Direct methods for trajectory optimization are widely used for planning locally optimal trajectories of robotic systems. Most state-of-the-art techniques treat the discontinuous dynamics of contact as discrete modes and restrict the search for a complete path to a specified sequence through these modes. Here we present a novel method for trajectory planning through contact that eliminates the requirement for an a priori mode ordering. Motivated by the formulation of multi-contact dynamics as a Linear Complementarity Problem (LCP) for forward simulation, the proposed algorithm leverages Sequential Quadratic Programming (SQP) to naturally resolve contact constraint forces while simultaneously optimizing a trajectory and satisfying nonlinear complementarity constraints. The method scales well to high dimensional systems with large numbers of possible modes. We demonstrate the approach using three increasingly complex systems: rotating a pinned object with a finger, planar walking with the Spring Flamingo robot, and high speed bipedal running on the FastRunner platform.
PDF