cassie robot. Joint velocities (top) during the
landing event change rapidly. By projecting the same joint
velocities to the impact-invariant subspace (bottom), the values
are more consistent and more amenable for feedback control.
Note, the change in joint velocities primarily occurs within a
time span of only 10 - 20 ms. The L and R subscripts indicate
the left and right leg respectively.

accomplish this by modifying our controllers to eliminate the
component of the velocity error that is within the subspace
spanned by the impact map M _1JAT by solving the following
optimization problem:

min
A

9aes = Jy(G+ M IIN),
Ju(Gg+M71IIN) =0,

(16)

subject to: a7

where Jj, is the Jacobian for the holonomic constraints that
are unambiguously active during impact®. This reduces the
total error by subtracting a correction term M ~1'Jy\ that by
construction is in the range of M *1Jf. We must include
the constraint forces for all active constraints, as contact

3Unambiguously active constraints refer to constraints that are active both
before and after the impact event. For example, the four-bar linkage constraint
is always active and for walking with a double stance phase, the contact
constraint for the current stance foot is active both before and after the other
foot makes contact.



forces from the impact event will cause corresponding reaction
forces, which should still satisfy kinematic feasibility of the
velocities enforced by Eq. (17). Notice that this optimization
problem is an equality constrained QP, which we are able to
solve this in closed form:

AT [ATA BT [AT (4ges — 9) 8
L= T ) e

"
where A = J,M~'J{, B = J,M~'J}, and p* is the
Lagrange multiplier for the holonomic constraint. Notice, this
is a least squares problem which is a projection. The benefit of
explicitly computing the error correction M ~1.JEA\* is that it
becomes trivial to smoothly blend in the projection. Applying
A* back into the OSC formulation, we combine the correction
and the measured velocity to define the projected generalized

velocities as:

Gproj = 4+ M1 ITA". (19)
We then define the projected output velocity, o, and
projected output space velocity error, ¥pro;, as:
(20)
2D

yproj = ydproj
gproj = ydes - yproj-
The projected output space velocity error gjpmj is then used in

the OSC feedback law (Eq. (6)) to create the impact-invariant
feedback law:

gcmd = ydes + Kp(ydes - y) + Kd(ydes - yproj)- (22)

Remark 2: Here we formulate this projection for general
task-space objectives. Joint-space objectives are included in
task-space objectives, and thus this method can also easily be
applied to joint PD controllers.

D. Activating the Impact-Invariant Projection

Because impact-invariant control essentially ignores errors
in the space of impacts, we should only use it when we
anticipate impacts. In practice, we do this by only activating
the projection in a time window near anticipated impact
events. To avoid introducing discontinuities when activating
the projection, we blend in the correction, M *1JAT)\* using a
sigmoid function «/(t) visualized in Fig. 4.

0 ‘t - tswitch| > 1.5T
Oé(t) = exp(w) t S tswitch

T
(M) t > tswitch

T

(23)
exp

where ¢ is the current time, tsyitcn 1S the nominal impact
time given by the reference trajectory, 71" is the duration of the
projection window, and 7 is the time constant. We then use
a(t) to modify (19) to be:

q.proj = q + a(t)M_IJI)‘*

Note our choice for the blending function «(t) is arbitrary;
any monotonic continuous function with a range € [0, 1] can
accomplish a similar purpose. Additionally, while «(t) is a
function of time, we can also activate/blend in the impact-
invariant projection purely as a function of the robot’s state.
For example, we can use the distance between the foot or end
effector and the environment in place of ¢ — tsyitch.
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Fig. 4: Blending function for the impact-invariant projection
for a window T" of 50 ms and time constant 7 of 2 ms.

IV. EXPERIMENTAL SETUP

To showcase the advantages of using the impact-invariant
subspace, we apply the aforementioned projection on the
following examples:

« In simulation, for a joint-space inverse dynamics walking
controller for the planar five-link biped Rabbit [18], we
compare impact-invariant control to a default controller
that makes no adjustment near impacts and to a controller
that applies no-derivative feedback near impact.

In simulation, we perform a basic jump as well as more
dynamic jumps such as a long jump, box jump, and down
jump using an operational space jumping controller for
the 3D bipedal robot Cassie. On hardware, we validate
the jump and box jump controllers with impact-invariant
control.

In simulation, we compare an operational space running
controller for Cassie that uses impact-invariant control
with a controller that applies no-derivative feedback near
impact. We validate our running controller on hardware.

The reference walking and jumping trajectories were com-
puted offline by solving a constrained trajectory optimiza-
tion problem on the respective full order models. The prob-
lems were transcribed using DIRCON [23] and solved using
IPOPT/SNOPT [24] [25]. The various jumping trajectories are
distinguished by the constraints imposed:

o The normal jump trajectory was constrained to have the
robot pelvis reach an apex height of 0.15 m above its
initial starting height and to have both feet reach 15 cm
of clearance above the ground at the apex.

o The long jump trajectory has the feet land 0.7 m ahead
of their initial position.

o The box jump trajectory has the feet land on a box that is
0.5 m tall and 0.3 m in front of the starting configuration.

o The down jump trajectory has the feet land on a platform
0.5 m below and 0.3 m in front of the starting configu-
ration.

Traces of the reference trajectories are shown in Fig. 6. The
same jumping trajectories were used in both simulation and on
the physical robot. The reference trajectories for the running
controller were generated using common simple models ex-
plained in detail in VII-B. Hardware-specific implementation
details of the jumping and running controller as well as the
full set of are included in Appendix A.



V. FIVE-LINK BIPED WALKING CONTROLLER

1) Experimental Setup: To demonstrate the directional na-
ture of the impact-invariant projection, we apply the projection
to a joint space inverse dynamics walking controller for the
planar biped Rabbit in simulation with the hip and knee joint
angles in both legs as the outputs. We generate a periodic
walking trajectory using trajectory optimization and perturb
the swing foot vertical velocity by 0.1 m/s at the start of
the trajectory so that the robot makes contact away from the
nominal impact time. To evaluate robustness, we compare the
post-impact velocity error in the joints of both the swing and
stance leg for three variations of the joint space controller:

« No adjustment: this is a standard joint space controller
that makes no special considerations with regards to the
impact event other than switching contact modes at the
nominal impact time.

¢ No derivative feedback (K; = 0) applied in a window
25 ms before and after the nominal impact time.

o Impact-invariant projection applied in a window 25 ms
before and after the nominal impact time.

We add the additional comparison to a controller with no
derivative feedback to demonstrate the control authority that
the impact-invariant controller retains. While both applying no
derivative feedback and using the projection seek to reduce
the sensitivity to large velocity errors at the impact event,
the projection maintains the maximum control feedback which
leads to better tracking performance.

2) Results: Shown in Fig. 5, the controller using the
impact-invariant projection is able to achieve the best tracking
performance out of the three controllers for both legs. It has
better tracking performance than the default controller for the
joint velocities of the impacting leg by not overreacting to the
impact event as shown by the controller efforts. At the same
time, it has better tracking performance than the controller
with no derivative feedback for the joint velocities of the
non-impacting leg by appropriately regulating the velocities
in those joints.

VI. CASSIE JUMPING CONTROLLER

Next, we evaluate the performance of the impact-invariant
projection on a jumping controller for Cassie. We chose to
look at jumping due to the richness of the impact event: the
robot cannot accurately estimate its state [26] when it is in
the air and must make impact with the ground with non-zero
velocity.

A. Controller Formulation

1) Finite State Machine: We decompose the jumping mo-
tion into three states CROUCH, FLIGHT, LAND, and switch
between states at fixed times as computed from the reference
trajectories.

2) Tracking Objectives: The tracking objectives are listed
in Table I. We define tracking objectives such as the foot
and pelvis position relative to other points on the robot
to reduce sensitivity to errors in state estimation. During
the CROUCH and LAND states, the active objectives are
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Fig. 5: The joint velocity tracking errors are shown for
the impacting leg (top) and the non-impacting leg (bottom)
for three strategies. The controller that utilizes the impact-
invariant projection is shown to be robust to the mismatch in
impact timing as evidenced by lower tracking error compared
to the default controller. The impact-invariant controller is
also able to maintain full control authority over the joints
in the non-impacting leg compared to the controller that
applies no derivative feedback in the same window. The time
window where no-derivative feedback and the impact-invariant
projection are active is shown in grey.

TABLE I: Tracking objectives for the jumping controller. All
values are expressed in the world frame.

Symbol Description

r € R3 Pelvis position

1 € SO(3) Pelvis orientation

YL YR € R3  Foot position relative to pelvis
BL,Br € R Hip yaw angle

¢r,¢r € R Toe joint angle

[r,%, Br,Br] € R®. During the FLIGHT state, the active
objectives are [yr,Yr, AL, Br, ¢, ¢r] € R The active
tracking objectives per mode are also illustrated in Fig. 7.
Similar outputs are used in another jumping controller for
Cassie [27].



(a) Walk (b) Jump

(c) Long jump

(d) Box jump (e) Down jump

Fig. 6: Reference trajectories generated using full model trajectory optimization.
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Fig. 7: Active tracking objectives per mode for the jumping
controller executing the jump trajectory.

B. Simulation Analysis of Impact-Invariant Control

Timing the switch from the FLIGHT state to the LAND
state is critical to stabilize the jump. Impact-invariant control
reduces sensitivity to the impact timing and thus enables
a greater margin of error. To evaluate this effect, for all
the jumping motions we test a range of transition times
[—0.025s,0.025s] and durations of the projection duration
[0.0s,0.1s] to empirically evaluate the stable regions for the
controller. In addition to testing whether the robot successfully
controls the jump, we also evaluate the overall control input
cost:

ty
Jy = / uIWyudt, (24)
to

where W, is the same regularization weight on © we use in
the OSC. Five experiments per pair of transition times and
projection durations are evaluated using the Drake simulator
[28], and the results with J,,,; normalized so that the largest
value is 1 are reported in Fig. 8. The region of stable jumps
increases as the projection window duration increases, while
there is not a significant effect on the input cost. We see a more
noticeable improvement from the impact-invariant controller in
the long jump than the down jump. We theorize that this is
because the long jump motion is more difficult to stabilize and
therefore the improved robustness to the impact event has a
greater marginal effect.

C. Hardware Results

Experiments using the controller with and without the
impact-invariant projection were both consistently able to
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Fig. 8: Simulation effort costs for (a) long jump and (b)
down jump evaluated over a range of fixed transition times
and projection window durations. Five trials are evaluated for
each pair of transition times and projection durations. The
controller without the impact-invariant projection corresponds
to a projection window duration of 0.0 s. The regions where
the robot fails to stabilize for over half the trials are marked
as “Fail”. As the projection window increases, the range
of successful transition times increases. This effect is more
pronounced for the long jump.
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Fig. 9: Motor efforts on Cassie executing the default jumping
motion. The combined knee motor torques commanded by the
jumping controller are shown for three different durations of
the impact-invariant projection.

successfully complete the basic jump. Snapshots of the jump-
ing motion are shown in Fig. 1. As seen in Fig. 3, the
joint velocities change rapidly during the impact event. By
projecting the velocity error of the outputs (position and
orientation of the pelvis) to the impact-invariant subspace,
we avoid overreacting to these rapid velocity changes in a
principled manner. The effects of this can be seen in Fig. 9,
where the change in knee motor efforts, particularly at the
impact event, are significantly reduced when using the impact-
invariant projection. We choose to show the knee motor efforts
because they exhibit the largest change at the impact event
due to their role in absorbing the weight of the pelvis at
impact. This smoothing out of the commanded motor efforts
is similar to what we see in simulation. The jumping motions
for the controller both with and without the impact-invariant
projection are included in the supplementary video.

Among the other jumping trajectories, we chose to test the
box jump trajectory on hardware as it is least likely to damage
the robot. We positioned 16 in (~0.4 m) tall wooden boxes in
front of the robot and executed the same tracking controller
using a 50 ms projection duration. Although the reference
jumping trajectory we optimized was for a box height of 0.5
m, the robustness afforded by the impact-invariant controller
enabled the controller to successfully achieve the jump. A
frame of the controller executing the box jump is shown in
Fig. 1 and is also included in the supplementary video.

Approximately 20 trials were conducted to tune the con-
troller parameters in order to achieve the first successful jump.
Due to fear of damaging the robot, we did not conduct
enough trials to report a reliability metric for the box jumping
controller on hardware.

VII. CASSIE RUNNING CONTROLLER

Jumping motions have a significant, but singular, impact
event. In contrast, running makes impacts with the environ-
ment at every stride. Because each stride leads immediately
into the next, consistent tracking performance is essential to

achieving stable running. For this reason, we also develop
a running controller to showcase the benefits of the impact-
invariant projection. The impact-invariant space for running is
also larger because running makes impact with its environment
with only a single foot at a time.

A. Controller Architecture

We track a SLIP-like pelvis trajectory and Raibert stepping
generated footstep trajectories [29] using the same OSC as the
jumping controller. A diagram with the key elements is shown
in Fig. 10.
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Fig. 10: Key elements of the running controller diagram.

B. Reference Trajectory Generation

1) Mode timing: We use variable stance and flight durations
to construct reference trajectories and determine contact mode
switches. The nominal stance and flight durations, 7, and
Ty respectively, are given in Table IV. However, we allow
for variations in the timing to better align with the predicted
touchdown and liftoff. The upcoming transition times for the
full gait cycle are computed at each mode switch using the
following heuristics:

T = elip LT, (- e (L4 o))
YysLip

Tj =clip( jsrip+ \/ygup —29(l = ysrip),

(L —op)Ty,

(L4 07)Ty),

where we clip the modified stance and flight durations to
minimize timing changes in response to large disturbances.
The modified stance duration computes the ratio of the rest
length to the SLIP length to roughly scale the liftoff time, and
the flight duration predicts the time to touchdown assuming a
ballistic trajectory.

2) SLIP-like pelvis trajectory: Inspired by the extensive
literature on SLIP, we use a SLIP-like reference for the
pelvis motion during stance {LS, RS}. We achieve a spring-
like behavior by regulating the pelvis position relative to the
current stance foot to a constant target height [ and using the
OSC gains to achieve the desired dynamics.

Yiscipemd = Kp(l —ysprp) + Ka(yspip).  (25)

An important note is that we tune K, and K, to achieve
the desired dynamics and not to achieve the best tracking.



TABLE II: Tracking objectives for the running controller. All
values are expressed in the world frame.

Symbol Description

Lsrip € R Pelvis position relative to the stance foot
P € SO(3) Pelvis Orientation

YL YR € R3 Foot position relative to pelvis

BrL,Br €R Hip yaw angle

¢, 9r €ER Toe joint angle

We adopt this simpler approach over tracking to true SLIP
dynamics because the true dynamics are more difficult to
regulate due to additional parameters and being purely an
acceleration reference.

3) Footstep trajectories: Regulating the center of mass
velocity is achieved through foot placement. While there are
possible variations for choosing where to place the foot [30]
[16], the basic principle behind all the stepping strategies is
stepping in the direction that you are falling. We choose to
regulate the running velocity by planning footsteps with the
widely recognized Raibert footstep control law [29]:

yft,:r K:xv(vdes,x - Ua:)
Yt = | Yfty | = Ky(vdes,y - Uy) P (26)
Yst,z -1

where K are the Raibert stepping gains, vg.s are the desired
velocities as commanded by the operator, and v is the current
pelvis velocity computed by the state estimator. x and y in this
context denote the sagittal and lateral directions respectively.
yre then defines the target footstep location relative to the
pelvis.

With the end footstep location yy: 2 specified, we can
generate a trajectory for the swing foot given its initial position
Yre,0 at liftoff to the final desired location. We specify all the
reference trajectories as piecewise quadratic polynomials, so
with the additional degrees of freedom we add a waypoint
yre,1 so that the trajectory roughly resembles the swing leg
retraction profile observed in both numerical optimization [6]
[5] and biology [31]. The full set of constraints defining the
piecewise quadratic polynomial are as follows:

h = [0,0.6(Ts + 2T}), (Ts + 27%)]"

oo(h[0]) = yst0
oo(h[l]) = ysen
or(h[1]) = ysen
o1(h[2]) = yyi2
o(h[1]) = doh[1]
Go(h[1]) = Goh[1]

where yy. 0 is the initial foot position at liftoff, ys. o is
the desired footstep location at touchdown Eq. (26), and
Y1 = Yre0 + 0.8(Yse0 + Yre2) +[0,0,d]T is the waypoint
we introduce to specify foot clearance. An illustration of the
trajectory profile is shown in Fig. 11.

C. Reference Tracking

1) Finite State Machine: We use a time-based finite state
machine (FSM) using the timings from Section VII-B1 to

K g oo(h[1]) = ygra
o1(h[1]) = ysia
Go(h[1]) = &1(h[1])
Go(h[1]) = G1(h[1])

o1(h[2]) = yst.2

88.00([0]) = 10

Fig. 11: Illustration of key references for the running con-
troller. The target height and swing foot trajectory with leg
retraction profiles are shown in red and yellow respectively.

specify the active contact mode and generate the clock signal
for the reference trajectories. The set of finite states is {LS,
LF, RS, RF}; L and R correspond to the left and right legs
respectively and S and F correspond to Stance and Flight. We
distinguish between the two air phases {LF, RF} to prescribe
different tracking priorities for the different legs. The nominal
durations for stance and flight deployed on hardware are
reported in Table IV.

2) Tracking Objectives: The tracking objectives for the
running controller are reported in Table II. Although Lgrrp
is defined as the position € R3 of the pelvis relative to current
stance foot expressed in the world frame, we only track the
vertical component.

During left stance (LS), the active vector of tracking objec-
tives is [Lsrrp,Yr, ¥, or, Br)] € RY. For right stance (RS),
the tracking objectives are the same, just mirrored for the
other leg. During the aerial modes LF, RF, the active tracking
objectives are [yr,yr, ¥, L, Br, ¢1,¢r] € R, The active
tracking objectives per mode are also illustrated in Fig. 12.

Note, the dimension of the tracking objectives in flight, 13,
is greater than the total degrees of actuation, 10. Therefore,
during flight, the control formulation is overspecified and
perfect tracking cannot be achieved. We choose to leave the
problem overspecified as opposed to leaving out either the
pelvis orientation or one of the foot targets because we found
that trading off between multiple tracking objectives led to
better performance on hardware.

3) Turning: We use the identity quaternion as the desired
pelvis orientation and zero as the the desired angular velocity.
By setting the task-space gains to K, = diag[150,200, 0]
and K, = diag[10, 10, 5], the robot operator can specify the
desired yaw velocity and achieve basic turning.

D. Simulation Analysis of Impact-Invariant Control

In simulation, we achieve maximum forward velocities of
over 3 m/s as shown in Fig. 13. To reach the maximum
velocity, we linearly ramp the desired velocity from 0 m/s
to 3 m/s and back down to 0 m/s.
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Fig. 13: Simulated robot tracking a target velocity that is
linearly ramped up and back down to 0. The forward velocity
shows the deceleration/acceleration profile associated with
SLIP dynamics. Lateral velocity shows signs of instability at
higher velocities.

The projection is an essential component for our framework
to achieve stable running. In simulation, the controller without
the projection is immediately unstable when the foot touches
the ground. We also compare the impact-invariant controller
with a controller where we set the velocity feedback gains to 0
during the same projection window. We refer to this controller
as no-derivative. Both controllers are tasked with tracking a
forward velocity command and the average errors over 20
secs are reported in Table III. The errors are computed as the
position error at touchdown. While the no-derivative controller
has only slightly worse tracking performance on individual
tracking objectives, the minor tracking discrepancies have a
non-negligible effect on overall motion. For this reason, the
no-derivative controller is around 0.5 m/s slower than the
impact-invariant controller with the same velocity command.

E. Hardware Results

We are able to achieve stable running, with the ability to
command forward velocities and turn, on the physical robot
using the same gains used in simulation. We tested the robot
both indoors and outdoor on grass and a turf field. The
robustness of the impact-invariant control to early and late
impacts on the physical robot is shown in Fig. 14. Videos of
the experiments with the physical robot are included in the

TABLE III: Average tracking error of the impact-invariant
controller and no-derivative controller for running with a
constant forward velocity command.

Objective Impact-Invariant No-Derivative
Error Error
Foot forward position 6.6 cm 6.6 cm
Foot lateral position 3.6 cm 44 cm
Foot vertical position 3.9 cm 5.6 cm
Hip yaw angle 0.026 rad 0.034 rad
Toe joint angle 0.030 rad 0.020 rad

supplementary video. Relevant controller parameters of the
running controller are provided in Table IV.
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Fig. 14: Velocity tracking errors from the running controller
on the physical Cassie robot. During the experiment, the robot
makes impact late with its left foot, which initially results in
a large tracking error for the pelvis target. The robot also
make impact early with its right foot, which results in a
large tracking error for the right foot target. In both cases,
the impact-invariant projection protects the controller from
overreacting to the mismatch in impact timing.

VIII. DISCUSSION

In this paper, we introduce a general strategy that en-
ables controllers to be robust to uncertainties in the impact
event without sacrificing control authority over unaffected
dimensions. The strategy makes use of an easy-to-compute
modification of how the velocities of the robot enter the
controller. Specifically, we project the velocity error into a
subspace that is invariant to the impact event. This projection
completely eliminates sensitivity of the controller to potential
contact impulses, while minimally deviating from the original
controller.



TABLE IV: Relevant running controller parameters

Parameter Value
Projection window T° 0.050 s
Blend time constant 7 0.005 s
Stance duration T’ 0.30 s
Flight duration T’y 0.09 s
Pelvis target height [ 0.85 m
Foot clearance d 0.2 m

We demonstrate through examples with legged robots that
the impact-invariant projection is robust to the impact event,
while achieving better tracking performance compared to
alternative methods. The modification can easily be applied
to controllers for complex bipeds such as Cassie, and the
modification enables highly dynamic motions such as jumping
and running.

A. Recovered Control Authority

We only apply the projection in a small time window around
an impact. An alternative to the projection is to instead turn off
all derivative feedback as is done during the contact transition
mode [13]. If impacts are infrequent and short, the additional
benefit gained from using the impact-invariant projection is
minimal. However, for motions where impacts are frequent
such as running, the additional benefit can be substantial. Our
running controller uses a projection window of 50 ms on
both sides of the impact event for a total of 100 ms when
the projection is active. The nominal stepping period of the
running controller is 0.39 s, so the projection is active for
over 25% of the time. Even tighter window durations cover a
non-negligible duration of the entire motion.

B. Introducing Additional Controller Invariances

The impact-invariant framework enables robustness to a
very particular source of uncertainty: impacts. It seems
straightforward to extend this idea to eliminate sources of
uncertainty from the control law, but on further examination
impacts may be a very specific case of where this method
would be useful. The key observation of this work is that
impacts are brief periods of high uncertainty that enter
the dynamics in a highly structured manner. Therefore, a
reasonable approach is to effectively ignore the uncertainty
in the short amount of time when the magnitude of the
uncertainty is at its greatest. Other sources of uncertainty
such as model differences or uncontrollable elements such as
physical springs do not have these attributes. We cannot ignore
model differences as they permeate the entire dynamics and
are persistent throughout, and while springs only enter the
dynamics at a single joint, their oscillations do not resolve in
a short amount of time.

C. Future Work

Although the examples featured in this work focus on legged
locomotion, the method is general and can be applied to other
rigid body systems with impacts, such as manipulation. For
future work, we plan to investigate how this method can
be applied to high-speed grasping. A complementary avenue

of future research lies in how we can leverage other sensor
modalities such as tactile sensing as a method to have a less
conservative bound on impact uncertainty by working with
partial sensor feedback.
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APPENDIX

TABLE V: Full controller gains for the Cassie jumping con-
troller deployed on hardware. Weight and gain matrices are
diagonal matrices, represented here as vectors to be concise.

Symbol  Description Value
o Friction coefficient 0.6
T Projection window 0.05 s
T Blend time constant  0.005 s
OSC Objective w Ky Ky

Toe joint angle 0.01 1500

10
Hip yaw angle 2.5 100 5

Pelvis [x, y, ] 20, 2, 20] (40, 50, 40] [7.5,5, 5]
Pelvis [roll, pitch, yaw]  [10,5,1] [150,200,150]  [10,10, 5]
Foot [x, y, z] [10,100,10] [125,50,150]  [2.5,2.5, 0]

TABLE VI: Full controller gains for the Cassie running
controller deployed on hardware.

Symbol  Description Value

n Friction coefficient 0.6

T Projection window 0.05 s

T Blend time constant 0.005 s

l Pelvis target height 0.85 m

Ts Stance duration 03s

Ty Flight duration 0.09 s

Os Stance duration variance 0.2

of Flight duration variance 0.1

Footstep lateral offset 0.04 m

d Foot clearance 0.2 m

K, Raibert footstep sagittal feedback  0.01

Ky Raibert footstep lateral feedback 0.3
OSC Objective W Ky Ky
Toe joint angle 0.01 1500 10
Hip yaw angle 2.5 100 5
Pelvis [x, y, z] [0,0,5] [0,0,115] [0,0,5]
Pelvis [roll, pitch, yaw]  [10, 5, 1] [150,200,0] [10,10,5]
Foot [x, y, z] [10,100,10] [125,75,75] [5,5,5]

A. Hardware Setup

All processing is done on the Intel NUC 11 computer
onboard Cassie. Note we swapped the original Intel NUC
onboard Cassie for a newer generation for better performance.
We run the state estimator and the controllers asynchronously
as separate processes, and communication between processes
is handled using LCM [32], while user commands are sent
through the radio remote.

1) State Estimator: We use the contact-aided invariant EKF
developed in [33] to estimate the floating-base pelvis state.
Although we do not directly use contact detection in our
controllers, the state estimator utilizes the current contact mode
estimate in the measurement update. We achieve this using a
generalized-momentum observer, similar to the method used
in [34], to estimate the contact force at each foot. We then set
a threshold of 60 Nm on the contact normal force to define
contact. We observe that this has a faster response and better
accuracy over detecting contact using spring deflections. The
state estimator runs at 2000 Hz.

2) Controller Implementation: We write our controllers
using Drake [28] for the systems framework and all multibody
calculations. In addition to the weights and gains for the
tracking objectives given in Table V Table VI, we add small
regularization weights to all the decision variables for better
solver performance. To set different tracking priorities during
the flight phase for the running controller, we linearly ramp the
weight for the foot tracking objective from 0.5 to 4 times the
specified value across the duration of the trajectory. Although
the tracking objectives are expressed in the world frame, we
compute the errors in the robot yaw frame in order to have
the gains operate on the sagittal and lateral directions rather
than the world x and y directions. Finally, we solve the OSC
QP using a minor modification of the Drake OSQP interface
[28] [35] at 1500 Hz.
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